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Abstract 

Alzheimer’s disease (AD) is the most common cause of dementia in older adults. Neuropathological and 

imaging studies have demonstrated a progressive and stereotyped accumulation of protein aggregates, 

but the underlying molecular and cellular mechanisms driving AD progression and vulnerable cell 

populations affected by disease remain coarsely understood. The current study harnesses single cell and 

spatial genomics tools and knowledge from the BRAIN Initiative Cell Census Network to understand the 

impact of disease progression on middle temporal gyrus cell types. We used image-based quantitative 

neuropathology to place 84 donors spanning the spectrum of AD pathology along a continuous disease 

pseudoprogression score and multiomic technologies to profile single nuclei from each donor, mapping 

their transcriptomes, epigenomes, and spatial coordinates to a common cell type reference with 

unprecedented resolution. Temporal analysis of cell-type proportions indicated an early reduction of 

Somatostatin-expressing neuronal subtypes and a late decrease of supragranular intratelencephalic-

projecting excitatory and Parvalbumin-expressing neurons, with increases in disease-associated microglial 

and astrocytic states. We found complex gene expression differences, ranging from global to cell type-

specific effects. These effects showed different temporal patterns indicating diverse cellular perturbations 

as a function of disease progression. A subset of donors showed a particularly severe cellular and 

molecular phenotype, which correlated with steeper cognitive decline. We have created a freely available 

public resource to explore these data and to accelerate progress in AD research at SEA-AD.org. 

  

Introduction  

Alzheimer’s Disease (AD) is a complex etiology disease characterized by deposition of hallmark 

pathological peptides and neurodegeneration that progress across partially overlapping neuroanatomical 

and temporal axes1,2. This process is generally believed to follow a stereotyped progression with Amyloid 

Beta (Aβ) plaques starting in the cerebral cortex3 and hyperphosphorylated tau (pTau) aggregation 

(neurofibrillary tangles) starting in the brainstem/limbic system4. Despite being important biomarkers of 

AD5 and notwithstanding decades of efforts, treatment strategies aiming to reduce the burden of these 

pathological peptides have resulted in, at best, a modest impact on pathology accompanied by severe 

toxicity profiles. Single cell and spatial genomics technologies now offer a dramatically higher resolution 

analysis of complex brain tissues in health and disease, and the first important studies applying them to 

AD have begun to identify cellular vulnerabilities and molecular changes with disease6–9. However, these 

studies have suffered from quality of available tissues, under sampling leading to low cellular resolution 

analyses, at best semi-quantitative neuropathological characterization, and lack of power such that 

together they have not produced a coherent understanding of the cellular vulnerabilities and mechanistic 

underpinnings of AD.  

Recent work catalyzed by the BRAIN Initiative Cell Census Network (BICCN) has firmly established best 

practices in experimental and quantitative analyses of mouse, non-human primate and human brain using 

single cell genomics, spatial transcriptomics, and Patch-seq methods to characterize cellular properties 

and build a knowledge base of brain cell types10–16. Over 100 cell types can be reliably identified using 

single nucleus RNA-seq in any cortical area10,11,17,18, and alignment across species shows strong 



   

 

   

 

conservation of cellular architecture17,18 that allows inference of human cellular properties from studies 

in the experimentally tractable mouse. Systematic BICCN studies have now extended these analyses to 

whole mouse brain, showing over 5000 types with single cell genomics and spatial transcriptomics15,19,20. 

Parallel efforts in human brain have produced a first draft atlas (>3000 types) using single nucleus RNA-

seq, ATAC-seq, methylation analyses, and established MERFISH analyses in challenging human brain 

tissues11,12,14,21,22.  

The Seattle Alzheimer’s Disease Cell Atlas (SEA-AD) consortium aims to leverage advances from the BRAIN 

Initiative to establish best practices in aged and high pathology tissues and to produce a high-resolution 

multimodal brain-wide cell type atlas of AD. Once completed, the SEA-AD Atlas will enable a systematic 

characterization and interpretation of the cellular and molecular correlates of AD neuropathology across 

brain regions. Key to achieve this goal is 1) the selection of a high quality donor cohort, spanning the full 

spectrum of AD pathology with limited comorbidities but otherwise relatively homogenous, chosen from 

prospective longitudinal cohort studies with well-characterized participants; 2) the use of improved tissue 

preparation methods that have been shown extensively to produce high quality single nucleus 

transcriptomics, epigenomics and spatial transcriptomics data10–12,14,17,18,21,22; and 3) a deep donor 

characterization strategy with all analytical methods applied to the same donors, including quantitative 

image-based neuropathology, single nucleus multiome analysis, and targeted spatial transcriptomics. 

Together these criteria enabled the analysis of AD at the highest cellular resolution, including modeling it 

as a progressive disease that affects different cell types at different stages of neurodegeneration.  

The current study focused on the middle temporal gyrus (MTG), an area involved in language and semantic 

memory processing 23 and higher order visual processing24. MTG is the human cortical region currently 

with the best annotated BICCN cell classification11,17, including cellular phenotype data available through 

Patch-seq analysis of neurosurgical specimens13,16,25. Perhaps most importantly, pathological and imaging 

studies demonstrate that MTG is a transition zone between aging- or preclinical AD-related pTau and 

more advanced stages of AD that are strongly correlated with dementia4,26–32. This integrated AD atlas 

strategy in MTG was successful. Optimized tissue collection and preparation methods produced high 

quality human brain tissues, and thereby high-quality single nucleus genomics data, across the range of 

age and AD pathology. These data were effectively mapped to the BICCN neurotypical reference and used 

to expand the classification to include disease cell states. Combining multimodal molecular and 

neuropathological analyses allowed the application of concepts from developmental biology for pseudo-

trajectory analysis to model disease pseudo-progression. We used quantitative neuropathology to 

generate scores for each donor that quantified overall AD pathology severity. We then used these scores 

to characterize disease pseudo-trajectory that we deployed to identify cellular vulnerabilities and 

molecular correlates of disease pseudo-progression. These results were corroborated across single 

nucleus and spatial modalities. Using this approach, we identify both general and highly cell type specific 

correlates of AD pathology, identify a severely affected subset of donors, and produce an integrative 

framework to understand a wide range of cellularly and temporally discrete consequences of disease 

pseudo-progression. All data are made publicly available through a suite of exploratory resources at the 

Seattle Alzheimer’s Disease Cell Atlas consortium portal (SEA-AD.org). 

  



   

 

   

 

Results 

SEA-AD: Multimodal profiling Alzheimer’s disease progression across wide pathological stages 

The Seattle Alzheimer’s Disease Brain Cell Atlas (SEA-AD) consortium is an interdisciplinary effort to define 

the progression of Alzheimer’s Disease (AD) in terms of cellular and molecular processes associated with 

AD pathology and leading to cognitive decline. To accomplish this, a cohort of donors spanning the 

spectrum of AD neuropathologic change (ADNC; none to high) was characterized in a coordinated fashion 

to allow the joint analysis of neuropathology, single cell genomics, spatial transcriptomics, donor 

demographics and clinical history (Supplementary Table 1). Brain samples from longitudinal studies in the 

Adult Changes in Thought (ACT) study and the University of Washington Alzheimer’s Disease Research 

Center (ADRC)33–43 were used that include clinical, cognitive and demographic information. Only samples 

prepared with a rapid autopsy protocol with highly optimized brain preparation methods were used, as 

these tissues have been shown to allow exceptionally high-quality analyses using single nucleus RNA-seq, 

ATAC-seq and MERFISH11,12,14,21,22. 

A cohort of 84 ACT / ADRC donors were selected for this study spanning the spectrum of ADNC and co-

morbid pathologies, such as specifically Lewy body disease (LBD), vascular brain injury (VBI), and 

hippocampal sclerosis (HS)44,45 (Extended Data Fig. 1a and Supplementary Table 1). The ACT / ADRC 

studies possess an inherent bias towards more advanced stages of disease and in our cohort, this is 

reflected in the presence of 58% of participants with a Braak stage V or higher and 61% with a Thal Phase 

4 or higher. There was a slight bias towards female (33 males, 51 females), particularly in donors with high 

ADNC (13 males, 29 females), consistent with known prevalence of AD in females46. This cohort is 

advanced in age (average age at death 88, SD=8), and half of the donors have a clinical diagnosis of 

dementia. APOE ε4 genotype is a primary risk factor for AD47; our cohort possesses 23 donors with at least 

one ε4 allele, while the remaining are composed of ε3 and ε2 alleles (3/3 - 47, 3/4 - 17, 2/3 - 11, 4/4 - 6, 

2/4 - 2, 2/2 - 1). 

Single nucleus suspensions were generated from fresh frozen MTG tissue blocks of these 84 donors, and 

fluorescence activated nucleus sorting (FANS) was used to isolate neuronal from non-neuronal nuclei 

(Extended Data Fig. 1b). Our prior work focused on neuronal profiling and combined these isolated pools 

at 90% neuron to 10% non-neuronal10,17,18. Given the well-documented involvement of non-neuronal cells 

in AD6,48–51, here we used a 70% neuron/30% non-neuronal ratio to better capture those cell populations. 

Droplet-based single nucleus RNA sequencing (snRNA-seq) and ATAC sequencing (snATAC-seq) was then 

applied to these suspensions and, to facilitate the multi-modal integration of the transcriptomics and 

epigenomics, combined RNA and ATAC sequencing (snMultiome) to the suspensions from a subset of 28 

donors that also spanned the disease spectrum. Collectively, we report high-quality expression profiles 

for roughly 1.2 million nuclei (14k per donor), chromatin landscapes for 580,000 nuclei (7k per donor), 

and combined expression and epigenomic profiles for 140,000 nuclei (5k per donor) (Extended Data Fig. 

1b). Cryosections were cut from neighboring tissue blocks from another subset of 24 donors, 

photobleached to reduce autofluorescence, and labeled with a probe panel targeting 140 gene products 

using multiplexed error-robust in situ hybridization (MERFISH) to define the spatial transcriptomic profiles 

of another 1.5 million cells (Extended Data Fig. 1b). This multi-modal atlas of AD is coupled with 



   

 

   

 

quantitative neuropathology, rich clinical metadata, and multidimensional cognitive scores52 that are 

described and utilized in the sections below. 

Quantifying neuropathological burden in AD 

Neuropathological staging is the gold-standard for diagnosing AD and relies on semi-quantitative 

multiregional assessments of select pathological proteins3,53,54. We aimed to capture the quantitative 

range of pathology using machine learning (ML) approaches for signal quantification and feature 

extraction from histological images. We selected a series of well-established markers for AD used for 

conventional neuropathologic staging, including pTau (AT8) for neurofibrillary tangles and Aβ (6e10) for 

amyloid plaques, as well as additional markers for associated comorbidities and cellular changes. These 

include pTDP-43 for frontotemporal dementia, alpha synuclein (α-Syn) for Lewy body dementia, IBA1 for 

microglia (including activated states), GFAP for astrocytes (including reactive states), NeuN for neurons, 

and hematoxylin and eosin (H&E) with Luxol fast blue (to assess cytopathology and white matter integrity) 

(Extended Data Fig. 1b). These latter cellular markers capture aspects of disease not used in 

neuropathologic staging.  

We used a machine learning (ML)-based platform (HALO Software, Indica Lab) to create quantitative 

neuropathology (QNP) measurements in each cortical layer for each donor (Methods, Fig. 1a-c, Extended 

Data Fig. 2a). QNP features include immunoreactive (ir) percent area, counts per area, and additional 

measurements of protein pathologies and cellular populations (Supplementary Table 2). This 

quantification is consistent with traditional staging criteria for Braak stage and Thal phase in MTG based 

on  pTau cells and Aβ plaque binary calls, respectively (Fig. 1d,e, and Extended Data Fig. 2b). However, at 

higher Braak stage and Thal phase we observe a wide range of values that represents variability in 

pathology burden not well captured in binned stages, as has also been observed with biochemical 

methods55. Furthermore, pTau pathology is known to accumulate in a layer-specific manner, with 

preferential band-like accumulation in layers 2, 3, and 553. We found that the number of pTau-bearing 

(AT8-ir) cells captures this pathological phenomenon (Fig. 1d), recapitulating observations known in the 

field and reinforcing QNP as real-value metrics describing pathological progression. Similarly, we only saw 

TDP-43 and α-Syn at high stage LATE56 and neocortical Lewy body disease, respectively (Extended Data 

Fig. 2c). 

Interestingly, we found these quantitative measures of tau-bearing neurons and amyloid beta-positive 

objects per area in MTG were correlated with brain-wide staging metrics (Braak, Thal, CERAD) that inform 

ADNC (Pearson Correlation, QNP (No. AT8 positive cells/area) vs Braak=0.56, QNP (No. 6e10 objects/area) 

vs Thal=0.63). This suggested that cognitive status could be predicted from QNP values using statistical 

modeling. To test this, we use a generalized linear model where dementia status was the binary outcome, 

and either QNP or traditional staging metric was used as the predictor (accounting for known covariates 

of sex and age). By comparing standardized beta coefficients, we demonstrate that quantitative 

assessment of pTau and Aβ in the MTG (AT8 and Aβ percent and counts per area) predicts dementia status 

comparable to their corresponding brain-wide metric, Braak Stage and Thal Phase (Extended Data Fig. 

3a). It is unclear whether this association is due to the focus on MTG, or the quantitative variation 

captured in QNP values, but nevertheless illustrates the value of these metrics for predicting ADNC stage 

and cognitive status.  



   

 

   

 

Continuous pseudo-progression of AD severity 

Similar to the concept of an aggregate score for AD staging (ADNC), here we aimed to create an estimate 

of local burden of pathology using the full set of QNP information. The intent of this approach is to model 

disease severity as a continuous pseudo-progression score (CPS), ordering the donors from low to high 

burden of pathology and allowing the identification of earlier and later molecular and cellular events that 

occur across CPS. To achieve this, we created a Bayesian latent space model that explicitly accounts for 

different donor permutations as part of the model and create a latent variable within the interval [0, 1] 

that we define as the CPS (Methods, Extended Data Fig. 3b). After fitting the model to our QNP data, we 

observed (expected) monotonic increases in pathological proteins pTau and Aβ along CPS (Fig. 1f, 

Extended Data Fig. 3b), whereas there was no clear relationship to pTDP-4357 and α-Syn levels. From the 

cellular marker perspective, we observed increased cellularity (number of objects in H&E stain) and GFAP-

ir cells at the latest stages of disease (Fig. 1g, Extended Data Fig. 3c). Although included as a control to 

count neuron numbers, NeuN immunoreactivity robustly decreased along CPS. This suggests a disease-

related impact on neuronal phenotype or health, and is consistent with a prior result showing 

anticorrelation of pTau and NeuN in temporal lobe58. Most importantly, the CPS axis correlated with 

independent measures not included in the model, including Braak Stage, Thal Phase, ADNC score, and 

cognitive scores (CASI) but no other covariates such as age (Fig. 1h, Extended Data Fig. 3d). Notably, the 

increase in neuropathologic stages preceded the decline in cognitive scores along CPS, consistent with 

pathology preceding cognitive effects. 

