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Integrated Multiple Directed Attention-based Deep
Learning for Improved Air Pollution Forecasting

Abdelkader Dairi, Fouzi Harrou, Member, IEEE,, Sofiane Khadraoui and Ying Sun

Abstract—In recent years, human health across the world
is becoming concerned by a constant threat of air pollution,
which causes many chronic diseases and premature mortalities.
Poor air quality does not have only serious adverse effects on
human health and vegetation, but also some major negative
political, societal, and economic impacts. Hence, it is essential
investing more effort on accurate forecasting of ambient air
pollution to provide practical and relevant solutions, achieve
acceptable air quality, and plan for prevention. In this work,
we propose a flexible and efficient deep learning-driven model
to forecast concentrations of ambient pollutants. The paper
introduces first the traditional Variational AutoEncoder (VAE)
and the attention mechanism to develop the forecasting modeling
strategy based on the innovative Integrated Multiple Directed
Attention Deep Learning architecture (IMDA). To assess the
performance of the proposed forecasting methodology, experi-
mental validation is then performed using air pollution data
from four US states. Six statistical indicators have been used
to evaluate the forecasting accuracy. A discussion of the results
obtained finally demonstrates the satisfying performance of
IMDA-VAE methods to forecast different pollutants in different
locations. Furthermore, results indicate that the proposed IMDA-
VAE model can effectively improve air pollution forecasting
performance and outperforms the deep learning models, namely
VAE, Long Short-Term Memory (LSTM), Gated Recurrent Units
(GRU), bidirectional LSTM, bidirectional GRU, and ConvLSTM.
We also showed that the forecasting results of the proposed model
surpass the performance of LSTM and GRU with the attention
mechanism.

Index Terms—Air pollution concentrations forecasting, Multi-
ple Directed Attention, deep learning, IMDA-VAE, time series.

I. INTRODUCTION

C
ONCERNS for the environment, health, and safety have
been attracting considerable attention worldwide due to

the new environmental challenges that threaten the planet. Air
pollution is becoming a critical problem in urban areas and
industrialized countries and one of the principal factors for
global warming. Mitigating air pollution is a paramount issue
in developing countries, notably in larger urban areas with
a high concentration of emission sources, including vehicles
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and industrial activities. Many epidemiological studies showed
the effect of certain chemical compounds such as sulfur
dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), or dust
particles in the air on the health of the general population, and
particularly noticeable on sensitive people such as asthmatics,
children, and elderly [1]. Today, air quality is a multidis-
ciplinary problem that mobilizes epidemiological specialists,
specialists in transport modeling, emissions and transformation
of pollutants, geographical systems, forecasting, and local
authorities and industrialists. Thus, monitoring the ambient
air quality is essential to achieve acceptable air quality [2].
Over the past few decades, much effort has been made to
enhance air quality [3], [4]. For instance, air quality networks
(composed of numerous measurement stations) were installed
across almost all countries to monitor numerous air pollutants’
concentration levels. This study attempts to design an efficient
deep learning data-driven model for forecasting concentrations
of carbon monoxide (CO), nitrogen monoxide (NO), nitrogen
dioxide (NO2), sulfur dioxide (SO2 and ozone (O3).

Reliable forecasting of air pollutants gives valuable in-
formation to help people take the necessary precautions to
avoid undesirable consequences. Also, it permits taking more
adequate countermeasures for preventing air pollution crisis
and protecting public health. The need for flexible forecasting
techniques that can accurately forecast air pollutants has
considerably drawn researchers’ and engineers’ attention [5].
Various model-based and data-based methods have been de-
signed to improve air pollution modeling and forecasting over
the past four decades [1], [6], [7]. Conventional time-series-
based models are among the widely utilized methods for air
pollution forecasting in the literature [8]–[10]. These models
comprise autoregressive integrated moving average (ARIMA)
and its alternatives, like seasonal-ARIMA [11], and Holt-
Winters models [12], [13]. Nevertheless, the forecast error in
these methods is apparent when the concentration levels of
pollutants exhibit irregular variations [14]. Also, the linear
nature of statistical models (e.g., AR and ARIMA) does
not enable forecasting the non-linear and non-stationary of
ambient air pollution accurately [15].

To mitigate the weakness mentioned above, machine learn-
ing models, which are more flexible, such as neural network
forecasting and support vector machine, have been widely
employed in improving air pollution forecasting [16]–[18].
Machine learning models showed a suitable ability to model
the complicated relationship between process variables without
the need for an explicit model formulation to be specified.
Over the last two decades, several machine learning-based
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methods have been applied for air pollution forecasting. For
instance, in [16], a wavelet-based neural network approach has
been proposed for forecasting one step-ahead hourly, daily
mean, and daily maximum concentrations of ozone (O3),
sulfur dioxide (SO2 ), carbon monoxide (CO), nitrogen oxides
(NO), nitrogen dioxide (NO2) and dust particles (PM2.5).
Particularly, by using maximum overlap wavelet transform
(MODWT), this approach decomposes each time series of
each air pollutant into different time-scale components. Then,
the Elman network is applied to these time-scale components.
In this study, the wavelet network approach is used for one-
step-ahead forecasting. In [19], a hybrid method merging the
advantages of the empirical wavelet transform (EWT), multi-
agent evolutionary genetic algorithm (MEGA), and nonlinear
autoregressive network with exogenous inputs (NARX) is
introduced for enhancing multi-step air pollutant concentra-
tions forecasting. Specifically, the air pollutant series are
decomposed via the EWT, and then the optimized NARX
neural by the MAEGA model are applied to forecasting air
pollutant concentrations. Results showed the outperformance
of this model compared to conventional models when applied
for forecasting PM2.5, SO2, NO2, and CO concentrations
levels in Beijing, China. However, these methods are not
suited for real-time forecasting because wavelet transform
needs batch data. In [20], an ANN model has been combined
with numerical models to improve the prediction of daily
concentrations of air pollutants, including SO2, NO2, and
PM10, using meteorological variables. Similarly, in [17], the
authors introduced a hybrid forecasting model to forecast
hourly pollutant levels (i.e., NO2, NO, O3, CO, PM10) based
on artificial neural networks (ANN) combined with uncertainty
analysis by Monte Carlo simulations (MCS). This hybrid
model uses several selected input meteorological variables
for improved forecasting. It has been shown that the com-
bination of ANN with MCS offers a promising tool for air
pollution predictions. In [18], at first, a genetic algorithm
and a linear method of stepwise fit are applied to select
the relevant features from the prediction point of view. Then
the random forest (RF), the multilayer perception (MLP), the
radial basis function (RBF), and the support vector machine
(SVM)are applied to the selected features for daily forecasting
of atmospheric pollutants NO2, O3, SO2, PM10. It has been
shown that the features selection step with an ensemble of
predictors enables improved forecasting quality of atmospheric
pollution. In [21], an approach to predict air concentration
levels of air pollutants (i.e., NO2, NOX, SO2, O3, and PM2.5)
is proposed using based on sparse response back-propagation
training feedforward neural networks (called FFANN-SRBP).
This approach outperformed the multiple linear regression
(MLR) and FFANN based on back-propagation (FFANN-BP)
in terms of prediction precision.