To understand the contribution of different QNP variables to the CPS, we examined their correlation 

structure dynamics. Hierarchical clustering of their correlation matrix grouped QNP variables that behave 

similarly into 8 clusters and revealed biologically coherent global relationships between them (Fig. 1i). The 

dynamics of QNP of selected variables along CPS are shown in Figure 1j. To assess the significance of 

dynamic changes we created generalized additive models (Methods) that split CPS into five bins (p-values 

shown in insets in Fig. 1j). Clusters 3 and 7 had the highest significant changes from the model. Cluster 3 

reflects the burden of disease increasing along CPS, encompassing the number and percent of pTau-

bearing cells and Aβ plaques. Within this cluster, the diameter of Aβ plaques (6e10 object diameter) is the 

earliest dynamic variable, having a significant change starting between CPS bin 1 and 2 (Fig. 1j, lower left 

panel of cluster 3). CPS>=0.6 (bin 3) appears to be a critical point when pTau-bearing cells and Aβ plaques 

show a significant accumulation. Most remaining clusters display significant increases after CPS bin 3 

(Extended Data Fig. 3e), including cluster 2 (number of hematoxylin-stained cells, number of inactivated 

IBA1-ir cells, IBA1-ir cell processes length) cluster 4 (IBA1-ir cell area), cluster 6 (GFAP-ir cell branch length 

and cell area), and a late decrease in cluster 8 (cell size: average hematoxylin-stained area). Neuronal 

NeuN-ir decreased along CPS (Fig. 1j), and various NeuN related variables observed in cluster 7 were anti-

correlated with the overall increase in pathological proteins (Fig. 1i, red boxes). 

Cluster 1 and 5 show sparse α-Syn-ir and pTDP43-ir that tended to accumulate later along CPS and in 

different sets of donors (Extended Data Fig. 3e). The interaction structure revealed other relationships as 

well, including an interaction between cluster 1 and 3 (Fig. 1i, red boxes) that captures the accumulation 

and colocalization of pTDP43-ir inclusions in AT8-ir pTau-bearing cells, as previously described59. Together 



   

 

   

 

these observations illustrate that CPS effectively captures disease severity in a continuous quantitative 

metric that provides a framework for studying cellular changes in AD.  

Mapping diseased single nucleus-omics data to reference “supertypes” 

To study the cellular correlates of disease severity, we next focused on the analysis of the SEA-AD single 

nucleus genomics data sets. A key question was whether high quality RNA and thereby snRNA-seq data 

could be generated across the full spectrum of AD pathology, particularly with an aged cohort with an 

average age of 88. Samples generated from donors prepared with the rapid autopsy optimized brain 

preparation protocol (see Methods) yielded almost uniformly high tissue-level (e.g., RIN scores), library-

level (e.g., library yield), and cell-level metrics (e.g., number of genes detected) across disease severity 

(Extended Data Fig. 1c, top). Specifically, data from nearly all donors (82 of 84, 97.6%) had consistent 

values (Methods, Extended Data Fig. 1c, bottom). This suggests there is no inherent tissue quality 

degradation related to advanced age and neuropathology in the great majority of donors, and that high 

quality samples can be obtained using optimized methods on donors with low postmortem intervals. We 

did however identify a subset of high pathology donors (11 of 42, 26.2%) that had lower nuclear RNA 

content and repressed chromatin, reducing gene detection and chromatin accessibility that is likely 

related to severe disease (see section A subset of severely affected donors). 

We previously described 151 transcriptionally distinct cell types and states in the MTG from young, 

neurotypical reference donors 11, which were hierarchically organized into 24 highly resolvable subclasses 

(e.g. L2/3 intratelencephalic excitatory neurons or L2/3 IT) within 3 main classes (excitatory neurons, 

inhibitory neurons, and non-neuronal cells). Previous single nucleus transcriptomic and epigenomic 

studies on AD have clustered nuclei at a level equivalent to the subclass6,7. This limits the ability to detect 

disease-associated changes due to averaging effects across heterogeneous cell types within a given 

subclass. To increase power, we used a probabilistic Bayesian method60–62 to generate a novel set of fine-

grained cell type labels to which donors could be accurately mapped. To validate the reliability of our 

labels, we projected reference data onto itself iteratively at the class, subclass, and cluster level (Methods, 

Extended Data Fig. 4a,b) and identified 125 mappable transcriptional types, hereafter named 

“supertypes” (those with F1 scores > 0.7). 

After using the same procedure to predict class, subclass, and supertype for single nucleus transcriptomes 

from SEA-AD donors, we filtered low quality nuclei with a semi-automated, label-aware pipeline 

(Methods, Extended Data Fig. 4c). Next, we validated our results by: (1) assessing the supertype 

prediction probabilities across disease severity and (2) constructing supertype-specific signature scores 

based on differentially expressed genes in reference data (Methods) and comparing them across disease 

severity. The probabilities and signature scores were high and stable among neuronal nuclei but were less 

stable among some non-neuronal nuclei (Extended Data Fig. 4d), suggesting additional types may be 

present because of differences in age, disease process, or the much higher level of non-neuronal sampling 

in the current dataset compared to the prior reference dataset11. Therefore, we refined the non-neuronal 

taxonomy using a semi-supervised clustering procedure and defined 14 additional non-neuronal types 

(Methods, Extended Data Figure 4e). The expanded types included cells not found in the reference (e.g. 

Lymphocytes, Monocytes, Pericytes, and Smooth Muscle Cells) and novel cell states (e.g. Proliferating and 



   

 

   

 

disease associated Microglia). The resulting final taxonomy contained 139 supertypes (included as a 

provisional ontology at https://sea-ad.org). 

To extend our transcriptionally defined supertypes across snRNA-seq, snATAC-seq, and snMultiome 

datasets, we constructed a joint representation63 from both neurotypical reference and diseased donors 

(Extended Data Fig. 5a,b). We used low quality snRNA-seq nuclei to identify low quality snATAC-seq nuclei 

by nearest neighbor graph adjacency (Methods, Extended Data Fig. 5c). We then iteratively predicted 

labels for subclass and supertype in the snATAC-seq datasets (Extended Data Fig. 5d,e). 

Mapping diseased spatial transcriptomic data  

To define the spatial distribution of supertypes across AD, we performed MERFISH on a subset of SEA-AD 

donors using a 140 gene panel (Supplementary Table 3) based on the initial taxonomy of transcriptomic 

types derived from neurotypical MTG17 rather than the later generated supertype classification with 

additional AD-specific non-neuronal supertypes. We developed a reliable method to collect high-quality 

MERFISH data across disease severity (Methods, Extended Data Fig. 6a), solving known challenges such 

as the removal of autofluorescence artifacts present in human brain tissue and exacerbated with age and 

disease. We applied this technique and obtained high quality data from 54 sections from 24 donors 

(Supplementary Table 1). After initial QC filtering steps (Methods), we compared MERFISH transcript 

counts on whole tissue sections per donor to bulk RNA-seq from neurotypical donors and found an 

average Pearson correlation of 0.62. Whole tissue section signal was highly correlated with signal within 

segmented cells, and this cellular MERFISH signal was also well correlated with bulk RNA-seq (Extended 

Data Fig. 6b-d). Within donor technical reproducibility was high, measured by comparing transcript counts 

in neighboring sections (Extended Data Fig. 6e,f). There was high correspondence in gene expression 

between snRNA-seq and MERFISH data, assessed qualitatively by comparing average expression levels of 

measured genes at the subclass level to the average expression level observed in snRNA-seq (Extended 

Data Fig. 6g).  

To assess our ability to map subclasses and supertypes in MERFISH, we simulated mapping accuracy using 

reference snRNA-seq data for all genes versus genes in the MERFISH panel (Extended Data Fig. 6h). 

Subclass level annotations were highly accurate in either case, with F1 scores near 1. Mapping accuracy 

was decreased, but still high on average at the supertype (134 of 139 with an F1 score above 0.7), with 

the MERFISH gene panel failing to resolve a small number of non-neuronal types likely due to lack of 

discriminant probes. After mapping MERFISH data to subclasses and supertypes (Methods), we found 

subclass distributions matched expected spatial distributions in donors across the range of CPS; for 

example, excitatory IT subclasses were restricted to cortical layers, and matched proportions observed in 

previous studies of neurotypical MTG tissue11,64 (Extended Data Fig. 6i-j). We noted variation in 

oligodendrocyte abundance across donors in our snRNA-seq datasets and found MERFISH was able to 

capture this variation as well (Extended Data Fig. 6k), illustrating this spatial platform can accurately and 

reproducibly map cell subclasses and corroborate findings from snRNA-seq. 

 

 



   

 

   

 

Vulnerable and disease associated supertypes 

The components described above, including a quantitative disease pseudo-progression (CPS), single cell 

genomics and spatial transcriptomics, can now be combined to identify cellular and molecular hallmarks 

of AD. The first key question, set up by decades of observations in the field8,48,49,65–71, is whether there are 

proportional changes in specific supertypes as a function of disease severity metrics that could represent 

either vulnerable cell populations or disease associated cell states. We used scCODA, a Bayesian method72 

that accounts for the compositional nature of relative abundances (see Methods), to test for changes 

across cognitive status, ADNC and CPS in the snRNA-seq and snMultiome datasets. The main result shown 

in Figure 2a is that a variety of neuronal supertypes decrease in abundance as a function of disease 

severity, while several highly specific non-neuronal supertypes increase in relative abundance. 

Furthermore, a similar pattern of supertype abundance changes is seen for all three metrics of disease, 

with 36 of 139 (26%) supertypes credibly affected (mean inclusion probability > 0.8) in the same direction 

across each disease-related covariate. While there was overlap in affected supertypes across disease-

related covariates, effect sizes across CPS were higher, leading to more credibly affected supertypes. The 

number and effect size of credibly affected supertypes were significantly lower in other covariates like 

sex, age at death, race, or sequencing modality (Extended Data Fig. 7a, Supplementary Table 4). 

The extensive annotation of the BICCN reference (which SEA-AD is built upon) allows meaningful 

interpretation of the types of cells affected in AD. Notably, only a subset of supertypes were affected from 

most subclasses, highlighting the necessity of analyzing transcriptomic datasets at greater cellular 

resolution. The vulnerable neuronal supertypes (defined as those with credible proportion decreases) 

include a subset of intratelencephalic (IT) neuron types largely in layer 2/3 (L2/3 IT), a subset of GABAergic 

interneuron types derived from the medial ganglionic eminence (MGE; Sst and Pvalb) and caudal 

ganglionic eminence (CGE; Vip, Lamp5 and Sncg) (Fig. 2a, left). Among non-neuronal affected populations, 

we observed increases in one microglial supertype and one astrocytic supertype and decreases in one 

Oligo and one OPC supertype (Fig. 2a, right).  

We next related the loss of vulnerable neurons and emergence of disease-associated non-neuronal states 

with CPS to determine when they occur relative to one another and to other histopathological changes 

noted above. As shown in Figure 2b, the different cell abundance changes happen with different 

dynamics. Increases in Microglial and Astrocyte supertypes begin early and continue to increase with CPS, 

suggesting an inflammatory condition that may trigger disease progression exists in the low pathology 

donors6,48–50. Affected neuronal subclasses decrease across the full spectrum of disease severity. The IT 

neurons decrease sharply at high CPS, as do Pvalb interneurons, roughly correlated with the increased 

beta amyloid and pTau described above. Surprisingly, the Sst interneurons are the earliest affected neuron 

types, decreasing early and prior to build up of neuropathologic proteins.  

We used MERFISH to validate these findings and understand the spatial distributions of affected 

supertypes. Relating the changes in supertype abundance with their mean depth from spatial 

transcriptomics data revealed the expected supragranular localization of L2/3 IT types. (Fig. 2c). Less 

expected, the affected MGE- and CGE- derived interneuron supertypes were also largely restricted to 

layers 2 and 3, demonstrating the spatial co-localization of excitatory and inhibitory neurons. Notably, all 

the supragranular MGE-derived supertypes were credibly affected, whereas only a subset of the 



   

 

   

 

supragranular CGE-derived supertypes were (Extended Data Fig. 7b). Similarly, while there was shrinkage 

across cortical layers in the MERFISH datasets, layers 2 and 3 showed the largest reduction along CPS 

(Extended Data Fig. 7c). Relative abundances in snRNA-seq and MERFISH datasets in matched donors 

were correlated across ADNC (mean Pearson correlation 0.72, Fig. 2d), which revealed a similar 

continuous decrease of affected Sst supertypes along CPS (Extended Data Fig. 7d) in the MERFISH data. 

Together these data demonstrate a robust and consistent cellular signature of AD severity that involves 

selective cell populations affected differentially over disease progression and preferentially in 

supragranular cortical layers. 

A subset of severely affected donors 

Donors in our cohort with high pathology (i.e., high ADNC) presented more variable RIN and sn-omics QC 

metrics compared to donors with lower ADNC scores (Extended Data Fig. 1c), but it was unclear whether 

this was technical or biological variation. To explore this question, we first performed principal component 

analysis on QC metrics from snRNA-seq and snATAC-seq and found that the first PC captured much of this 

QC variation in each modality separately (Methods). This variation was highly correlated between 

modalities (Fig. 3a, Pearson correlation=0.80), with 11 severely affected (SA) donors showing excessive 

PCA loading values and poor QC metrics (Fig. 3a, upper right quadrant). Despite having more reads per 

nucleus, snRNA-seq libraries from these 11 donors had fewer unique molecular identifiers, genes 

detected, and uniquely mapped reads on average, while snATAC-seq libraries had reduced fragments, 

fraction of genome covered by peaks, and transcription start site (TSS) enrichment per cell (Fig. 3b). Low 

QC metrics translated into a reduced fraction of cells passing QC steps, particularly exceeding the 

maximum allowed mitochondrial reads (Extended Data Fig. 8a). 

All 11 of the SA donors were assessed as high ADNC, suggesting an underlying disease process 

underpinning their lower quality scores. The reduced gene detection suggested a shutdown of 

transcription, which was supported by the SA donors having reduced levels of nuclear-localized RNA (e.g., 

MALAT1 and MEG373) compared to other high pathology (ADNC 3) donors (Fig. 3c, left). Consequently, SA 

donors also had higher levels of cytosolic-localized RNA (e.g., ribosomal RNA and mitochondrial RNA) Fig. 

3c, right). To disentangle whether reduced nuclear representation was due to global transcriptional 

shutdown or degradation, we studied the chromatin landscape in these donors. We computed peaks 

within each high pathology donor and assessed their similarity by Jaccard distance. The chromatin 

landscape segregated the 11 SA donors from matching high pathology donors (Extended Data Fig. 8b). 

Next, we computed consensus peaks across the 11 donors and across matching ADNC 3 donors (Methods) 

and saw no significant difference in peak-length distribution between groups (Extended Data Fig. 8c). 

However, the 11 SA donors show many fewer peaks (Fig. 3d), which were almost entirely a subset of peaks 

seen in the high pathology donors and preferentially near transcriptional start sites (TSS) as opposed to 

more distal sites (Fig. 3e). Notably, there were a small number of peaks (n=1,574) unique to the SA donors 

that were enriched for binding motifs for transcription factors associated with inflammation, de-

differentiation and AD pathology (Extended Data Fig. 8d). These results suggest that SA donors undergo 

global chromatin repression and shutdown of transcription, consistent with previous reports studying 

familial AD in which chromatin re-organization triggered neuronal identity repression and de-

differentiation74. 



   

 

   

 

These severe effects on cellular transcription and chromatin organization suggested that other cellular 

phenotypes or even clinical outcomes may also be affected in these cases, which are possible to explore 

due to the integrated analysis of the SEA-AD cohort. Indeed, the 11 SA donors had a pronounced reduction 

in neuron labeling (not due entirely to cell loss) for NeuN, initially included in our panel as one of the most 

robust and specific neuronal markers known, that was both clearly visible and quantitatively distinguished 

SA donors for other high pathology donors (Fig. 3f,g). Decreased NeuN has previously been shown be anti-

correlated with pTau pathology58. Our cohort possesses longitudinal cognitive testing data that can be 

used to compute composite scores for different cognitive domains, including memory, executive, 

language and visuospatial function52,75. Remarkably, the SA donors showed steeper decline in memory 

function in their final years compared to other high pathology donors. This difference was specific to 

memory function, and not significant for the other domains (Slopes in memory = –0.15 in SA versus –0.11 

in ADNC 3 donors, p-value with other donors as base outcome = 0.01 versus 0.15, Figure 3h, Extended 

Data Figure 8e). Taken together these results identified a subset of donors with high ADNC, severe cellular 

phenotypes and pronounced cognitive decline. Since these donors appear to be a different, more severe 

state or stage of AD, we exclude them from subsequent analyses. 

Gene expression dynamics in each supertype across AD pseudo-progression  

Understanding the dynamics and cellular specificity of gene expression changes in the context of 139 

heterogeneously affected supertypes presented a challenging analysis problem that could not be tackled 

with existing methodologies. To accurately represent gene expression dynamics in AD, we applied a 

general linear mixed effects model76 testing for changes across CPS in each supertype with demographics 

(sex, age at death, race) and library metrics (number of genes detected in a cell, 10x chemistry) included 

as additional fixed effects and donor identity as a random effect (Fig. 4a, Methods, Supplementary Table 

5). We tested across CPS and divided donors into either “early” (CPS 0 to 0.5) or “late” (CPS 0.5 to 1) 

stages. By fitting two independent beta coefficients (one early and one late) per gene for each supertype 

and comparing them to one another, we could classify each gene into one of nine groups: up early (UE), 

up consistently (UC), up late (UL), up then down (UD), down early (DE), down consistently (DC), and down 

late (DL), down then up (DU), or not significantly changed (NC) across CPS (Fig. 4b, left). Taking the mean 

early and late beta coefficient for each gene, we visually confirmed the expected behavior of each 

category on average (Fig. 4b, right).  

The number of significant genes across CPS per supertype ranged from roughly 6000 (in highly abundant 

IT excitatory neurons) to 180 (Endothelial and VLMC) (Extended Data Fig. 9a, left), the latter close to the 

expected false discovery rate. Most of the changes called significant were decreases in expression and 

were extremely minor with beta coefficient magnitudes less than 1 (particularly for increases in 

expression) though a handful of genes had dramatically larger changes (Extended Data Fig. 9a, middle). 

There was a modest correlation (Pearson=0.62) between the number of nuclei in a supertype and the 

number of genes called significant (Extended Data Fig. 9a, right), suggesting the noise inherent in snRNA-

seq from zero inflation is limiting statistical power for less abundant supertypes. 

To capture the complete landscape of gene expression dynamics across cell types, we constructed a 

nearest neighbor graph from the normalized early and late beta coefficients plus z-scores of expression 

for each gene across all supertypes (Fig. 4c). This combination of metrics captures both the dynamics and 



   

 

   

 

cellular specificity of gene expression. We identified genes with similar dynamics by clustering the nearest 

neighbor gene graph (Methods) into 120 gene clusters (or modules, to differentiate from cell clusters, 

containing a max of 500 and a min of 20 genes) and computed both a two-dimensional representation 

and the mean expression for each module in each supertype or subclass (Fig. 4d, Extended Data Fig. 10, 

Supplementary Table 6). 40 of the gene modules (containing roughly 22,000 out of 36,000 genes) had 

mean beta coefficients near 0, indicating they were unchanged across CPS. The other 80 spanned the 

combinatorial expansion of class-, subclass-, and supertype- specific changes occurring at each of the eight 

dynamic categories described above. Patterns ranged from broad (all neurons or non-neuronal had 

altered expression) to highly specific (in only one or a handful of supertypes) and from simple (all affected 

types within a class had the same dynamics) to incredibly complex (each affected subclass and/or 

supertype had different dynamics). 

Dynamic changes in many gene modules involved a large number of supertypes. These included modules 

that changed across broad cell classes (Fig. 4e, top, Extended Data Fig. 9b), such as modules 10 (UC in 

non-neuronal), 14 (DL in neurons), and 25 (UC in inhibitory neurons, UL in excitatory neurons), which were 

enriched in genes related to chromatin remodeling (KMTs and KDMs) and transcription factors (SMADs, 

CREB1 and CREB regulatory factors, HIF1A, and NFKBIZ) (Fig. 4f, left), microtubule organization/trafficking 

(dynein axonemal assembly factors, DYNC2LI1, KIF3A, CFAPs, IFTs, MCTL1), and voltage-gated calcium and 

potassium channels, respectively. Clusters 10 and 25 each contained 3 genes identified in GWAS as AD 

risk alleles77,78: CASS4, JAZF1, and SORT1 and UMAD1, TMEM106B, and ANKH, respectively 

(Supplementary Table 6). Modules 6 and 61 had similar decreasing dynamics but had different expression 

in excitatory versus inhibitory neurons at baseline. Specifically, module 6 had a higher expression in 

excitatory neurons and was enriched for novel/poorly annotated transcripts17 (which were noted as 

marker genes for excitatory types) (Extended Data Fig. 9c, left), while module 61 had higher expression 

in inhibitory neurons and contained the GABA synthetic enzymes GAD1 and GAD2, as well as several 

neuropeptides and hormone precursors (Extended Data Fig. 9c, right). There were also modules that 

changed in many supertypes from different cell classes (Fig. 4e, middle, Extended Data Fig. 9d). These 

modules tended to have coherent sets of biologically related genes.  For example, enrichment of activity 

related genes79 in module 92 (FOS, FOSB, JUNB, ARC, ERG1, ERG3, NR4A1, NR4A3) (Extended Data Fig. 

9e), which had different downward dynamics across supertypes. Module 16 had an enrichment of 

ribosomal proteins, components of the electron transport chain (Fig. 4f, middle), and glycolytic enzymes 

with contrasting dynamics in neurons (down) to endothelial and VLMC cells (up). The function of these 

modules, and their coordinated dynamics, might suggest disruption of energy production and firing 

activity may be linked in AD pathology. 

Other gene modules were more specific, changing in only a single subclass or supertype (Fig. 4e, bottom, 

Extended Data Fig. 9f). Genes related to many biological processes previously associated with AD are 

contained in these, many of which had highest expression in non-neuronal cell types. They included: (A) 

oligodendrocyte modules 8 (UC), containing cholesterol biosynthesis components and a master regulator 

of myelination MYRF80–82, and 13 (DL), containing mature marker genes such as MBP, OPALIN, MOG, 

MOBP, and OMG (Extended Data Fig. 9g), (B) Microglia-PVM modules 5 (UD), containing proinflammatory 

genes (IL1B, IL1A, IRF5, CSF1R, STAB1, NINJ1, JAK3, and LITAF)83–85, Fc receptors, major histocompatibility 

complex II components, TLRs, (Fig. 4f, right), and GWAS genes SIGLEC11, TREM2, SPI1, NCK2, and ABI3, 4 



   

 

   

 

(UC), containing complement components and GWAS genes MS4A4A and WDR81, and 60 (DL), enriched 

in immune-specific integrin subunits, and (C) Astrocyte module 0 (UL), enriched in lipid metabolism 

machinery (including GWAS gene CLU) and hedgehog targets/effectors GLI1 and GLI3. Also notable, 

module 70 defined a set of genes UL in Microglia-PVM and DL in Astrocytes, including GWAS genes APOE 

and CTSH, consistent with previous reports from DLPFC (Supplementary Table 6). Taken together these 

results demonstrate the necessity of accounting for both space (cell types) and time (disease progression) 

in describing the complexity of gene expression changes in AD. 

Early and late vulnerable MGE-derived interneurons 

Interneurons derived from the MGE showed an unexpected vulnerability to AD, with Sst supertypes 

affected early and Pvalb supertypes affected late along CPS (Fig. 2a). To explore the properties of these 

supertypes and understand why they may be selectively vulnerable, we identified the properties that 

differentiate them from one another and from unaffected supertypes in the same subclasses. Affected 

Sst and Pvalb supertypes appeared transcriptionally similar to each other (Fig. 5a), as shown by the 

proximity of these types in UMAP space after computing latent representations of all MGE-derived 

neurons.  This similarity between affected supertypes was recapitulated by computing the pair-wise 

Pearson correlation of each supertype’s mean gene expression and hierarchically clustering the results 

(Fig. 5b). We computed differential gene expression between supertypes in each subclass and identified 

a set of genes expressed specifically in affected versus unaffected populations (Fig 5c, Supplementary 

Table 7). Among these genes were TOX2, TIAM1, SHTN1, NRG3, AJAP1, PRKCE, and DLGAP1, the latter 

having been nominated as an AD drug target on the AGORA platform as a regulator of disease severity86. 

To understand the anatomical and physiological phenotypes of affected supertypes, we reanalyzed a 

recently published multimodal dataset profiling human cortical interneurons from young donors without 

AD by Patch-seq13, a technique that measures both morpho-electric properties and the transcriptional 

profile of a cell13,87,88. The morphological reconstruction of affected Sst supertypes confirmed their 

localization to cortical layers 2-4 (L2-L4) and revealed their axons tended to cross laminar boundaries (Fig. 

5d, left). One affected supertype (Sst_25) contained double bouquet cells (Lee et al. 2022), a distinctive 

cell type found in primates but not rodents89. Affected Pvalb supertypes also localized to L2-L4, had 

morphologies consistent with basket cells and had dense axonal arbors that often avoided L1 (Fig. 5d, 

right). Among the measured electrical properties, we identified several differences in the subthreshold 

membrane properties of affected versus unaffected Sst and Pvalb supertypes (Supplementary Table 8). 

The sag in the voltage response to hyperpolarizing current injection, which is indicative of HCN channel 

conductance (Robinson & Siegelbaum, 2003), was significantly higher in the affected versus unaffected 

Sst supertypes (Fig. 5e, Extended Data Fig. 11a). Additionally, the apparent membrane time constant (tau) 

was significantly shorter in both the affected Sst and Pvalb supertypes (Fig. 5e, Extended Data Fig. 11a). 

Because HCN channels can contribute to these membrane properties, we examined whether affected 

supertypes express higher levels of HCN channel related genes than unaffected types. HCN1, which 

encodes a major pore forming subunit of HCN channels (Robinson & Siegelbaum, 2003), expression was 

higher in affected versus unaffected Sst populations (Extended Data Fig. 11b), suggesting that this channel 

could contribute to differential electrophysiological properties tightly associated with the vulnerable cell 

types. 



   

 

   

 

While loss of superficial affected supertypes may arise from cellular properties their vulnerability could 

also be due to a differential response to disease. To determine if affected and unaffected supertypes have 

distinctive transcriptional responses, we compared their gene module dynamics in each subclass. We also 

focused on modules with enriched expression in the subclass of interest. There were no gene modules 

with both enriched Pvalb expression and significant differences among affected and unaffected 

supertypes (Extended Data Fig. 11c), suggesting their vulnerability is related to an existing cellular 

property, independent of AD. In contrast, we identified 4 gene modules that had different early dynamics 

between affected and unaffected Sst supertypes and which contained genes specifically expressed by the 

subclass (Fig. 5f, left). 3 of them (modules 81, 45, and 47) had an early downregulation in affected Sst 

supertypes. While each gene module had the same gene dynamics (DE), genes had different baseline 

expression levels (Fig. 5f, middle panels). Genes in these modules (418 genes total) included voltage-gated 

potassium (KCND3, KCNK1, KCNMA1, KCNQ2, KCNT1) and calcium channels (CACNA1A, CACNA1C, 

CACNA2D1), molecular motors/adaptors involved in synaptic vesicle transport and release (KIF1A, KIB3B, 

KIF26B, MYO5A, MYO9A, BSN)90, glutamate receptors (GRIK1, GRIK3, GRIK5), lipid metabolism machinery, 

intracellular trafficking adaptors (specific RABs), and the GWAS gene APP (Fig. 5g, left, Supplementary 

Table 6). The last gene module (27, 247 genes) was preferentially downregulated across unaffected Sst 

supertypes, without significant changes in affected ones (Fig 5f, right). While this module also included 

intracellular trafficking adaptors, lipid metabolism machinery and voltage-gated ion channels, they 

belonged to distinct families (e.g., voltage gated sodium channels) from above (Fig. 5g, right). Collectively, 

these results describe physiological and transcriptional properties that could be a substrate of disease 

vulnerability and highlight the importance of future mechanistic studies in disease models analyzing 

changes in a common supertype reference framework. 