Precise air pollution forecasting provides relevant informa-
tion about the future pollution evolution, which is crucial for
effective air pollution monitoring and assists in planning for
prevention. Deep learning has recently emerged as a promising
research line in modeling and forecasting time series data,
both in academia and industry [22]–[26]. Various deep tech-

niques have been applied in the literature to improve ambi-
ent air pollution forecasting. In [27], the authors considered
an Aggregated Long Short-Term Memory model (ALSTM)
deep learning approach to improve air pollution forecasting.
Essentially, this forecasting approach consists of aggregating
three LSTM models into a predictive model using information
obtained from nearby industrial air quality stations and exter-
nal sources of pollution. Results proved the outperformance
of this aggregated deep learning method compared to LSTM,
SVR (Support Vector Machine based Regression), and GBTR
(Gradient Boosted Tree Regression) in predicting PM2.5
concentrations. In [28], the convolutional-based bidirectional
gated recurrent unit (CBGRU) method is applied to forecast
PM2.5 concentration levels. This approach combines both one-
dimensional (1D) convolutional neural networks’ desirable
features and bidirectional gated recurrent unit neural networks.
This approach showed good forecasting performance of PM2.5
concentration compared to SVR, Gradient Boosting Regressor
(GBR), LSTM, GRU, and bidirectional GRU. In [29], LSTM
optimized using a particle swarm optimization algorithm is
applied for predicting ambient air pollutants concentrations
(PM2.5, PM10 ,NO2, CO, O3, and SO2). In [10], an approach
combining RNN models with LSTM (RNN + LSTM) is
proposed to predict PM10 particles in different places in
the city Skopje. Results show that using both meteorological
and air pollution measurements enhances LSTM and RNN
+ LSTM models’ forecasting accuracy. Also, it has been
shown that the combined RNN + LSTM models consistently
outperform the ARIMA approach.

The authors in [30] and [31] proposed a method for air
pollution prediction from historical time series pollutant data
and meteorological data using RNN and LSTM models. An-
other related work [32] utilizes an LSTM model to forecast
the 8 hours moving average concentrations of ozone, where
results obtained showed forecasts with low error. Deep learn-
ing models with RNN, LSTM and GRU architectures are
applied for forecasting air quality based on AirNet dataset
that includes both meteorological time series and air quality
data [33]. The analysis examined in [33] showed the GRU
model slightly outperforms the RNN and LSTM architectures
for PM10 concentration prediction. A deep learning approach
is proposed in [34] and [35] for the air pollution prediction
in South Korea, where a Stacked Autoencoders model (SAE)
is utilized for learning and training data. An LSTM model-
based approach is proposed in [36] to predict air pollutant
concentrations. This forecasting approach presented in [36]
is capable to automatically extract useful features such as the
spatiotemporal correlations within air pollutant concentrations.
The spatiotemporal deep learning (STDL) architectures have
also been used for spatiotemporal prediction of air quality.
A combination of a convolutional neural network and LSTM
model is proposed in [37] to forecast air quality up to 48
hours, and extract the spatial-temporal relations. The authors
in [38] presented a comparative study of the performance of
CNN-LSTM model with traditional machine learning models
in terms of their ability to forecast PM2.5 concentration,
where the obtained results showed that the CNN-LSTM model
provides the lowest root mean square error and mean absolute
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error. A CNN-GRU model proposed in [39] is applied to fore-
cast three air pollutants (PM2.5, PM10, and O3) of monitoring
stations over 48 hours.

In this paper, we propose an innovative deep learning model
to improve the forecasting quality of concentrations levels of
ambient air pollutants (NO2, O3, SO2, and CO) based on a
wind attention mechanism and variational autoencoder (VAE)
deep model. The contribution of this paper is threefold.

• The first contribution is mainly related to the development
of an innovative Integrated Multiple Directed Attention
Deep Learning architecture (called IMDA-VAE) based
on the traditional VAE and the attention mechanism.
To the best of the authors’ knowledge, this is the first
study introducing the traditional VAE and the attention
mechanism to accurately forecast various air pollutants
concentrations and leverage air pollution complexity.
Essentially, the proposed method extends the capability
of the traditional VAE to model temporal dependencies
by introducing the self-attention mechanism at a multi-
level of the VAE model. The proposed flexible modeling
framework permits exploiting the suitable performance
of VAE in time-series modeling and flexible nonlinear
approximation and the focus on the relevant features
via the attention-based mechanism. Exploiting all these
sophisticated statistical tools is advantageous in the sense
that it has the potential to improve short-term forecasting
of ambient air pollution time-series data.

• The second contribution lies in the validation of the
proposed method through three different forecasting ex-
perimentations: uni-variate, multi-variate with a single
output, and multi-variate with multiple outputs.

• Finally, the third contribution is the comparative study
of the proposed forecasting model and some powerful
recurrent neural network models performed in this work
to show and evaluate their performance and capabilities
in forecasting air ambient pollutants. Air pollution data
from four US states were used in the experiments and
assessment of the outputs’ deep learning-driven fore-
casting methods. The results demonstrate that the de-
signed IMDA-VAE method offers satisfying forecasting
performance of different air ambient pollutants and out-
performed other deep learning models including GRUs,
LSTM, BiGRU, Bidirectional LSTM, ConvLSTM, as
well as LSTM and GRU with the attention mechanism
(termed LSTM-A and GRU-A).