 

Discussion 

The goal of the SEA-AD consortium is to create an atlas that provides a comprehensive, high-resolution 

map and open data resource of Alzheimer’s disease through the lens of cell types, genomics, and disease 

severity. We aimed to apply the full suite of technological advances and accumulated knowledge from the 

BRAIN Initiative Cell Census Network (BICCN)10,17,18, systematically applying highly optimized methods for 

brain preparation, quantitative neuropathology, single nucleus genomics and spatial transcriptomics, and 

modeling of disease pseudo-progression or increasing pathological severity to identify and interpret the 

cellular and molecular basis of AD pathology. The current study represents a first installment of this effort, 

focused on the middle temporal gyrus, selected both as a key transition area in AD4,53 and the region with 

the greatest aggregated knowledge in BICCN about cell type phenotypes due to its frequent resection for 

epilepsy treatment that allows functional analysis of cellular properties13,16,25. The present work advances 

the field by establishing standards in tissue preparation, methods and sampling criteria for application of 

cutting-edge single cell and spatial genomics methods to aged and pathological brain tissues, and high-

resolution cell type mapping. All data presented here are publicly accessible through a suite of data 

resources available through SEA-AD.org, including viewers for donor metadata and image-based 

quantitative neuropathology, high resolution single nucleus transcriptome data viewing and mining (also 



   

 

   

 

at CZI’s cellxgene), genome browser (through UCSC browser91), and data download (through Sage 

Bionetworks).  

Several major assumptions drove study design and analysis strategies: 1) Cellular identities that can be 

assayed using single nucleus genomics technologies would be preserved even in a very aged cohort 

(average age 88) and across the full spectrum of AD pathology; 2) Deep multimodal sampling of a relatively 

small but carefully controlled cohort would allow meaningful integration of clinical data, qualitative 

disease staging and quantitative neuropathology, single nucleus transcriptomics and epigenomics, and 

spatial transcriptomics at a sampling depth that would allow the most granular cell type mapping; 3) 

Neuropathology is a key driver for understanding AD progression, as measured semi-quantitatively in 

Braak, Thal and composite ADNC staging3,4,45,53,92,93, but quantitatively capturing the full dynamic range of 

pathology burden is essential; 4) More power would be gained by treating AD pathology as a continuous 

quantitative variable, allowing creation of disease pseudo-trajectories aimed at modeling disease severity 

(and by inference, progression) that can be used to identify early versus late events in AD progression; 5) 

There is a stereotyped pattern of disease pathology and progression in typical AD that should have a 

correspondingly stereotyped transcriptomic and epigenomic patterning that differentially affects certain 

cell types; and 6) Understanding AD as a disruption of highly granular cell types would allow an 

understanding of cellular and circuit dysfunction at the level of description and understanding common 

in genetically tractable model organisms. 

These assumptions appeared to be justified in a variety of ways. With optimized brain tissue preparation, 

a rapid autopsy cohort, highly standardized sn-omics pipelines, and novel deep-learning algorithms it is 

possible to identify cell types at extremely high precision, and we are able to define a new AD reference 

classification of 139 “supertypes” that are reliably identifiable and include AD-associated cell states. We 

are able to define a pseudo-trajectory (CPS) or ordering of donors by disease severity that captures the 

burden of neuropathology across a series of relevant markers including but not limited to amyloid plaques 

and pTau neurofibrillary tangles. Disease-associated changes in cell proportions from single nucleus 

genomics on these same donors have higher effect sizes as a function of CPS compared to commonly used 

neuropathologic staging metrics. Achieving a high degree of cell type specificity was essential, as we 

observed highly selective changes in specific supertypes within broader subclasses that represent the level 

of resolution the field has focused on to date6–8,50,94–101. We identify a remarkably consistent cellular 

disease signature in terms of cell dropout (i.e., vulnerability) and increases in relative proportions (i.e., 

inflammatory states). The cellular phenotypes of affected supertypes can be understood because of the 

knowledge base of the BICCN reference10, and ongoing efforts to characterize their properties using 

techniques like Patch-seq13,16,25. These cellular phenotypes are consistent across transcriptomics and 

epigenomics, and cell proportions were corroborated with the orthogonal method of spatial 

transcriptomics applied to the same donors. Finally, the pseudo-trajectory approach allowed the 

identification of the sequence of events and relative timing of cell dropouts and activated states, as well 

as a range of different cellular and molecular patterns as a function of CPS. Taken together, this approach 

created a cell-based atlas framework for understanding a highly complex set of changes that appear to 

occur as a function of increasing severity of AD pathology.  



   

 

   

 

A key advantage of using the BRAIN reference classification is that its growing annotation allows 

interpretation of results from single cell genomics analyses in terms of specific cell properties and circuit 

functions. As expected from many prior reports6,48–50,66, we observe an increase in very specific microglia-

PVM and astrocyte molecular states similar to previously reported disease associated states in both 

mouse and human. In addition, we observe clear selective vulnerability (relative loss) of specific neuron 

types as a function of AD pathology severity. There was a selective loss of excitatory neurons in 

supragranular layers, as described previously based on cell counting of nonphosphorylated heavy chain 

neurofilament protein (labeling with SMI-32 antibody) positive long-range corticocortically projecting 

neurons70, and more recent single cell analyses94. These neurons are now referred to as 

intratelencephalic-projecting neurons, and their specific anatomical and physiological properties have 

been described from Patch-seq analyses16. These studies indicated that SMI-32, which predominantly 

labels long-range ipsilateral-projecting corticocortical neurons in monkey102, selectively labeled human 

transcriptomic types in layer 3, including the largest neurons that do not appear to have mouse 

homologues. Here we validate this result, but also show that L2/3 IT loss is broader than just the SMI-32-

positive types but rather affects most L2/3 supertypes.  

The other prominently affected neuronal group was a subset of the MGE-derived GABAergic interneurons 

including the well-studied SST-positive (including Martinotti cells) and PVALB-positive (including basket 

cells) neurons103. Several prior reports have implicated Sst neurons in AD pathology69,71. Here, we 

corroborate this finding and demonstrate with Patch-seq and MERFISH that the affected supertypes are 

also found predominantly in layers 2 and 3, neighboring the affected L2/3 IT excitatory neurons. 

Furthermore, we characterize the properties of the affected types using Patch-seq data from 

neurosurgical resections13, demonstrating these types include Martinotti cells, basket cells, and the 

famous double bouquet cells that are seen in primates but not mice104. Looking for specific 

electrophysiological features of the affected types, we find the affected Sst supertypes present higher 

voltage sag and lower tau. We observe that an h-channel, HCN1, is highly expressed in vulnerable Sst 

supertypes and may be responsible for the electrophysiological properties of such neurons. This channel 

regulates neuronal network excitability by adjusting the responsiveness of neurons105. Many reports have 

linked HCN1 dysregulation to the etiology of Alzheimer's disease by affecting neuronal excitability and 

regulating Aβ generation106. Finally, subsets of CGE-derived neuron supertypes also showed vulnerability 

with AD severity, albeit less pronounced than MGE-derived ones. 

Modeling disease pseudoprogression with CPS enabled us to model dynamics of these cell perturbations 

as a function of AD severity. Not unexpectedly, the model suggested that the increase in disease 

associated microglial and astrocytic states began early and continued to increase with CPS. Surprisingly 

though, the model suggested the affected SST supertypes also show vulnerability from the earliest stages, 

whereas the affected PVALB and L2/3 IT neurons are affected later, at higher levels of Aβ and pTau 

deposition. Especially given the colocalization of these neuron types, this suggests a sequence of events 

in AD progression where inflammatory events involving microglia and astrocytes either triggered by or 

that trigger the loss of SST neurons could contribute to the loss of PVALB and L2/3 IT neurons. L2/3 IT bear 

the greatest intracellular neurofibrillary tangle (NFT) burden across the temporal pole59. An early loss of 

SST neurons may create an excitatory-to-inhibitory neuron imbalance, leading to higher excitability and 

both potentially boosting pTau propagation velocity if its oligomers spread cell to cell through synaptic 



   

 

   

 

endosomes59 and increasing AD patient’s susceptibility to epilepsy (a clinical symptom found in more than 

10% of patients). This is supported by previous observations highlighting an anti-epileptic role of Sst+ 

interneurons107, and our observation that susceptible inhibitory interneurons exhibit a high level of the 

HCN1 channel, dysfunction of which has been linked to several epileptogenesis pathways and the 

generation of hyperexcitability108. Sst loss could also disrupted trophic support of connected neurons, 

ultimately leading to the loss of long-range corticocortical connectivity that would be expected to affect 

cognitive function.  Importantly, Sst neurons are not known to accumulate neurofibrillary tangles, and 

their early loss precedes the presence of pTau tangle deposition in MTG, suggesting that their vulnerability 

may involve Aβ or other factors. Previous studies have suggested Aβ generation may lead to inhibitory 

neuron dysfunction and neural network destabilization109. 

The complexity of gene expression variation across supertype resolution and modeled disease progression 

is enormous, with 80 expression modules changing with CPS that spanned eight temporal patterns with a 

range of cell type combinations. However, many of these disease-related changes are surprisingly subtle 

after carefully controlling for many covariates such as sex, age, race and technical factors. This may 

represent a limited range in which cells can respond to insults before actual cell death, and measuring the 

surviving cells over decades of disease progression misses acute cellular effects. Alternatively, it is possible 

that profiling nuclei only captures a fraction of disease phenotypes that could be measured in whole cells. 

Nevertheless, we suspect that the relatively subtle changes suggested by our models may help to explain 

the near complete lack of overlap in gene expression results from current studies in the literature110, along 

with issues associated with smaller cohorts of more variable quality and disease diversity, shallower 

sampling and analysis at the subclass level that averages across heterogeneous cell supertypes, case-

control study design and other factors that could contribute to high false discovery rates. While other 

studies have focused on prefrontal cortex or entorhinal cortex that precludes proper comparisons to 

current results in temporal cortex, some effects that would be expected to be common across areas were 

recapitulated here, such as an increase in expression of CSF1R, PTPRG, APOE and others in 

microglia6,66,95,110 (Fig. 4e,f). Furthermore, our results capture many molecular pathways proposed to be 

affected in AD, such as inflammation, energy metabolism, intracellular trafficking, and more, but now in 

this cellular framework that others can map against. Furthermore, the inherent complexity in this atlas 

undercuts a simplistic understanding of AD progression and highlights the need for new analytic methods 

and mechanisms for understanding biological effects that go well beyond Gene Ontology111,112. 

The literature describes a high degree of heterogeneity in AD, and AD subtypes have been characterized 

based on bulk transcriptomics113 and descriptions of different disease progression across the brain28. 

Somewhat surprisingly, we did not see extensive evidence for AD subtypes with fundamentally different 

cellular effects. Rather, we saw a coherent pattern of cellular vulnerability as a function of disease 

severity/pathology burden. This may be due to our particular study design, looking only in MTG, with a 

relatively homogeneous cohort that varied in AD pathology but with otherwise limited comorbidities, and 

that was carefully controlled for tissue preparation, low PMI and high RINs.  One relevant finding from 

gene expression analyses is that the majority of gene modules tended to decrease in expression levels 

with disease severity indicating a general decrease in cell health with disease. We identify a subset of high 

pathology donors that were “severely affected.” These donors show the same basic cell vulnerability 

patterns but have profoundly disrupted transcription with closed chromatin state. While this might have 



   

 

   

 

been interpreted as poor quality specimens and failed with standard QC criteria6, these donors show 

steeper cognitive decline late in life than donors with comparable levels of pathology. This suggests that 

this subset of individuals had cells that entered a particularly severe terminal state where basic cellular 

functions are shutting down. This may correspond to a senescent state described in AD114, and more 

practically indicates that QC metrics should be carefully interpreted for analysis of late-stage AD. 

The results presented here in MTG demonstrate that systematic application of single cell genomic and 

spatial technologies coupled to quantitative neuropathology can model disease progression across the 

spectrum of AD severity. The molecular phenotypes may help develop new biomarkers, while vulnerable 

cell populations may present new targets for therapeutic intervention using tools that can now be reliably 

developed for genetic targeting of specific cell populations. These results suggest that a similar strategy 

can now be applied to understand disease progression across more diverse cohorts and across brain 

regions within individuals, to define commonalities across brain regions and to define the earliest events 

in AD pathology when therapeutic interventions may be most effective. 
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Figure legends 

Figure 1: MTG quantitative neuropathology orders donors according to pseudo-progression of disease.  

A) MTG tissue is annotated to discriminate cortical layers 1-6, in addition to the white matter (WM) 

boundary.  

B) Pathological proteins (Aβ (6e10), pTau (AT8), α-Syn, and pTDP43) and cellular populations (neurons 

(NeuN), microglia (Iba1), and astrocytes (GFAP)) are immunoassayed.  

C) Masks created by HALO software to quantify each immunoassay of panel B.  

D) Boxplot organizing quantitative pTau measurements (number of AT8-ir pTau-bearing cells) according 

to Braak Stage. 

E) Boxplot organizing quantitative Aβ measurements (number of 6e10-ir Aβ plaques) according to Thal 

Phase. 

F) Average white matter measurements obtained for immunoassayed protein pathologies (Aβ, pTau, α-

Syn, and pTDP43) or G) immunoassayed cellular populations (neurons, microglia, and Astrocytes), 

ordered according to continuous pseudo-progression score. Layer information from F) and G) entered 

the calculation of continuous pseudo-progression score. 

H) Pseudo-progression score orders donors recapitulating cognitive decline (CASI) and increased in 

brain-wide pathology (ADNC, Thal Phase, Braak Stage). Of note, all measurements are orthogonal to the 

information used to build the pseudo-progression score.  