The following section presents the preliminary material
needed in this study and briefly introduces the IMDA-VAE
forecasting methodology. In Section II, the performances of
the considered methods are illustrated using air pollution data
from four US states. Finally, in Section IV we conclude this
study and sheds light on potential future research lines.

II. METHODOLOGY

In this section, we briefly describe the basic concept of
vanilla autoencoders and variational autoencoders. Afterward,
we briefly describe how self-attention mechanisms work. We

then introduce the proposed IMDA-VAE deep learning-driven
method. The overall schematic of the proposed forecasting
strategy is presented in Figure 1.

A. Variational autoencoder

To better understand the VAE, we first present a short
description of the autoencoder (AE). The AE comprises three
principal elements, namely the encoder, the latent space, and
the decoder (Figure 2). The encoder receives input data,
pollutants’ concentration time series and projects it into the
latent space employing neural networks. Crucially, the perti-
nent information is stored in the latent space, and the aim is
to optimize how data can be scattered in this latent space.
On the other hand, the decoder represents a mirror of the
encoder because it attempts to reconstruct the compressed
latent space’s input data. In short, we can summarize the AE
procedure using this chain of events.

x
encoder(x;θe)

=⇒ z
decoder(z;θd)

=⇒ x̂

where, θe, and θd respectively denote parametrizations of the
encoder and decoder networks.

Fig. 2: Basic illustration of the autoencoder.

The AE aims to give a dimensionality reduction procedure,
which learns to encode the data such that a distance metric
loss is optimized. Essentially, the more effective the encoder is
learning data compression, the more accurate the reconstructed
data will be. A traditional and straightforward loss function
utilized for the AE is the mean squared error, which consists
of the squared deviation between the input, X , and output
data, X̂ .

1

n

n∑

i=1

(X̂ −X)2 (1)

VAE is a generative model having similar architecture to
the vanilla AE. Note that an AE cannot generate new data
because it is principally based on encoding input data into
discrete values in the latent space. Accordingly, this procedure
limits the AE only on memorizing the input data without the
possibility for data generation. VAE is a generative model
having similar architecture to the vanilla AE. Note that an
AE cannot generate new data because it is principally based
on encoding input data into discrete values in the latent space.
Accordingly, this procedure limits the AE only on memorizing
the input data without the possibility for data generation. To
alleviate this limitation, the VAE enables encoding the input
data into a sampling layer, making the latent space continuous.
In this way, the decoder of the VAE can generate new and
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Fig. 1: A Schematic diagram of the overall forecasting stractegy.

realistic data based on the learned features from the latent
space.

VAE integrates the desirable features of the variational
inference and autoencoder, which enable efficient extraction
of releveant low dimensional and hidden features in raw
data. VAEs are one of the most powerful and effective class
of deep generative models [40]. Basically, this is mainly
due to their important advantages and ability of extracting
low-dimensional and relevant features from raw data in an
unsupervised way [41]. That is, VAE models are trained to
learns representations from complex without the need for data
labeling. It is very worth mentioning that VAEs offer funda-
mental properties of dimensionality reduction, which makes
them useful for transforming high-dimensional input data into
compressed while preserving the essential properties of the
original representation. VAEs can be utilized for complex
probability distribution approximation using the main results
of stochastic gradient descent [40]. Unlike the traditional au-
toencoders, VAEs overcome the commonly known overfitting
problem by introducing a regulation mechanism in the training
process. The regularization term improves the capability of the
generative models to sample data points using learned data
distribution represented in the latent space. Figure 3 illustrates
the variational autoencoder architecture, which shows that the
VAE is built using a structure consisting of an encoder and a
decoder (i.e., two neural networks).

Fig. 3: Variational Autoencoder architecture.

The VAE encoder aims at learning the latent variable z

through measured data acquired by sensors, while the decoder
utilized the latent variable obtained z to ultimately reconstruct

the input measurements. The residuals between the original
input measurements and the reconstructed data obtained from
the decoder should always be as much as possible close to
zero. The latent variable z provided by the encoder is utilized
as a feature extractor applied to the input measurements, which
allows us to reduce the dimensionality of original data and
obtain low dimensional data. The encoder is generally derived
by a posterior approximation of qθ (z|x), while the decoder
is obtained with a likelihood pφ (x|z), where θ and φ are the
parameters of the encoder and the decoder, respectively.

It should be mentioned that the loss function has a sig-
nificant effect on the feature extraction for training VAE.
Suppose Xt = [x11, x2t, . . . , xNt] is the vector of the input
data points of the VAE at time instant t, and X

′

t is the data
reconstructed by the VAE model. For maximum likelihood
learning of parameters, we may write [41]:

logpφ(x
′

) = DKL

[
qθ(z|x)

∥∥pφ(x)] + L(θ, φ;x), (2)

where DKL[.] is the Kulback-Leibler divergence, while L
denotes the likelihood of the encoder and decoder parameters
θ and φ. Hence, the loss function is expressed as:

L(θ, φ)=Ez∼qθ(z|x)

(
logp(x

′

|z)
)

︸ ︷︷ ︸

Reconstruction term

−DKL

(
qθ(z|x)||pφ(z)

)

︸ ︷︷ ︸

Regularization term

. (3)

The main objective is the design of a suitable VAE model for
which the reconstruction loss function converges to zero. The
strength of the decoder’s ability to learn data reconstruction
is achieved by the reconstruction term given in (3). The
second term of regularization in (3), that defines the Kulback-
Leibler divergence, aims at separating the encoder distribution
function (qθ(z|x)) and the latent variable (z, |pφ(z)). To
minimize the loss function with respect to the encoder and
decoder parameters, one can use the gradient descent proce-
dure in the training stage. The main reason behind minimizing
the loss function is to obtain a regular latent space, z, as
well as a satisfactory sampling of the new data points using
z ∼ pφ(z) [41].

Now, consider pφ(z) = N (z; 0, I), thus qθ(z|x) can be
expressed as

logqθ(z|x) = logN (z;µ, σ2I), (4)

where µ and σ denote the mean and standard deviation of the
approximate posterior, respectively. The latent space z is built
based on a deterministic function g parameterized by φ and



5

an auxiliary noise variable ε ∼ p(ε); i.e., ε ∼ N (0, I).

z = gφ(x, ε) = µ+ σ ⊙ ε (5)

The reconstruction error can be written out as,

L(θ, φ,x) =
1

2

∑

i

(
1 + log((σi)

2)− (µi)
2 − (σi)

2
)

+
1

L

L∑

l=1

log(pφ(x|z(l))) (6)

where the ⊙ denotes the element-wise product.
The VAE parameters are optimized iteratively based on a

gradient-descent algorithm with the Adam optimizer [42]. For
more details about VAE, see [43]. The VAE is trained via the
procedure given in Algorithm 1.