I) Hierarchically organized correlation matrix depicting correlation across all quantitative 

neuropathology variables. This matrix can be organized into seven different correlation clusters.  

J) Cluster 7 of the correlation matrix depicted in I) comprised variables decreasing their value along 

continuous pseudo-progression, such as the number of NeuN-ir cells or percent NeuN-ir cell area. 

Correlation cluster 3 is comprised of variables increasing along pseudo-progression, such as the number 

of AT8-ir pTau-bearing cells, 6e10-ir Aβ plaques or the size of the 6e10-ir Aβ plaques. Left, reproduction 

of correlation values for each cluster. Right, traces for representative variables showing layer 

information along pseudo-progression. The heatmap on each time trace represents p-value significance 

for a general additive model in which pseudo-progression is binned in 5 intervals. 

 

Figure 2: Vulnerable Populations in MTG concentrate around superficial supragranular layers. 

A) Resulting effect size of a linear mixed model explaining the proportion of each population by (Top) 

cognitive status, (Middle) ADNC, or (Bottom) Pseudo-progression, controlling for sex, age, and single-cell 

technology. Negative/positive values indicate that populations are decreasing/increasing along pseudo-

progression score with respect to the covariate under analysis.  

B) Logarithm of the relative abundance along pseudo-progression score for neurons and non-neuronal 

cells organized by their subclasses.  

C) Cortical layer localization of vulnerable neuronal populations. Each dot represents a supertype color-

coded by subclass. 

D) Plot depicting the logarithmic relative abundance for each cell type in each donor assayed by single-

nucleus RNA-seq versus spatial transcriptomic. 

 



   

 

   

 

Figure 3: A subset of donor present high vulnerability to AD, exhibiting shutdown of their 

transcriptional machinery, and pronounced cognitive decline. 

A) First principal component for single-nucleus RNA-seq quality control metrics versus single-nucleus 

ATAC-seq for each library in each donor color-coded by ADNC category.  

B) Depiction of quality control metrics for single-nucleus RNA-seq library (bottom) or single-nucleus 

ATAC-seq library (top) order by their loading along the first principal component of each modality. 

C) UMIs detected per cell for mitochondrial genes MT-CO1, MT-ND3 or markers of nuclear RNA, MEG3 

or MALAT1 for a subset of 11 donors with ADNC 3 or ADNC 3 highly vulnerable. 

D) Number of chromatin accessible regions in ADNC 3 donors or (severely affected) SA donors. Shared 

Consensus accessible regions are regions shared across all cohorts. Consensus regions denote regions 

shared across members of each cohort and cohort-specific depict peaks unique to some members of 

each cohort.  

E) Distribution of the percentage of accessible regions in ADNC 3 or SA donors organized by their 

distance from the transcription start site of the nearest gene. 

F) Number of NeuN immunoreactive cells per area in layer 3 along the quality control first principal 

component. SA donors localize at the end of this trajectory and exhibit almost no immunoreactive cells. 

G) Example case depicting the NeuN immunoreactive cells in ADNC 3 donors and the lack of 

immunoreactivity in SA donors. 

H) SA donors exhibit pronounced memory cognitive decline compared to ADNC 3 donors. Cognitive 

score for each donor plot across visits until time of death.  

 

Figure 4: Gene expression changes along pseudo-progression exhibit complex cell type-specific 

dynamical patterns.  

A) Linear mixed model used to analyze gene expression changes along pseudo-progression score. 

Controlling by covariates such as sex, age and single-nucleus technology, pseudo-progression score is 

separated in 2 bins and early (low pathology) and late (high pathology) beta coefficients associated with 

pseudo-progression are calculated. 

B) Genes can be categorized into 8 bins given their dynamical properties. Left, early versus late 

standardized beta coefficients for each gene in each supertype. Each gene is categorized according to its 

dynamical changes according to the following categories: DU, down up. DE, down early. DC, down 

consistently. DL, down late. UD, up down. UE, up early. UC, up consistently. UL, up late. Right, example 

genes in each of the  

C) Framework to explore gene expression changes in an unsupervised manner. For each gene, early and 

late beta coefficients and mean expression values are collected in each cell type (left). Next, an 

unsupervised low dimensional representation is built for all genes (right). Low dimensional 

representation is color coded by the cell types in which mean expression values are higher. 

D) Heatmap displaying means of early and late beta coefficients together with z-score gene expression. 

Each row represents a subclass and each column a gene module obtained from C). 

E) Dynamics along CPS of different gene modules color coded by subclass. Top panels represent modules 

with similar dynamics across glial subclasses (Module 10) or excitatory and inhibitory neurons (Module 

14). Middle panels represent a module with complex dynamics, different in inhibitory neurons (DC), 



   

 

   

 

excitatory (DC, DE, DL), and glial cells (UL, DL). Bottom panels highlight a module specific to the Micro-

PVM subclass. 

F) Example gene modules (10, 16, 5) highlighting their gene ontology description and families of genes 

within them. 

 

Figure 5: Vulnerable MGE-derived inhibitory interneurons exhibit similar transcriptional profiles and 

common electrophysiological features. 

A) UMAP representation of MGE-derived neurons (Sst, Pvalb) color coded by supertype (left), or effect 

size associated with CPS (right). 

B) Correlation matrix of average gene expression profiles for each supertype. Gene expression profiles 

are filtered to select only highly variable genes. 

C) Mean enrichment calculated across affected Sst supertypes versus affected Pvalb supertypes. 

D) Morphological reconstructions of affected MGE-derived interneurons. 

E) SAG and TAU are the two most variable electrophysiological features across affected and non-

affected MGE-derived supertypes. Boxplot depicting tau and sag distributions in affected and non-

affected MGE-derived subclasses. 

F) Dynamics of gene modules preferentially expressed in Sst supertypes. Left, Mean gene expression z-

score versus t-statistics between early beta coefficients affected and unaffected Sst supertypes. Grey 

clusters were driven by a single supertype and not considered. Right, unnormalized mean gene 

expression (counts) of different gene modules (81, 45, 47, 27) in affected and unaffected supertypes 

(Top). Bottom, change in expression from baseline. 

G) Difference in beta coefficient and gene expression z-score for genes in modules depicted in F). 

 

  



   

 

   

 

Extended Data Figure Legends 

Extended Data Figure 1: SEA-AD Brain Cell Atlas study design. 

A) Left, table with summary metrics describing the SEA-AD cohort organized by AD neuropathological 

change. Right, brain tissue preservation metrics.  

B) SEA-AD experimental design. Neighboring brain tissue slabs are selected for neuropathological 

staining or genomic profiling.  

C) Boxplots describe quality control metrics for single nucleus transcriptomics, chromatin accessibility 

and multiome data. Heatmap depicting all quality control metrics in all donors. Red box highlights two 

donors that were excluded due to low QC metrics. 

 

Extended Data Figure 2: Human MTG neuropathological stains track brain-wide pathological states. 

A) Schematic depicting neuropathological data acquisition pipeline. 

B) Scatterplots revealing the percent 6e10-ir / area and percent AT8-ir / area, stratified by layer and 

organized by ADNC. Within a particular ADNC group, donors are randomized. 

C) Boxplots organized pTDP-43 (percent pTDP-43-ir / area) and α-Synuclein (percent α-Syn-ir / area) 

measurements according to LATE stage and Lewy Body Disease, respectively. Lewy Body Disease is coded 

numerically (0 = Not or Incompletely Assessed, 1 = Not Identified, 2 = Amygdala-predominant, 3 = 

Brainstem-predominant, 4 = Limbic (Transitional), 5 = Olfactory bulb only, 6 = Neocortical 

 

 

Extended Data Figure 3: MTG pseudo-progression s α cores orders quantitative neuropathological 

variables following increasing disease severity. 

A) Standardized beta coefficients, pseudo R2, and AUC of models predicting cognitive statues (CS) based 

on different quantitative neuropathological variables or brain-wide metrics used to stage AD. In all 

models we control for sex and age. 

B) Graphical model used to infer pseudo-progression score. 

C) Demographic and neuropathological information for each donor in our cohort along pseudo-

progression score. Dots represent individual donor values; curve represents Loess fit. 

D) Quantitative neuropathological metrics in white matter along pseudo-progression score. Dots 

represent individual donor values; curve represents Loess fit. 

E) Correlation modules depicted in main Figure 1J. For each module, (left) reproduce the highly 

correlation variables in the module, and (right) layer observation for selected quantitative variables in 

the module. Each module is named given their dynamical nature or variables within it. 

 

Extended Data Figure 4: Pipeline for the creation of the MTG taxonomy. 

A) Schematic of the analysis workflow detailing the steps performed to create out MTG taxonomy. 

B) Single-nucleus RNA-seq quality control metrics stratify by ADNC stage. 

C) Hierarchical procedure for the creation of robustly mappable cell types, termed super types. Cells are 

mapped using deep generative models to their corresponding class, subclass, and existing cell types. 



   

 

   

 

Next, data is randomly divided into training and test data sets, models are retrained using the train data 

set and test datasets are used to assess the quality of annotations. This quality is portrayed using a 

confusion matrix. Difficult to map cell types are pruned and final mapping confidence is assessed by F1 

score. 

Due to the low sampling coverage of non-neuronal types, the neuronal taxonomy needed to be 

expanded on these cells. Panels D) and E) depict the steps performed to re-annotate the microglia non-

neuronal type. 

D) After hierarchically annotating cells in the micro-pvm subclass, many cells exhibit low confidence on 

their cell type prediction and remain highly transcriptional dissimilar, even after pruning cells by poor QC 

quality metrics.  

E) Taxonomy expansion to capture transcriptional variability by robust Leiden clustering and manual 

curation. 

Extended Data Figure 5: Pipeline for the annotation of chromatin accessibility data sets. 

A) Chromatin accessibility analysis workflow depicting creation of multimodal data matrices and   

B) UMAP representation of all cells profiled in our multiomic studies color coded by data modality. 

C) UMAP representation color coded by low quality cell score (left) and (right) by unbiased clusters 

possessing most cells with low quality score. Bottom, violin plot showing the distribution of low-quality 

control score per unbiased cluster. 

D) UMAP representation of cells after filtering low quality cells and transferring subclass labels.  

E) UMAP representation of Sst subclass highlighting supertype label transferring procedure. 

 

Extended Data Figure 6: Pipeline for the acquisition of high quality spatial transcriptomic data in the 

human MTG 

A) Spatial Transcriptomics workflow. Tissue blocks for profiling are cut from a frozen donor slab and 

cryosectioned. Sections are photobleached to reduce autofluorescence, hybridized with the probe 

panel, digested to clear light scattering elements, then processed through multi-round imaging on the 

MERSCOPE. Stitched and processed images are segmented to provide cell boundaries and a cell x gene 

table with cell locations is created. Cells are mapped to their transcriptomic type and assigned to their 

location within the tissue to create cell maps.  

B) Correlation between total slide transcripts vs bulk RNAseq.  

C) Correlation between summed transcripts within cells and total MERFISH transcript counts 

D) Correlation between summed transcripts within cells and bulk RNAseq 

E) Correlation across all MERFISH replicates.  

F) Slope of a fit in which the variables considered are the expression levels of each gene in a MERFISH 

experiment in nearby slides from the same donor. 

G) Heatmaps indicating average gene expression levels of genes included in the 140 gene MERFISH 

panel used to profile donor tissue at the subclass level. Top heatmap indicates average expression levels 

for these genes in the snRNA-seq data included in the study, while the bottom heatmap indicates 

expression levels observed in the MERFISH datasets. This data suggests similar expression patterns 

between data modalities.  



   

 

   

 

H) Predicted mapping precision F1 scores for the 140 gene MERFISH panel across transcriptomic 

resolution. Cell type mapping precision at the subclass and supertype level is predicted to be quite high 

when all genes are taken into account by the scANVI model. When the mapping is limited to the 140 

genes in the MERFISH panel, F1 scores remained above 0.95 and 0.8 at the subclass and supertype level, 

respectively.  

I)Example sections from early (0.17), middle (0.52) and late (0.84) pseudotime with IT cell subclasses 

indicated. Mapping locations for these types is consistent across the disease spectrum at the subclass 

level  

J) IT neuron proportions across data collection efforts in neurotypical specimens from previous studies 

compared with IT neuron proportions in present SEA-AD donor set 

K) Proportion comparison between snRNA-seq and MERFISH for non-neuronal types in key selected 

donors. H21.33.021 oligodendrocyte proportions were observed to be low compared to all donors in 

snRNA-seq. MERFISH proportions are similar, indicating a low proportion of oligodendrocytes relative to 

other non-neuronal cells. H20.33.044 oligodendrocyte proportions relative to their non-neuronal 

subclasses appeared to be near-average for the SEA-AD donor set. Proportions of oligodendrocytes 

compared to other non-neuronal cells parallel those observed in snRNA-seq. H21.33.015 

oligodendrocyte proportions were high in both snRNA-seq and MERFISH compared to other non-

neuronal cell subtypes.  

 

Extended Data Figure 7: scCODA model covariates and characterization of affected supertypes by 

MERFISH 

A) Heatmap showing the effect sizes for each covariate from neuronal (left) and non-neuronal (right) 

scCODA modeling of abundance changes. Note largest effect sizes are present in the continuous pseudo-

progression score (CPS). 

B) Spatial locations of individual cells that belong to the subclasses indicated from representative 

MERFISH data on donors at increasing CPS stages. Affected supertypes (aff) are shown in darker colors 

and unaffected supertypes (unaff) in lighter ones. Cortical layers are indicated (grey). 

C) Linear regressions relating the decrease in each cortical layer’s area (is calculated from MERFISH data) 

to CPS. Each dot represents an individual donor, indicated uncertainty is 1 standard deviation. Note all 

layers are shrinking, but the steepest decline is L2/3. 

D) Linear regressions relating the relative abundances of affected and unaffected Sst supertypes (in 

MERFISH data) to CPS. Affected supertypes are shown in darker colors and unaffected supertypes in 

lighter ones. Each dot represents an individual donor, indicated uncertainty is 1 standard deviation. 

 

Extended Data Figure 8: Altered multimodal metrics in severely affected donors. 

A) Fraction of cells kept after quality control by subclass in severely affected donors and ADNC 0-3 

donors.  

B) Correlation matrix of ADNC 3 versus severely affected donors computed using chromatin accessibility 

features. 

C) Distribution of length of accessible regions in ADNC 3 and severely affected donors. 

D) List of transcription factors and their gene ontology category for transcription factors enriched in 

chromatin accessible regions uniquely found in ADNC 3 highly vulnerable donors.  



   

 

   

 

E) Language, Visuospatial and Executive function cognitive scores ordered by visits until donors’ death. 

 

Extended Data Figure 9: Gene module dynamics and representation. 

A) Left, number of significant genes per supertype, organized by subclass. Middle, histogram depicting 

the distribution of significant beta coefficients. Right, number of nuclei versus number of significant 

genes in each supertype. 

B) Left, Expression dynamics of module 25 (left), 6 (middle), and 61 (Right) in GABAergic and 

glutamatergic neurons color coded by subclass. UC, up consistently, UL, up late, DC, down consistently, 

DL, down late. 

C) Mean early and late beta coefficients and z-scores of gene expression from general linear mixed 

effects model (GLMM) in unannotated transcripts from module 6 (left) and genes encoding 

neuropeptides/pro-hormones in module 61 (right, some genes indicated) across inhibitory neurons (Inh) 

and excitatory neurons (Exc) supertypes. 

D) Expression dynamics of module 92 in GABAergic neurons (left), glutamatergic neurons (middle), and 

non-neuronal (right) supertypes color coded by subclass.  NC, not changed. 

E) Mean early and late beta coefficients from GLMM in activity related genes from module 92 (some 

indicated) across inhibitory neurons (Inh), excitatory neurons (Exc), and non-neuronal (NN) supertypes. 

F) Expression dynamics of modules 8 and 13 (left panels, specific to oligodendrocytes) and 0 and 20 

(right panels, specific to astrocytes) in non-neuronal supertypes color coded by subclass.  UL, up late. 

UD, up then down. 

G) Mean early and late beta coefficients and z-scores of gene expression from general linear mixed 

effects model (GLMM) in genes involved in lipid biosynthesis from module 8 (left, some genes indicated) 

and markers of oligodendrocytes/a master regulator of myelination (MYRF) in module 13 (right, some 

genes indicated) across oligodendrocyte supertypes. 

 

Extended Data Figure 10: Representation of each gene module per supertype. 

Heatmap depicting the early, late beta coefficients and z-score of gene expression for each gene module 

(indicated at bottom) in each supertype. Top, number of genes in each module.  

 

Extended Data Figure 11: Electrical and transcriptional features across affected and unaffected MGE 

supertypes. 

A) Sag and Tau electrical features organized by Sst (top) and Pvalb (bottom) supertypes. Affected 

supertypes are colored red. 

B) Violin plot of counts for the HCN1 gene for neurons in Sst affected and unaffected supertypes. 

C) Mean gene expression z-score versus t-statistics between late beta coefficients affected and 

unaffected Sst supertypes (Left), early beta coefficients affected and unaffected Pvalb supertypes 

(Center), and late beta coefficients affected and unaffected Pvalb supertypes (Right). Grey clusters were 

driven by a single supertype and not considered. 
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Methods 

SEA-AD cohort selection and brain tissue collection 

Brain specimens were obtained from the Adult Changes in Thought (ACT) Study and the University of 

Washington Alzheimer’s Disease Research Center (ADRC). The study cohort includes all ACT precision 

rapid autopsies and UW ADRC Clinical Core autopsies, with exclusion of those with a diagnosis of 

frontotemporal dementia (FTD), frontotemporal lobar degeneration (FTLD), Down's syndrome, 

amyotrophic lateral sclerosis (ALS) or other confounding degenerative disorder (not including Lewy Body 

Disease or uVBI). The cohort also excludes individuals that tested positive for COVID-19. The cohort 

represents the full spectrum of Alzheimer’s disease severity.  

The Adult Changes in Thought (ACT) study is a community cohort study of older adults from Kaiser 

Permanente Washington (KPW), formerly Group Health, in partnership with the University of Washington 

(UW). The ACT study seeks to understand the various conditions and life-long medical history that can 

contribute to neurodegeneration and dementia and has been continuously running since 1994, making it 

the longest running study of its kind. In 2005, ACT began continuous enrollment with the same methods 

to replace attrition from dementia, dropout, and death, ensuring a consistent cohort of ≥2,000 at risk for 

dementia. Total enrollment is nearing 6,000, with over 1,000 incident dementia cases; more than 900 

have had autopsies to date with an average rate of approximately 45-55 per year. The study completeness 

of the follow up index is between 95 to 97%. Subjects are invited to enroll at age 65 by random selection 

from the patient population of KPW Seattle and undergo bi-annual study visits for physical and mental 

examinations. In addition to this study data, the full medical record is available for research through KPW. 

Approximately 25% of ACT autopsies are from people with no MCI or dementia at their last evaluation; 

roughly 30% meet criteria for MCI, and roughly 45% meet criteria for dementia. Thus, the ACT study 

provides an outstanding cohort of well-characterized subjects with a range of mixed pathologies including 

many controls appropriate for studies proposed for this study. Approximately 30% of the ACT cohort 

consents to brain donation upon death, and tissue collection is coordinated by the UW Biorepository and 

Integrated Neuropathology (BRaIN) lab, which preserves brain tissue for fixed, frozen, and fresh 

preparations, as well as performing a full post-mortem neuropathological examination and diagnosis by 

certified neuropathologists using the NIA-AA criteria.  

The University of Washington Alzheimer’s Disease Research Center (ADRC) has been continuously funded 

by NIH since 1984. It is part of a nationwide network of Alzheimer’s disease research resource centers 

funded through the NIH's National Institute on Aging (NIA) and contributes uniquely to this premier 

program through its vision of precision medicine for AD: comprehensive investigation of an individual’s 

risk, surveillance with accurate and early detection of pathophysiologic processes while still preclinical, 

and interventions tailored to an individual’s molecular drivers of disease. Patients enrolled in the UW 

ADRC Clinical Core undergo annual study visits, including mental and physical exams, donations of 

biospecimens including blood and serum, and family interviews. The UW ADRC is advancing 

understanding of clinical and mechanistic heterogeneity of Alzheimer’s disease, developing pre-clinical 

biomarkers, and, in close collaboration with the ACT study, contributing to the state of the art in 

neuropathological description of the disease. For subjects who consent to brain donation, tissue is also 



   

 

   

 

collected by the UW BRaIN lab, and is preserved and treated with the same full post-mortem diagnosis 

and neuropathological work up as described above. 

Human brain tissue was collected at rapid autopsy (postmortem interval <12 hours, mean close to 6.5, 

Extended Data Fig. 1a). One hemisphere (randomly selected) was embedded in alginate for uniform 

coronal slicing (4mm), with alternating slabs fixed in 10% neutral buffered formalin or frozen in a dry ice 

isopentane slurry17,18. Superior and Middle Temporal Gyrus (MTG) was sampled from fixed slabs and 

subjected to standard processing, embedding in paraffin (Extended Data Fig. 1b). 

Single and duplex-IHC protocols 

The STG-MTG tissue blocks were sectioned (cut at 5 µm), deparaffinized by immersion in xylene for 3 

minutes, 3 times. Then, rehydrated in graded ethanol (100%, 3x, 96%, 70% and 50% for 3 minutes each 

and washed with TBST (Tris Buffered Saline with 0.25% Tween) twice for 3 minutes. The slides were 

immersed in Diva Decloaker 1x solution (Biocare Medical, DV2004) for heat-induced epitope retrieval 

(HIER) using the Decloaking Chamber at 110C for 15 minutes for most of the antibodies. For the alpha-

Synuclein protein detection, enzymatic antigen retrieval with protein kinase is used. After the HIER is 

completed, the slides are cooled for 20 minutes at RT. Afterward, the slides are washed with TBST for 5 

minutes, twice. 

Chromogenic staining was performed using the fully automated Biocare Medical intelliPATH®. Blocking 

with 3% hydrogen peroxide, Bloxall (Vector Labs), Background punisher (Biocare Medical), and levamisole 

(Vector labs) is performed to avoid any cross-reactivity and background. The following primary antibodies 

are used for the first target protein at the dilutions indicated: NeuN (1:500, A60, Mouse, Millipore 

MAB5374), pTDP43 (1:1000, Ser409/Ser410, ID3, Rat, Biolegend, 829901), Beta Amyloid (1:1000, 6e10, 

Mouse, Biolegend 80303), Alpha-Synuclein (1:200, LB509, Mouse, Invitrogen 180215) and GFAP (1:1000, 

Rabbit, DAKO, Z033401-2). Following primary antibody incubation sections were washed 4x2 minutes with 

TBST and stained with species-appropriate secondary antibody conjugated to a Horseradish Peroxidase 

(HRP, MACH3- Mouse (M3530), and MACH-Rabbit (M3R531), Biocare Medical). Sections were washed 2x2 

minutes with TBST and the antibody complex is then visualized by HRP-mediated oxidation of 3,3’-

diaminobenzidine (DAB) by HRP (brown precipitate). Counterstaining is done with Hematoxylin after the 

DAB reaction. 

In the case of a duplex IHC (6e10 and pTDP43), the slides were washed 18x2 minutes in TBST and then 

incubated with primary antibodies at the dilutions indicated after the DAB reaction: IBA1 (1:1000, Rabbit, 

Wako, 019-19741) and PHF-TAU (1:1000, AT8, Mouse, Thermofisher, MN1020), washed as above and 

stained with species-appropriate secondary antibodies conjugated to an Alkaline Phosphatase (AP, 

MACH3-Mouse (M3R532) MACH3-Rabbit (M3R533), Biocare Medical). The complex was then visualized 

with the intelliPATH® Ferangi Blue reaction kit (IPK5027, Biocare Medical) (blue precipitate). Once staining 

is completed, the slides were removed from the automated stainer and immersed in TBST, 3 minutes, 

then dehydrated in graded ethanol (70%, 96%, 100%, 2x) for 3 minutes and xylene (or xylene substitute 

in the case of double IHC), 3 times each for 3 minutes. Finally, cover slipping is carried out with a Tissue-

Tek automated cover slipper (Sakura). 



   

 

   

 

Image acquisition 

To analyze the different slides obtained from the MTG tissue samples processed for IHC, the Image 

acquisition of the tissue samples generated was executed by the Aperio AT2 digital scanner (Leica), which 

captures sequential images using slide settings optimized for our IHC protocols which are subsequently 

assembled or stitched into whole slide images (WSIs) and exact replicas of the glass slides. All images are 

scanned at 20x magnification and using the same gain, brightness and exposure times to avoid image to 

image variations (Extended Data Fig. 2a) 

Quantification of whole slide images 

There are different approaches for quantification, characterization and extracting image features from 

WSIs using different image analysis approaches: 

1. Pixel-level features are the lowest in the information hierarchy, and examples of pixel-level 

features include mathematical characterizations of color, texture, and spatial patterns.  

2. Object-level features are higher in the information hierarchy as they describe the characteristics 

of microanatomic objects such as nuclei, nucleoli, and cytoplasm. 

3. Semantic-level features capture biological classification of microanatomic structures or regions. 

These features describe high-level concepts such as type of cell, or regions within the WSI. Deep 

learning methods are rapidly making a major impact in digital pathology. These methods 

employed machine and deep learning networks, to identify and label objects WSI regions or to 

assign classifications to entire WSIs115. 

In the case of the SEA-AD project, the quantitative pathological assessment for the WSIs obtained from 

the MTG region were analyzed using the HALO® v.3.4.2986 (Indica labs, Albuquerque, New Mexico, USA). 

First, the NeuN stained slide for all the 84 donors was used to train the DenseNet (a deep learning 

convolutional neural network) to classify, segment and annotate the following cortical layers in MTG; 

Layer1 (molecular layer), layer 2 (external granular layer), layer 3 (external pyramidal layer), layer 4 

(Internal granular layer) and layers 5-6 (internal pyramidal and multiform layers) (Figure 1). Second, using 

the Serial Section registration tool, the different WSIs obtained in each subject were registered, and the 

different cortical regions annotated were copied to the other 4 IHC stained slides (noted above), allowing 

the analysis on the same tissue regions in all the tissue sections obtained for every single donor. We then 

applied different algorithms and approaches to obtain different features from different stains across the 

WSIs (Supplementary Table 9). In cases where “Color Deconvolution” was used manual tuning in HALO 

was required by a trained neuropathologist to accurate quantification. Finally, the quantitative 

neuropathology dataset obtained includes both raw and normalized features which exist as layer-specific 

quantifications (Supplementary Table 2). 

Creation of Pseudo-progression Score 

To estimate a latent variable for each donor, t_d, that accounts for the pseudo-progression of pathology 

in the MTG, we created the following hierarchical generative statistical model: 

𝜋~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝜋)	



   

 

   

 

𝑡~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛	𝑆𝑖𝑚𝑝𝑙𝑒𝑥)	
𝑎!, 𝑘!~𝑁𝑜𝑟𝑚𝑎𝑙(0,1)	
𝑎!" ~𝑁𝑜𝑟𝑚𝑎𝑙(𝑎!, 1)	
𝑘!" ~𝑁𝑜𝑟𝑚𝑎𝑙(𝑘!, 1)	
𝑋#
!,"~𝑃𝑜𝑖𝑠𝑠𝑜𝑛<𝐸𝑥𝑝(𝑘!" 	𝑡%(#) + 𝑎!" 	? 

in which the symbol “~” represents that we are taking draws from a distribution, m is an index that 

represents each measurement (like Number of AT8 positive objects), and l represents layer information. 

The hierarchical nature of this model enables the ‘borrowing of information’ across layers and manifests 

in the fact that, for each measurement, layer specific parameters a_m^l and k_m^l are sampled from their 

population parameters a_m and k_m. We perform approximate Bayesian inference in this model to obtain 

draws from an approximate posterior distribution given the model and the underlying priors for a, k, π 

and t. Our inferential strategy is based on a Gibbs block coordinate sampler where we iteratively sample 

from each block of variables (t, π or (a,k)) conditioned on the others being fixed. To sample an element t 

of the simplex that we unequivocally associate with an increasing sequence of times fixed we use the 

sampler described in116. To sample permutations π we resorted to the parametric Gumbel-Sinkhorn family 

of distributions over permutations117 to approximate the otherwise intractable conditional distribution 

(and hence, our method is approximate). Finally, to sample model parameters (a, k) we used Stan 118. After 

initial burned out samples, we iterate through this procedure.  