Algorithm 1: Variational autoencoder training algo-
rithm

Input: : Training dataset X = {x1, . . . , xk}
Output: : {θ, φ}

1 θ: Encoder parameters;
2 φ: Decoder parameters;
3 M : number of mini-batch (drawn from full dataset);
4 {θ, φ} ←− Initialize model parameters randomly;
5 Ol: is the output of the l variable layer;
6 UpdateModelPrameters: Admam optimizer has

been used [42];
7 repeat

8 Xm ←− RandomMinibatch(X,M);
9 Ointermediate ←− Layerintermediate(Xm);

10 Oσ = Layerσ(Xm);
11 Oµ = Layerµ(Xm);
12 Draw samples from ǫ ∼ N (0, 1);
13 Oz = fφ(Xm, ε) = Oµ +Oσ ⊙ ε (Equation (5));
14 G = L(θ, φ,Xm) (Equation (6));
15 {θ, φ} ←− Update parameters using gradients via

a gradient-descent algorithm;
16 until convergence of parameters {θ, φ};

It is worth noting that VAE has been used recently to
forecast time-series data in many applications, including so-
lar power production forecasting [44], traffic flow forecast-
ing [45], stock market prediction [46], forecasting of COVID-
19 spread [47], [48]. It has also demonstrated good perfor-
mance in anomaly detection and classification [49]–[51].

B. Attention mechanism

The attention mechanism’s key idea is to try mimicking
human behavior by focusing on some particular areas. For
example, when looking at an image, the brain pays more atten-
tion to a specific region of interest. The attention mechanism
was inspired from the human visual process and adapted to
neural machine translation first [52] and images processing
[53]. Specifically, during the training phase, the primary pur-
pose is to concentrate on specific features through a weighted

sum approach represented by a context vector. The context
vector V is expressed at time t as follows:

Vt =
∑

t

αtht, (7)

where ht represents the hidden states provided by the model
that feeds the attention model, a recurrent network is usually
utilized. The term αt denotes the normalized attention model
weights computed as follows:

αt = softmax(et), (8)

The et refers to the attention model weights (also called
alignment score), which is computed via a feed-forward neural
network [52], conditioned on the previous hidden state ht−1:

et = σ(Waht−1 + ba), (9)

With (Wa,ba) are weights matrix and bias vector of the
attention model computed during the training. Indeed, the
attention model context vector V is a dynamic representation
of the relevant part of the time-series input at time t. It
is viewed as a weighted sum that highlights the importance
of some data position in the sequence using normalized the
attention model weights that can be interpreted as a probability.
Attention enables the model to focus on essential pieces of
the feature space; in other words, it allows the learning to
emphasize a particular area of the data sequence through
reviewing its memory during the prediction time.

It is worth pointing out that there are two types or modes of
Attention: additive [52] (Equation 9) and multiplicative [54].
The main difference between them is how to compute the
alignment score:

et = Wa · ht. (10)

Additive Attention utilizes a linear combination of hidden
states through one neural network layer, specifically a feed-
forward with by default hyperbolic tangent (tanh) nonlinearity
as an activation function. On the other hand, multiplicative
attention computes the attention scores by reducing the hidden
states using matrix multiplications; other activation functions
with learnable parameters can be applied to the dot product.

C. Self-attention mechanism

The self-attention mechanism improves the attention mech-
anism by reducing external information dependence (source to
target) and capturing the internal correlation of input data [55].
An essential characteristic of self-attention is its flexibility
to be applied to any layer representing a data sequence like
a time-series, which improves the internal input structure’s
learning by focusing on the relationship between elements of
the same input (sequence). Furthermore, self-attention is based
on the same principle of the attention mechanism. Specifically,
the model generates a new representation of the features space
through a weighted sum of extracted features using only one
data sequence as input compared to the attention mechanism.
Indeed, the self-attention data processing start by computing
the weights (called the score) between data point in position



6

i and j for a given input data sequence X , as follow [55]:

Eij =
(WaXi)

T (WaXj)√
d

, (11)

where Wa is the weight matrix of the self-attention model
computed during the training, and d is the dimension of
(WaXi), the division by d makes the convergence faster.
Normalization of the weights Eij is performed to represent
them as a probability (sum of all weights values equals to 1),
using a softmax transformation:

Aij = softmax(Eij) =
exp(Eij)

∑

j
exp(Eij)

. (12)

The final self-attention model output is expressed as:

Oi =

n∑

j=1

Aij(WaXi). (13)

This output enhances the quality of the extracted features
effectively and describes, more specifically, the internal corre-
lation of the input elements.

D. Integrated Multiple Directed Attention-based Variational

Autoencoder

This paper introduces an integrated multiple directed
attention-based deep learning (called IMDA-VAE) based on
the traditional VAE and the attention mechanism for improved
ambient air pollution forecasting. The proposed IMDA-VAE
approach extends the VAE model’s capability and improves
the forecasting accuracy compared to the uni-directional and
bidirectional recurrent neural network models. Specifically,
we introduced the self-attention mechanism at multi-levels to
the encoder part of the traditional VAE (Figure 4). Indeed,
attention as non-linear transformation improves modeling and
forecasting quality using weighted features vector. Moreover,
the attention’s technique was usually incorporated in the
decoder side [52], [53], to map the sequence of images to their
text description sequence (as caption). Indeed, the forecasting
problem can be viewed as a sequence to sequence mapping;
in the univariate case, the models learning aims to map a
sequence of pollutant measurements to the next concentration
value of a given pollutant. While multivariate cases, especially
with multiple outputs, maps long sequences, including all
pollutants measurements, to forecast short sequences. This
principle of recurrent neural networks is based on one-step
supervised learning. However, VAE is a composite model
composed of an encoder and decoder, where the main is to
learn the approximation of the training dataset probability
distribution in an unsupervised approach. It is expected that
the incorporation of the robust variation inference approach,
an efficient regularization with an enforced attention mecha-
nism, will improve the univariate and multivariate forecasting
performances.