Tissue processing for single nucleus isolations 

To remove a specific region of interest from frozen 4mm thick brain slabs for downstream nuclear 

sequencing applications, tissue slabs were removed from storage at –80C, briefly transferred to a –20C 

freezer to prevent tissue shattering during dissection, and then handled on a custom cold table 

maintained –20C during dissection. Dissections were performed using dry ice cooled razor blades or 

scalpels to prevent warming of tissues. Dissected tissue samples were transferred to vacuum seal bags, 

sealed, and stored at -80C until the time of use. Single nucleus suspensions were generated using a 

previously described standard procedure (https://www.protocols.io/view/isolation-of-nuclei-from-adult-

human-brain-tissue-ewov149p7vr2/v2). Briefly, after tissue homogenization, isolated nuclei were stained 

with a primary antibody against NeuN (FCMAB317PE, Millipore-Sigma) to label neuronal nuclei. Nuclei 

samples were analyzed using a BD FACS Aria flow cytometer and nuclei were sorted using a standard 

gating strategy to exclude multiplets17. A defined mixture of neuronal (70%) and non-neuronal (30%) 

nuclei was sorted for each sample. Nuclei isolated for 10x Genomics v3.1 snRNA-seq were concentrated 

by centrifugation after FANS and were frozen and stored at –80C until later chip loading. Nuclei isolated 

for 10x Genomics Multiome and 10x Genomics Single Cell ATAC v1.1 were concentrated by centrifugation 

after FANS and were immediately processed for chip loading. 

Isolation of RNA and determination of RNA Integrity Number (RIN) from frozen human brain tissue  

To assess RNA quality, three tissue samples (roughly 50mg each) were collected from the tissue slab 

corresponding to the frontal pole of each donor brain. Tissue samples were collected from three different 

regions of the tissue slab to assess within-slab variability in RNA quality. Dissected tissues were stored in 

1.5 mL microcentrifuge tubes on dry ice or in the -80C until the time of RNA isolation. Tissue samples were 



   

 

   

 

homogenized using a sterile Takara BioMasher (Takara, 9791A). RNA isolation was performed using either 

a Qiagen RNeasy Plus Mini Kit (Qiagen, 74134) or a Takara NucleoSpin RNA Plus kit (Takara, 740984) 

following the manufacturer’s protocol. RNA integrity (RIN) values for each sample were determined using 

the Agilent RNA 6000 Nano chip kit (Agilent, 5067-1511) and an Agilent Bioanalyzer 2100 instrument 

following the manufacturer’s protocol. 

10x genomics sample processing 

10x Genomics chip loading and post-processing of the emulsions were done with the Chromium Next GEM 

Single Cell 3’ Gene Expression v3.1, Chromium Next GEM Single Cell ATAC v1.1, and Chromium Next GEM 

Single Cell Multiome ATAC+Gene Expression kits according to the manufacturer’s guidelines. Nuclei 

concentration was calculated either manually or using the NC3000 NucleoCounter. 

Creation of “supertypes” in neurotypical reference data 

We defined “supertypes” as a set of fine-grained cell type annotations for single nucleus expression data 

that could be reliably predicted on held-out neurotyical reference data (where “ground truth” labels were 

assigned as described above) using state-of-the-art machine learning approaches61,62. From 5 neurotypical 

donors in a related study with roughly 140K nuclei captured with 10x snRNA-seq12 we systematically held 

out 1 donor and used scANVI to iteratively and probabilistically predict their class (3 labels), subclass (24 

labels), and then cluster (151 labels). When predicting each nucleus’s class, we selected the top 2,000 

highly variable genes along with the top 500 differentially expressed genes unique to each class 

(calculated from the reference cells which had their labels retained using a Wilcoxon rank sum test 

implemented in scanpy.tl.rank_gene_groups) to use as features in training the model and specified the 

donor’s ID and number of genes detected as categorical and continuous covariates, respectively. After 

training the model using scVI’s train function with max_epochs set to 200, we passed it to scANVI with 

the from_scvi_model function and trained for an additional 20 epochs. We then obtained the latent 

representation with scANVI’s get_latent_representation function and label predictions using the predict 

function with soft set to True. Nuclei were then separated by their predicted class and features were re-

selected with the same criteria to predict subclasses and again in predicting clusters. A differential 

expression test was run on clusters with an F1 score below 0.7, and those without 3 positive markers 

when compared against nuclei from their constituent subclass (corrected p-value <0.05, fraction in group 

expression >0.7, fraction out of group expression <0.3) were dropped from the taxonomy, with the 

remaining clusters representing supertypes. 

Mapping transcriptomic SEA-AD nuclei to reference supertypes 

SEA-AD nuclei with fewer than 500 genes detected were removed upstream of supertype mapping. After 

defining supertypes in neurotypical donors, we iteratively and probabilistically predicted each SEA-AD 

nucleus’s class, subclass, and supertype using scANVI62, as above. Each SEA-AD nucleus’ class was 

predicted after projecting them into a shared latent space with reference nuclei using models trained with 

2000 highly variable genes and 500 differentially expressed genes per class (from reference data, where 

donor name and number of genes were passed as categorical and continuous covariates, respectively). 

Nuclei were then split by predicted class, projected into a new class-specific latent space where subclass 



   

 

   

 

was predicted, and again for supertype. The subclass-specific latent spaces were then used to construct a 

nearest neighbor graph with the scanpy.pp.neighbors function with default settings and represented with 

a two-dimensional uniform manifold approximation and projection (UMAP) computed with 

scanpy.tl.umap with default settings. Predictions from scANVI were evaluated by probabilities from the 

model and by known marker gene expression (signature scores were computed by summing the absolute 

value of the t-statistic between reference and SEA-AD nuclei for the top 50 differentially expressed genes 

for each supertype). Areas of the nearest neighbor graph with few reference nuclei could represent 

droplets with ambient RNA, multiplet nuclei, dying cells, or transcriptional states missing from the 

reference, unique to a donor, or found only in aging or disease. To assess these possibilities, we fractured 

the graph into tens to hundreds of clusters (called “metacells”) using high resolution Leiden clustering 

(resolution=5, k=15) and then merged them based on differential gene expression using the defaults in 

the transcriptomics_clustering package with default thresholds merging clusters based on gene 

expression and size. Clusters and metacells were then flagged and removed if they had poor group doublet 

scores17, fraction of mitochondrial reads, number of genes detected, or donor entropy (computed with 

scipy.stats.entropy), eliminating common technical sources of transcriptional heterogeneity. 

Expanding the reference taxonomy for non-neuronal cells 

After removing common technical axes of variation, we next identifed nuclei that were transcriptionally 

distinct from the reference and added them to our supertype taxonomy. To do so, we constructed a new 

latent space for each subclass using scVI, where the model was passed the supertype predictions as cell 

labels; gene dispersion was allowed to vary per supertype; sex, race and 10x technology (multiome versus 

singlome) were included as categorical covariates; and the number of genes detected in each nucleus and 

the donor age at death were passed as continuous covariates. Using the neighborhood graph from this 

latent representation, we clustered the nuclei into tens to hundreds of groups and merged them based 

on differential gene expression, as above. We defined merged clusters with fewer than 10% of all 

reference cells or of any single supertype as having poor reference support and added them to the 

taxonomy (systematically named Subclass_Number-SEAAD). In cases where more than 90% of SEA-AD 

nuclei within these poorly supported groups were predicted to be one supertype, their new label reflected 

that assignment (e.g., Subclass_SupertypeNumber_Number-SEAAD). These cell type assignments are 

used as baseline for the analyses, plots, and tools developed for the web product and this manuscript. 

Mapping epigenomic SEA-AD nuclei to supertypes 

We first separated the 84 donors by their AD neuropathological changes into 4 groups (Not AD, low, 

intermediate, high) and randomly selected 5 non-SA donors from each group to call group-specific peaks 

with ChromA’s119 “atac” function. We created a union peak set across the 4 groups using the bedtools 

merge function. We then used the “count” function to quantify the number of UMIs within each peak to 

construct a nucleus by peak matrix for all epigenomic SEA-AD nuclei. We integrated the snRNA-seq, 

snATAC-seq, and snMultiome datasets using MultiVI63, with modality set as the batch_key, and donor ID 

and sex passed to the model as categorical covariates. After training the model using MultiVI’s train 

function, we obtained the joint latent representation with get_latent_representation and constructed 

the nearest neighbor graph across modalities with the scanpy.pp.neighbors function and clustered the 

nuclei using the leiden algorithm implemented in scanpy.tl.leiden with default settings. We calculated 



   

 

   

 

the RNA quality control score for each snATAC-seq nucleus by computing the fraction of its neighbors 

that were flagged as low quality snRNA-seq and snMultiome nuclei. snATAC-seq nuclei in leiden clusters 

with high scores were removed. We then transferred the subclass labels to snATAC-seq nuclei using 

snRNA-seq and snMultiome nearest neighbor voting. We seperated the epigenomics nuclei based on 

each subclass and called peaks (as above) within subclasses from randomly selected 5 SA donors using 

ChromA to optimize the feature space. Finally, we integrated the multiple modalities data and 

transferred supertype labels with each subclass using MultiVI, as above. 

Spatial transcriptomics gene panel selection 

The 140 gene human cortical panel was selected using a combination of manual and algorithmic based 

strategies requiring a reference single cell/nucleus RNA-seq data set from the same tissue, in this case 

the human MTG snRNA-seq dataset and resulting taxonomy17. First, an initial set of high-confidence 

marker genes are selected through a combination of literature search and analysis of the reference data. 

These genes are used as input for a greedy algorithm (detailed below). Second, the reference RNA-seq 

data set is filtered to only include genes compatible with mFISH. Retained genes need to be 1) long 

enough to allow probe design (>960 base pairs); 2) expressed highly enough to be detected (FPKM >=10 

in at least one cell type cluster), but not so high as to overcrowd the signal of other genes in a cell (FPKM 

<500 across all cell type clusters); 3) expressed with low expression in off-target cells (FPKM <50 in non-

neuronal cells); and 4) differentially expressed between cell types (top 500 remaining genes by marker 

score, see code below). To sample each cell type more evenly, the reference data set is also filtered to 

include a maximum of 50 cells per cluster. 

The computational step of gene selection uses a greedy algorithm to iteratively add genes to the initial 

set. To do this, each cell in the filtered reference data set is mapped to a cell type by taking the Pearson 

correlation of its expression levels with each cluster median using the initial gene set of size n, and the 

cluster corresponding to the maximum value is defined as the “mapped cluster”. The “mapping 

distance” is then defined as the average cluster distance between the mapped cluster and the originally 

assigned cluster for each cell. In this case a weighted cluster distance, defined as one minus the Pearson 

correlation between cluster medians calculated across all filtered genes, is used to penalize cases where 

cells are mapped to very different types, but an unweighted distance, defined as the fraction of cells 

that do not map to their assigned cluster, could also be used. This mapping step is repeated for every 

possible n+1 gene set in the filtered reference data set, and the set with minimum cluster distance is 

retained as the new gene set. These steps are repeated using the new get set (of size n+1) until a gene 

panel of the desired size is attained. Code for reproducing this gene selection strategy is available as part 

of the mfishtools R library (https://github.com/AllenInstitute/mfishtools). 

Spatial transcriptomics data collection 

Human postmortem frozen brain tissue was embedded in Optimum Cutting Temperature medium (VWR 

25608-930) and sectioned on a Leica cryostat at -17C at 10 μm onto Vizgen MERSCOPE coverslips. These 

sections were then processed for MERSCOPE imaging according to the manufacturer’s instructions. 

Briefly: sections were allowed to adhere to these coverslips at room temperature for 10 minutes prior to 

a 1 minute wash in nuclease-free phosphate buffered saline (PBS) and fixation for 15 minutes in 4% 



   

 

   

 

paraformaldehyde in PBS. Fixation was followed by 3x5 minute washes in PBS prior to a 1 minute wash 

in 70% ethanol. Fixed sections were then stored in 70% ethanol at 4C prior to use and for up to one 

month. Human sections were photobleached using a 240W LED array for 72 hours at 4C (with 

temperature monitoring to keep samples below 17C) prior to hybridization then washed in 5 mL Sample 

Prep Wash Buffer (VIZGEN 20300001) in a 5 cm petri dish. Sections were then incubated in 5 mL 

Formamide Wash Buffer (VIZGEN 20300002) at 37C for 30 min. Sections were hybridized by placing 50 

μL of VIZGEN-supplied Gene Panel Mix onto the section, covering with parafilm and incubating at 37 C 

for 36-48 hours in a humidified hybridization oven. Following hybridization, sections were washed twice 

in 5 mL Formamide Wash Buffer for 30 minutes at 47C. Sections were then embedded in acrylamide by 

polymerizing VIZGEN Embedding Premix (VIZGEN 20300004) according to the manufacturer’s 

instructions. Sections were embedded by inverting sections onto 110 μL of Embedding Premix and 10% 

Ammonium Persulfate (Sigma A3678) and TEMED (BioRad 161-0800) solution applied to a Gel Slick 

(Lonza 50640) treated 2x3 inch glass slide. The coverslips were pressed gently onto the acrylamide 

solution and allowed to polymerize for 1.5 hours. Following embedding, sections were cleared for 24-48 

hours with a mixture of VIZGEN Clearing Solution (VIZGEN 20300003) and Proteinase K (New England 

Biolabs P8107S) according to the manufacturer’s instructions. Following clearing, sections were washed 

2x5 minutes in Sample Prep Wash Buffer (PN 20300001). VIZGEN DAPI and PolyT Stain (PN 20300021) 

was applied to each section for 15 minutes followed by a 10 minutes wash in Formamide Wash Buffer. 

Formamide Wash Buffer was removed and replaced with Sample Prep Wash Buffer during MERSCOPE 

set up. 100 μL of RNAse Inhibitor (New England BioLabs M0314L) was added to 250 μL of Imaging Buffer 

Activator (PN 203000015) and this mixture was added via the cartridge activation port to a pre-thawed 

and mixed MERSCOPE Imaging cartridge (VIZGEN PN1040004). 15 mL mineral oil (Millipore-Sigma 

m5904-6X500ML) was added to the activation port and the MERSCOPE fluidics system was primed 

according to VIZGEN instructions. The flow chamber was assembled with the hybridized and cleared 

section coverslip according to VIZGEN specifications and the imaging session was initiated after 

collection of a 10X mosaic DAPI image and selection of the imaging area. Specimens were imaged and 

automatically decoded into transcript location data. Postprocessing and segmentation was completed 

using the vizgen-postprocessing docker container.  