The historical pollutants measurements are processed first
through a non-linear transformation based on a dense layer
(called intermediate) into a continuous representation. Fur-
thermore, this new representation is passed through a self-
attention layer that emphasizes the internal correlation within

Fig. 4: The proposed approach: Variational autoencoder with
Attention

the pollutants’ time-series via computing a context vector, rep-
resenting a weighted sum of features. Moreover, regularization
aims to prevent the over-fitting problem during the learning
of pollutants dynamics by adding information and improving
the learning quality by reducing error and penalizing the loss
function.

Note that the L2 regularization is used for weights nor-
malization, while bias-regularizer: L1 bias extenuation [56].
Moreover, the regularization process is used to guarantee the
weighted sum diversification. The continuous representation
and the context vector (weighted sum) feed the covariance
matrix σ and the mean µ of the regularized data distributions.
Furthermore, the regularization is applied to encouraging the
distributions to be closest to a standard normal distribution
and enforce covariance matrix to be close to the identity.
Finally, the latent space is constructed after duel self-attention
transformation of the regularized mean and variance, a set of
data points is sampled from the latent space (see Equation 3)
to be reconstructed by the decoder model. In the proposed ap-
proach, the decoder is a deep fully connected neural network; it
represents the reverse path used to train the encoder. Here, the
loss is measured via Kullback-Leibler (KL), representing the
divergence between the training data and learned probability
distribution. Furthermore, KL is key to monitor the model
parameters convergence, where usually once its value decrease
(close to zero) and stabilizes, the training can be stopped. Dur-
ing the training, the reconstruction error is back-propagated,
and the model parameters are updated accordingly. Once the
training is done, the latent space is used to forecast the next
values (measurement) of the pollutants in question depending
on the configuration used (univariate or multivariate)

In contrast to the recurrent models, the proposed approach
training is performed in an unsupervised manner. Specifically,
the model learns first the data distribution of the considered
pollutant and approximates it using the model parameters to
sample new data points from a features space (also called
the latent space); the data points shared the same features
of real data points. Moreover, the proposed approach model
parameters are adjusted and optimized through a fine-tuning
process based on supervised learning, aiming to learn the
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mapping of a given data sequence of pollutant measurement
to its next value. Notably, the forecasting is done at the latent
space level (encoding space). In other words, the last layer of
the IMDA-VAE acts as a forecasting layer.

III. EXPERIMENTS AND RESULTS

This section describes data used in the present study, with
full details about experimental settings and execution proce-
dure. Moreover, we provide an analysis of obtained results and
discussion.

A. Data description

The dataset used in this study was collected by the United
States Environmental Protection Agency, in which the con-
centration level of several ambient pollutants is recorded
daily in different states. The datasets are publicly accessi-
ble on the website "https://www.epa.gov/outdoor-air-quality-
data/download-daily-data". The pollutants measurements were
collected during a period of 16 years exactly (2000-2016). This
study focuses on four significant pollutants, namely Nitrogen
Dioxide (NO2), Sulphur Dioxide (SO2), Carbon Monoxide
(CO), and Ozone (O3). In our study, we picked measurements
from four locations, namely California, Arizona, Texas, and
Pennsylvania. It should be mentioned that each state contains
numerous air quality monitoring stations; however, we selected
one station per state for measurement collection.

The descriptive statistics of the Arizona ambient air pol-
lution datasets are listed in Table I. The skewness of the
normal distribution (or any perfectly symmetric distribution)
is zero, and the kurtosis of the normal distribution is 3. We can
conclude from Table I that the Arizona ambient air pollution
time-series datasets are non-Gaussian distributed with positive
support and exhibit different intervals of variability.

TABLE I: Statistics summary of the Arizona ambient air
pollution datasets.

metric NO2 O3 SO2 CO

mean 55.736 0.111 2.909 1.249
std 26.193 0.042 2.935 0.635
min 3.339 0.013 -0.117 0.025
25% 35.500 0.079 0.752 0.809
50% 52.167 0.112 2.153 1.123
75% 72.667 0.142 4.133 1.550
max 211.933 0.283 30.475 5.025
kurtosis 1.159 -0.455 7.845 2.901
skew 0.828 0.142 2.193 1.385

Monthly distributions of concentration levels of the four
ambient pollutants from California are illustrated in Fig-
ure 5(a-d). Figure 5(c) shows that the highest O3 concentration
levels can be seen in the summer season due to the local
photochemical production. Also, Figure 5 (a) and (c) show
that NO2 is negatively correlated with the variation of O3

concentration levels. This fact is because O3 is formed through
the photochemical destruction of nitrogen dioxide (NO2) under
sunlight. Similarly, we can see the presence of a negative
correlation between O3 and CO because of photochemical
production of O3 principally from the oxidation of natural

and anthropogenic hydrocarbons, carbon monoxide (CO), and
methane (CH4) by hydroxyl (OH) radical in the availability of
enough quantity of NOx. Of course, O3 is adversely correlated
with O3 precursors (i.e., NO2 and CO) [57].

Fig. 5: Monthly distribution of concentration levels of (a) NO2,
(b) CO, (c) O3, and (d) SO2 in California.

Figure 6 presents the correlation coefficients between the
NO2, CO, O3, and SO2 recorded respectively in Arizona,
California, Pennsylvania, and Texas. Figure 6 shows the
presence of a weak negative correlation between O3 and its
precursors (NO2 and CO), and a moderate positive correlation
between precursors, NO2 and CO. Besides, distinct patterns
regarding the SO2 and the other pollutants are obtained for
each station. Interpretation of the relation between pollutants is
relatively difficult because of their dependence on several fac-
tors, including meteorological variables and the transportation
phenomena. Specifically, sometimes pollution concentration
can be high due to transported pollution produced elsewhere in
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the region. Various studies have been reported in the literature
to investigate the correlation between different ambient air
pollutants [57], [58].

B. Experiments settings

To evaluate the performance of the proposed approach in
forecasting air ambient pollutants, several experiments are
conducted to show its superiority and efficiency through a
comparative study including powerful recurrent neural network
models, namely GRU, LSTM, BiGRU, BiLSTM, and Con-
vLSTM. We also compared the performance of the proposed
IMDA-VAE approach to that GRU and LSTM with the atten-
tion mechanism (LSTM-A and GRU-A). Importantly, these
models with attention are designed by stacking three com-
ponents. For instance, in LSTM-A, LSTM is used to model
time dependencies and extract temporal features, followed
by the attention module that aims to improve and highlight
relevant extracted features, and finally, we added a forecaster
layer represented by a fully connected layer. In a similar
way to LSTM-A, we designed GRU-A. Here, both LSTM-
A and GRU-A are trained through supervised learning. We
used the same settings (hyper-parameters) used for all models:
300 epochs, a learning rate of 0.0001, batch size of 250, 32
hidden units, Rmsprop optimizer, and Binary cross-entropy as
a lost function. To demonstrate the advantage of the proposed
IMDA-VAE compared to the traditional deep learning models,
we consider the following experimentations in this study.

• Univariate forecasting: In this experiment, each pol-
lutant is modeled and forecasted individually, which
means that five models are trained to forecast the next
values based on only the measurement of the pollutant in
question.

• Multivariate forecasting with one output (prediction):
The forecasting of each pollutant is done using all other
pollutants, which means that the training aims to learn
how to predict the next value of a given pollutant based on
a sequence of measurements of the four other pollutants.
In the end, a forecasting model dedicated to a pollutant
with multiple inputs is obtained.

• Multi-variates forecasting with multi-output: This ex-
perimentation can be seen as a one-shots task, where all
pollutants are forecasted based on all historical measure-
ments of all pollutants. In the end, only one forecasting
model for all pollutants with multiple inputs to forecast
all pollutants next values is derived.

C. Measurements of effectiveness

To assess the forecast precision and compare the models,
some validation metrics like Coefficient of determination (R2),
Root Mean Square Error (RMSE), mean absolute error (MAE),
explained variance (EV), mean absolute percentage error
(MAPE), Mean bias error (MBE), and Relative Mean bias
error (rMBE) are used (Table II); where yt is concentration
level of a pollutant, ŷt is its corresponding forecasted values,
and n is the number of data points [59], [60]. The more precise
forecasting is, the lower RMSE, MAE, MBE and rMBE values
and high R2, EV, and MAPE values are.

TABLE II: Definition of measurements of effectiveness.

Metric Definition

R2
∑n

t=1
[(yt,−ȳ)·(ŷt−ȳ)]2√∑

n
t=1

(yt−ȳ)2·
√∑

n
t=1

(ŷt−ȳ)2

RMSE
√

1
n

∑n
t=1(yt − ŷt)2

MAE
∑n

t=1
|yt−ŷt|

n

MAPE 100
n

∑n
t=1

∣∣∣∣
yt−ŷt

yt

∣∣∣∣%

EV 1− Var(ŷ−y)
Var(y)

MBE 1
n

∑n
t=1(ŷt − yt)

rMBE
∑n

t=1
(ŷt−yt)∑

n
t=1

yt
.100

D. Results Analysis

The first set of experiments aims to analyze the performance
of the investigated models in forecasting the concentration lev-
els of the four pollutants separately. Towards this end, in this
univariate forecasting, each model is trained in a supervised
way to learn temporal-dependencies included in time-series
data measurement of each pollutant. Indeed, the objective is to
learn the prediction of the next value of a given measurement
sequence. This study has been implemented using a fast
algorithm-based CPU Intel i7 with 12Go RAM. We used
Python 2.7.0 with Keras 2.3And TensorFlow 2.0 under Ubuntu
18 LTS. The training set consists of daily concentration levels
of five ambient pollutants (NO2, CO, O3, and SO2) from
January 2000 through December 2014. At first, we normalize
the training data, e, by min-max normalization within the
interval [0, 1] and then used it for models construction. The
normalization is performed as follows,

ỹ =
(y − ymin)

(ymax − ymin)
(14)

where ymin and ymax denotes the minimum and maximum of
the original data, respectively. This procedure is reversed after
the forecasting process.

Here, the k-fold cross-validation technique with K = 10, as
recommended in [61], [62], is adopted in this study to build the
forecasting models. Using the training datasets in these exper-
imentations, the set of hyperparameters are fixed for all mod-
els used, namely optimizer=’rmsprop’, loss function=’Cross
Entropy’, batch size=250, epochs=200, and learning rate =
0.001. For RNNs hidden units, we used hidden units=32, while
in the IMDA-VAE model for all layers (intermediate, mean,
variance), 12 is used as the number of hidden units. The
proposed model contains nine layers, its configuration in terms
of hidden units per layer < 3, 12, 12, 15, 15, 15, 15, 3, 1 >.
This configuration was determined using grid search method;
we also used for the training a batch size = 250, learning rate =
10−3, number of epochs = 200, optimizer: Rmsprop, and loss
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Fig. 6: Pairwise correlation matrix between ambient air pollutants (NO2, CO, O3, and SO2) obtained in (a) Arizona, (b)
California, (c) Pennsylvania, and (d) Texas.

function: binary cross-entropy. For the fine-tuning step, the
standard backpropagation algorithm has been used to adjust
model parameters [63]–[65].

The testing period is from January 1st to November 30th,
2015. For a visual illustration, the observed test set together
with model forecasts using the five studied models are charted
in Figure 7 for NO2, CO, O3, and SO2 from Arizona. Results
from the other stations are omitted because they give relatively
similar results. Figure 7 shows relatively narrower bands
around the actual observations, which indicates a good forecast
quality. One exception is from SO2 time-series data, which
indicates the deviation of deep learning model forecasts. From
Figure 7, the proposed IMDA-VAE approach shows a good
ability in forecasting the future trends of SO2 concentration
dynamics.

Tables III, IV, V, and VI list the obtained validation metrics
of testing data from California, Arizona, Texas, and Pennsyl-
vania, respectively. In terms of all metrics calculated, IMDA-
VAE is the best approach for this univariate time series fore-
casting problem with high efficiency and satisfying accuracy.
The proposed IMDA-VAE approach outperforms the recurrent
models (i.e., GRU, LSTM, BiGRU, ConvLSTM, LSTM-A
and GRU-A) on forecasting all investigated pollutants (i.e.,
NO2, O3, SO2, and CO) measured from four locations, namely
California, Arizona, Texas, and Pennsylvania. As expected, the
proposed IMDA-VAE approach achieved the lowest forecast-
ing errors (RMSE, MAE, MBE and RMBE) and the highest

score of R2 and EV. It could be attributed to its capacity
to model time-dependencies and select relevant features us-
ing the attention mechanism. We should highlight that the
performance of Bidirectional recurrent networks, namely the
BiLSTM and the BiGRU, are superior to the uni-directional
models represented by LSTM and GRU. This is mainly due to
the ability of Bidirectional models in processing data in two
directions, forward and backward.