Spatial transcriptomics data quality control and mapping 

Resulting transcript location data and cell by gene tables were assessed for quality by comparing total 

transcript counts across specimens. A rectangular region was selected in each section to encompass a 

region spanning pia to white matter with uniform layer thickness and minimal in-plane cortical 

curvature. Transcript counts within these regions were summed to create a spatial transcriptomics 

pseudo-bulk profile. This pseudo-bulk profile was consistent with the bulk RNASeq measurements 

summed across 10 donors (Pearson correlation 0.69). Two sections with total transcript correlation less 

that 0.6 to the spatial transcriptomic pseudo-bulk were eliminated, along with two sections that 

measured unusually high counts of one gene (HS3ST2). Within the cortical selections, layers were 

annotated manually based on excitatory subclass annotations and cellular density. After these steps, 

selected cells from 59 sections from 24 donors formed our spatial dataset for subsequent analysis. Cells 

were eliminated from further analysis if they fell outside the following criteria: >15 genes detected, 30-



   

 

   

 

4000 total transcripts detected, 100-4000 um3 total cell volume. Cells in this dataset had a mean of 

210.9 detected transcripts, and mean volume of 1292 μm3. 

Cells in the spatial transcriptomics dataset were mapped to the integrated taxonomy at the supertype 

level by finding the supertype whose mean gene expression within the supertype was the most similar, 

using Pearson correlation, in R.   

Compositional analysis of supertypes 

To model changes in the composition of cell types as a function of CPS and other covariates we used the 

Bayesian method scCODA72. We created separate AnnData objects of neuronal and non-neuronal nuclei 

with supertype annotations, sequencing library IDs and relevant donor-level covariate information 

(noted below) for all snRNA-seq and snMultiome nuclei formatted per 

https://sccoda.readthedocs.io/en/latest/data.html using the sccoda.util.cell_composition_data function 

with cell_type_identifier set to supertype and sample_identifer set to the sequencing library ID. Next, 

we setup an ensemble of models to test whether supertypes were credibly affected across cognitive 

status (No dementia [0] versus Dementia [1]), ADNC (Not AD [0], Low [1/3], Intermediate [2/3], High 

[1]), and CPS (Interval [0,1]) using  the scconda.util.comp_ana.CompositionalAnalysis function with 

formula set to "Sex + Age at death + Race + 10x Chemistry + [disease covariate]" and each supertype as 

the reference population (yielding 417 models total) and obtained posterior estimates for each 

parameter with a Markov chain Monte Carlo (MCMC) process implemented in the sample_hmc function 

with default parameters. The sampling occasionally stayed at fixed points, so we re-ran models with 

fewer than 60% accepted epochs. We defined credibly affected supertypes as those that had a mean 

inclusion probability across models >0.8. 

Identification of low quality and severely affected donors 

To identify donors with tissue-level and pre-sequencing metrics (brain pH, brain weight, post mortem 

interval, RIN, cDNA amplification concentration, and library insert size) we constructed an AnnData with 

each donor as an observation and each quality control metric noted above as a variable. We then 

centered and scaled these data with the scanpy.pp.scale function and performed principle component 

analysis on the matrix with the scanpy.pp.pca function. To identify severely affected donors we 

repeated this procedure on post-sequencing library level snRNA-seq and snATAC-seq metrics indicated 

(Fig 3b). There were no severely affected donors in the snMultiome dataset. 

Gene expression changes along CPS 

To model gene expression changes as a function of CPS and other covariates we used a general linear 

mixed effects model implemented in the NEBULA R package76. We used objects with all nuclei and with 

nuclei divided into the first (<0.55, “early”) and second (>0.45, “late”) halves of CPS (with a small 

amount of overlap). For each supertype, we constructed a model matrix from relevant metadata with 

the base model.matrix function with the formula "Sex + Age at death + Race + 10x Chemistry + CPS + 

Number of genes detected". We randomly added single pseudocounts to 3 nuclei to features that had 

zero values across all nuclei within a supertype in the metadata groupings (which would have prevented 

the model from properly fitting coefficients). We then grouped raw count and model matrices with the 



   

 

   

 

group_cell function in NEBULA, passing the counts matrix to count, the model matrix to pred, the 

number of UMIs detected in each nucleus to offset, and the donor IDs as the random effect to id. To fit 

the model, we then ran the nebula function using the output of group_cells. We filtered genes with 

fewer than 0.005 counts per nucleus (as recommended) which resulted in coefficients for roughly 

14,000 genes being fit in each supertype. We further restricted the results to genes with convergences 

equal to 1. We determined the number of significant genes from the resulting p-values in each 

supertype with the Benjamini-Hochberg procedure with an alpha threshold of 0.01. 

Construction of gene modules 

To identify patterns in gene expression dynamics the context of expression levels present prior to 

disease pathology we constructed a matrix spanning all genes on one axis and their corresponding 

normalized early and late beta coefficients (divided by their standard errors) as well as z-scores of the 

mean expression (capped at a magnitude of 2) for each supertype along the other axis. We then 

computed a nearest neighbor graph across all genes using Euclidian distances with the 

scanpy.pp.neighbors function with use_rep set to “X” and n_neighbors set to 15. We then over-

clustered genes with the leiden algorithm implemented in scanpy.tl.leiden with a resolution set to 10 

and merged gene clusters using the transcriptomics_clustering package (described above) based on 

their similarity imposing the requirement that no cluster contain fewer than 20 genes. To visualize the 

resulting graph we computed a low dimensional UMAP representation with the scanpy.ul.umap function 

with default parameters and computed mean normalized beta coefficient and z-score values across all 

genes within each cluster. In heatmap representations, the clusters are arranged based on hierarchical 

clustering implemented in scanpy.tl.dendrogram with the correlation method set to “kendall” 

Code availability 

We are compiling, commenting, and organizing code used to map SEA-AD data to reference nuclei 

across modalities, create the continuous pseudo-progression score, test for cellular and molecular 

changes across CPS, and build all the figures in this manuscript. We will release the collection on GitHub 

when finalized. 

Model availability 

We are exploring the best methods to share pre-trained scVI, scANVI, and MultiVI models used to map 

SEA-AD data that could also be used by others to map additional datasets and will also share this 

resource when ready. 

Data availability 

FASTQs containing sequencing data from snRNA-seq, snATAC-seq, and snMultiome assays are available 

through controlled access at Sage Bionetworks (accession: syn26223298). Nuclei by gene matrices with 

counts and normalized expression values from snRNA-seq and snMultiome assays are available through 

the Open Data Registry on AWS as AnnData objects (h5ad), and viewable on the cellxgene platform. 

Nuclei by peak matrices for the snATAC-seq data (with peaks called across all nuclei) and cell by gene 

matrices containing spatial coordinates from MERFISH data are also available on the Open Data Registry 



   

 

   

 

on AWS as AnnData objects. Donor, library, and cell-level metadata is available in these objects and also 

on SEA-AD.org. Raw images from the quantitative neuropathology data are available on the Open Data 

Registry on AWS and the variables derived from HALO on SEA-AD.org. 



Figures

Figure 1

MTG quantitative neuropathology orders donors according to pseudo-progression of disease.



A) MTG tissue is annotated to discriminate cortical layers 1-6, in addition to the white matter (WM)
boundary.

B) Pathological proteins (Aβ (6e10), pTau (AT8), α-Syn, and pTDP43) and cellular populations (neurons
(NeuN), microglia (Iba1), and astrocytes (GFAP)) are immunoassayed.

C) Masks created by HALO software to quantify each immunoassay of panel B.

D) Boxplot organizing quantitative pTau measurements (number of AT8-ir pTau-bearing cells) according
to Braak Stage.

E) Boxplot organizing quantitative Aβ measurements (number of 6e10-ir Aβ plaques) according to Thal
Phase.

F) Average white matter measurements obtained for immunoassayed protein pathologies (Aβ, pTau, α-
Syn, and pTDP43) or G) immunoassayed cellular populations (neurons, microglia, and Astrocytes),
ordered according to continuous pseudo-progression score. Layer information from F) and G) entered the
calculation of continuous pseudo-progression score.

H) Pseudo-progression score orders donors recapitulating cognitive decline (CASI) and increased in brain-
wide pathology (ADNC, Thal Phase, Braak Stage). Of note, all measurements are orthogonal to the
information used to build the pseudo-progression score.

I) Hierarchically organized correlation matrix depicting correlation across all quantitative neuropathology
variables. This matrix can be organized into seven different correlation clusters.

J) Cluster 7 of the correlation matrix depicted in I) comprised variables decreasing their value along
continuous pseudo-progression, such as the number of NeuN-ir cells or percent NeuN-ir cell area.
Correlation cluster 3 is comprised of variables increasing along pseudo-progression, such as the number
of AT8-ir pTau-bearing cells, 6e10-ir Aβ plaques or the size of the 6e10-ir Aβ plaques. Left, reproduction of
correlation values for each cluster. Right, traces for representative variables showing layer information
along pseudo-progression. The heatmap on each time trace represents p-value signi�cance for a general
additive model in which pseudo-progression is binned in 5 intervals.



Figure 2

Vulnerable Populations in MTG concentrate around super�cial supragranular layers.

A) Resulting effect size of a linear mixed model explaining the proportion of each population by (Top)
cognitive status, (Middle) ADNC, or (Bottom) Pseudo-progression, controlling for sex, age, and single-cell
technology. Negative/positive values indicate that populations are decreasing/increasing along
pseudoprogression score with respect to the covariate under analysis.

B) Logarithm of the relative abundance along pseudo-progression score for neurons and non-neuronal
cells organized by their subclasses.

C) Cortical layer localization of vulnerable neuronal populations. Each dot represents a supertype
colorcoded by subclass.

D) Plot depicting the logarithmic relative abundance for each cell type in each donor assayed by
singlenucleus RNA-seq versus spatial transcriptomic.



Figure 3

A subset of donor present high vulnerability to AD, exhibiting shutdown of their transcriptional machinery,
and pronounced cognitive decline.

A) First principal component for single-nucleus RNA-seq quality control metrics versus single-nucleus
ATAC-seq for each library in each donor color-coded by ADNC category.

B) Depiction of quality control metrics for single-nucleus RNA-seq library (bottom) or single-nucleus
ATAC-seq library (top) order by their loading along the �rst principal component of each modality.



C) UMIs detected per cell for mitochondrial genes MT-CO1, MT-ND3 or markers of nuclear RNA, MEG3 or
MALAT1 for a subset of 11 donors with ADNC 3 or ADNC 3 highly vulnerable.

D) Number of chromatin accessible regions in ADNC 3 donors or (severely affected) SA donors. Shared
Consensus accessible regions are regions shared across all cohorts. Consensus regions denote regions
shared across members of each cohort and cohort speci�c depict peaks unique to some members of
each cohort.

E) Distribution of the percentage of accessible regions in ADNC 3 or SA donors organized by their
distance from the transcription start site of the nearest gene.

F) Number of NeuN immunoreactive cells per area in layer 3 along the quality control �rst principal
component. SA donors localize at the end of this trajectory and exhibit almost no immunoreactive cells.

G) Example case depicting the NeuN immunoreactive cells in ADNC 3 donors and the lack of
immunoreactivity in SA donors.

H) SA donors exhibit pronounced memory cognitive decline compared to ADNC 3 donors. Cognitive score
for each donor plot across visits until time of death.



Figure 4

Gene expression changes along pseudo-progression exhibit complex cell type-speci�c dynamical
patterns.

A) Linear mixed model used to analyze gene expression changes along pseudo progression score.
Controlling by covariates such as sex, age and single-nucleus technology, pseudo-progression score is



separated in 2 bins and early (low pathology) and late (high pathology) beta coe�cients associated with
pseudo-progression are calculated.

B) Genes can be categorized into 8 bins given their dynamical properties. Left, early versus late
standardized beta coe�cients for each gene in each supertype. Each gene is categorized according to its
dynamical changes according to the following categories: DU, down up. DE, down early. DC, down
consistently. DL, down late. UD, up down. UE, up early. UC, up consistently. UL, up late. Right, example
genes in each of the

C) Framework to explore gene expression changes in an unsupervised manner. For each gene, early and
late beta coe�cients and mean expression values are collected in each cell type (left). Next, an
unsupervised low dimensional representation is built for all genes (right). Low dimensional representation
is color coded by the cell types in which mean expression values are higher.

D) Heatmap displaying means of early and late beta coe�cients together with z-score gene expression.
Each row represents a subclass and each column a gene module obtained from C).

E) Dynamics along CPS of different gene modules color coded by subclass. Top panels represent
modules with similar dynamics across glial subclasses (Module 10) or excitatory and inhibitory neurons
(Module 14). Middle panels represent a module with complex dynamics, different in inhibitory neurons
(DC), excitatory (DC, DE, DL), and glial cells (UL, DL). Bottom panels highlight a module speci�c to the
Micro-

PVM subclass.

F) Example gene modules (10, 16, 5) highlighting their gene ontology description and families of genes
within them.



Figure 5

Vulnerable MGE-derived inhibitory interneurons exhibit similar transcriptional pro�les and common
electrophysiological features.

A) UMAP representation of MGE-derived neurons (Sst, Pvalb) color coded by supertype (left), or effect
size associated with CPS (right).



B) Correlation matrix of average gene expression pro�les for each supertype. Gene expression pro�les are
�ltered to select only highly variable genes.

C) Mean enrichment calculated across affected Sst supertypes versus affected Pvalb supertypes.

D) Morphological reconstructions of affected MGE-derived interneurons.

E) SAG and TAU are the two most variable electrophysiological features across affected and nonaffected
MGE-derived supertypes. Boxplot depicting tau and sag distributions in affected and nonaffected MGE-
derived subclasses.

F) Dynamics of gene modules preferentially expressed in Sst supertypes. Left, Mean gene expression
zscore versus t-statistics between early beta coe�cients affected and unaffected Sst supertypes. Grey
clusters were driven by a single supertype and not considered. Right, unnormalized mean gene expression
(counts) of different gene modules (81, 45, 47, 27) in affected and unaffected supertypes (Top). Bottom,
change in expression from baseline.

G) Difference in beta coe�cient and gene expression z-score for genes in modules depicted in F).
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