Table III shows the performance comparison of the consid-
ered models based on California pollutants measurements. The
proposed approach has accounted for more than 95% of the
variability of NO2 which is the best R2 and EV, while lowest
RMSE=9.484, MEA=7.153, MBE=0.122, RMBE=-2.763 were
recorded. Also, it can be seen that the Bi-directional data
processing performed by BiLSTM and BiGRU model is better
time-dependencies when forecasting NO2 (i.e., R2=93% and
EV=94%) for (R2, and EV) compared to unidirectional recur-
rent models like LSTM and GRU (R2=89% and EV=91%).

Similar conclusions hold true also for forecasting con-
centration levels of O3, around 95% of the variability was
accounted for by using the proposed approach and followed
by BiLSTM with 94%, while the remaining models scored
93%. Here also MPAE=7% was recorded by the proposed
approach demonstrating its high performance, while the other
models recorded MPAE=8%. Note that similar performance
was recorded by the considered models when forecasting
CO concentration levels. On the other hand, the validation
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Fig. 7: Records and forecasts using the five models of (a) NO2,
(b) CO, (c) O3, and (d) SO2 from Arizona.

metrics of SO2 forecast values from the proposed indicate a
good forecast quality by achieving an R2 of 0.96 and low
forecasting error (i.e., MAPE=6%, RMSE=0.59, and MAE
=0.47). Bidirectional (LSTM and GRU) models perform better
than unidirectional models by reaching an MPAE of 9%
for BiLSTM and 11% for BiGRU. Similar conclusions are
obtained when using data from the other states.

The following experiments are devoted to a comparative
assessment for predicting concentration levels of a single
pollutant by using the remaining pollutants as multiple inputs
as presented in Section III-B. Results in terms of R2, EV

TABLE III: Performance comparison of the proposed using
pollution testing datasets from California.

Polluant Model RMSE MAE R2 EV MAPE (%) MBE RMBE(%)

NO2 GRU 13.617 11.026 0.902 0.913 22 -4.661 -5.875
NO2 LSTM 13.775 11.452 0.899 0.915 24 -5.526 -6.89
NO2 BiGRU 11.421 9.334 0.931 0.943 19 -4.868 -6.119
NO2 BiLSTM 10.997 8.985 0.936 0.946 18 -4.393 -5.555
NO2 ConvLSTM 16.005 12.755 0.865 0.871 24 -3.502 -4.487
NO2 VAE 11.04798 8.69401 0.93518 0.94905 17 -0.12203 -2.76251
NO2 GRU-A 15.727 13.004 0.869 0.909 28 -8.733 -10.469
NO2 LSTM-A 17.941 15.484 0.829 0.879 34 -9.739 -11.536
NO2 IMDA-VAE 9.484 7.153 0.952 0.955 13 -2.47718 -3.21039

O3 GRU 0.025 0.019 0.938 0.941 8 0.006 1.739
O3 LSTM 0.025 0.020 0.936 0.941 8 0.008 2.412
O3 BiGRU 0.025 0.019 0.938 0.942 8 0.006 1.798
O3 BiLSTM 0.023 0.018 0.945 0.945 8 -0.001 -0.366
O3 ConvLSTM 0.028 0.022 0.921 0.921 9 -0.001 -0.374
O3 VAE 0.02191 0.01656 0.95153 0.95371 7 -5.11047 -6.40452
O3 GRU-A 0.024 0.018 0.942 0.944 8 0.004 1.259
O3 LSTM-A 0.03 0.024 0.911 0.922 9 0.011 3.352
O3 IMDA-VAE 0.021 0.017 0.954 0.954 7 0.00171 0.52843

SO2 GRU 1.126 0.894 0.861 0.868 13 -0.261 -2.971
SO2 LSTM 1.242 0.971 0.830 0.835 14 -0.208 -2.383
SO2 BiGRU 0.919 0.734 0.907 0.924 11 -0.388 -4.347
SO2 BiLSTM 0.817 0.645 0.927 0.928 9 -0.129 -1.491
SO2 ConvLSTM 1.207 0.973 0.841 0.844 14 -0.156 -1.801
SO2 VAE 1.48731 1.41898 0.75645 0.97814 20 -0.00467 -1.41316
SO2 GRU-A 1.853 1.529 0.622 0.635 23 -0.34 -3.829
SO2 LSTM-A 1.95 1.602 0.581 0.592 23 -0.306 -3.462
SO2 IMDA-VAE 0.590 0.470 0.962 0.962 6 -0.07146 -0.83079

CO GRU 0.248 0.189 0.942 0.945 5 -0.063 -1.438
CO LSTM 0.259 0.195 0.936 0.937 5 -0.036 -0.832
CO BiGRU 0.262 0.225 0.935 0.956 6 -0.152 -3.41
CO BiLSTM 0.235 0.197 0.947 0.968 5 -0.147 -3.302
CO ConvLSTM 0.289 0.208 0.920 0.921 5 -0.021 -0.483
CO VAE 0.2141 0.1709 0.95637 0.97054 4 -1.41898 -14.26337
CO GRU-A 0.39 0.296 0.855 0.861 7 -0.078 -1.781
CO LSTM-A 0.47 0.361 0.79 0.801 8 -0.107 -2.437
CO IMDA-VAE 0.183 0.133 0.968 0.969 3 0.01262 0.29467

TABLE IV: Performance comparison of the proposed using
pollution testing datasets from Texas.

Polluant Model RMSE MAE R2 EV MAPE (%) MBE RMBE (%)

NO2 GRU 14.402 12.016 0.771 0.826 33 -7.065 -10.622
NO2 LSTM 14.896 12.345 0.755 0.812 35 -7.178 -10.773
NO2 BiGRU 13.522 11.535 0.798 0.848 31 -6.711 -10.144
NO2 BiLSTM 13.268 11.34 0.806 0.858 31 -6.854 -10.338
NO2 ConvLSTM 14.175 11.667 0.78 0.802 31 -4.45 -6.948
NO2 VAE 14.33501 12.07114 0.77316 0.85095 34 -0.01113 -0.86821
NO2 GRU-A 15.254 12.736 0.743 0.782 35 -5.963 -9.117
NO2 LSTM-A 15.756 13.2 0.726 0.772 37 -6.443 -9.778
NO2 IMDA-VAE 12.373 10.370 0.831 0.86717 28 -5.4587 -8.41001

O3 GRU 0.017 0.014 0.839 0.898 20 -0.01 -8.599
O3 LSTM 0.017 0.013 0.847 0.895 19 -0.009 -7.928
O3 BiGRU 0.016 0.013 0.868 0.909 18 -0.009 -7.251
O3 BiLSTM 0.015 0.012 0.88 0.921 17 -0.009 -7.326
O3 ConvLSTM 0.015 0.012 0.879 0.893 16 -0.005 -4.422
O3 VAE 0.01304 0.01063 0.90873 0.94324 15 -8.39428 -12.37314
O3 GRU-A 0.016 0.013 0.862 0.881 18 -0.006 -5.123
O3 LSTM-A 0.017 0.013 0.851 0.868 19 -0.006 -4.884
O3 IMDA-VAE 0.013 0.010 0.91133 0.93874 15 -0.00709 -6.0628

SO2 GRU 1.198 0.867 0.76 0.78 30 -0.344 -14.275
SO2 LSTM 1.407 1.078 0.669 0.705 36 -0.462 -18.28
SO2 BiGRU 1.123 0.786 0.789 0.8 20 -0.255 -10.976
SO2 BiLSTM 1.161 0.818 0.775 0.785 21 -0.251 -10.847
SO2 ConvLSTM 1.353 0.967 0.697 0.704 30 -0.215 -9.367
SO2 VAE 1.25142 0.93551 0.73823 0.7601 29 -0.00795 -6.75241
SO2 GRU-A 1.689 1.324 0.523 0.559 42 -0.461 -18.25
SO2 LSTM-A 1.797 1.354 0.46 0.493 42 -0.442 -17.626
SO2 IMDA-VAE 1.087 0.701 0.806 0.810 19 -0.12927 -5.8888

CO GRU 0.296 0.213 0.867 0.87 22 -0.047 -3.577
CO LSTM 0.317 0.241 0.847 0.85 25 -0.047 -3.553
CO BiGRU 0.286 0.207 0.876 0.88 20 -0.054 -4.101
CO BiLSTM 0.275 0.203 0.885 0.889 20 -0.051 -3.876
CO ConvLSTM 0.321 0.237 0.844 0.847 23 -0.041 -3.135
CO VAE 0.2849 0.20845 0.87659 0.87678 21 -0.36169 -14.90242
CO GRU-A 0.433 0.326 0.715 0.717 33 -0.043 -3.307
CO LSTM-A 0.411 0.315 0.743 0.746 33 -0.046 -3.496
CO IMDA-VAE 0.241 0.169 0.911 0.918 17 0.03558 -2.72316

and MAPE metrics are presented in Figures 8, 9, 10, and
11. Results confirm the superior performance of the proposed
IMDA-VAE approach again compared to the traditional VAE
without attention and the other investigated deep learning
models by achieving the highest (R2, EV) and the lowest
mean error on all experimentations. It is also interesting to
see better outcomes from the Bidirectional models (BiLSTM
and BiGRU) than uni-directional models (LSTM and GRU).
Results confirm that the IMDA-VAE approach clearly out-
performs the LSTM-A and GRU-A models. Overall, results
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TABLE V: Performance comparison of the proposed using
pollution testing datasets from Pennsylvania.

Polluant Model RMSE MAE R2 EV MAPE (%) MBE RMBE(%)

NO2 GRU 17.82 14.00 0.769 0.777 21 3.483 4.652
NO2 LSTM 18.03 14.41 0.763 0.768 22 2.47 3.255
NO2 BiGRU 17.34 13.35 0.781 0.797 19 4.745 6.446
NO2 BiLSTM 18.10 13.72 0.762 0.778 19 4.755 6.461
NO2 ConvLSTM 19.44 15.13 0.728 0.744 22 4.739 6.426
NO2 VAE 15.95685 13.07987 0.81454 0.81504 22 -0.0555 -4.11631
NO2 GRU-A 21.368 17.128 0.667 0.714 23 8 11.371
NO2 LSTM-A 28.854 23.033 0.394 0.416 34 5 7.698
NO2 IMDA-VAE 15.97 12.86 0.814 0.815 19 0.09919 0.12675

O3 GRU 0.014 0.012 0.882 0.883 29 0.001 1.797
O3 LSTM 0.014 0.011 0.882 0.883 29 0.001 1.697
O3 BiGRU 0.014 0.011 0.888 0.892 27 0.003 3.343
O3 BiLSTM 0.014 0.011 0.884 0.888 27 0.002 3.15
O3 ConvLSTM 0.016 0.013 0.850 0.860 32 0.004 5.625
O3 VAE 0.01304 0.01066 0.89803 0.90148 23 -0.82783 -1.0455
O3 GRU-A 0.015 0.012 0.869 0.885 28 0.005 7.105
O3 LSTM-A 0.017 0.013 0.832 0.839 31 0.004 4.857
O3 IMDA-VAE 0.012 0.010 0.916 0.916 26 0.00054 0.699

SO2 GRU 2.86 2.17 0.677 0.782 7 1.624 21.939
SO2 LSTM 2.88 2.10 0.672 0.745 38 1.359 17.728
SO2 BiGRU 2.53 1.96 0.747 0.881 25 1.843 25.646
SO2 BiLSTM 2.49 1.89 0.754 0.866 27 1.682 22.904
SO2 ConvLSTM 3.37 2.56 0.556 0.721 40 2.05 29.255
SO2 VAE 1.75778 1.49462 0.87788 0.92761 40 0.00242 3.1831
SO2 GRU-A 4.372 3.234 0.244 0.485 51 2.466 37.584
SO2 LSTM-A 4.615 3.373 0.158 0.399 54 2.47 37.662
SO2 IMDA-VAE 1.54 1.11 0.906 0.906 25 -0.07924 -0.8701

CO GRU 0.22 0.14 0.886 0.898 11 0.071 5.784
CO LSTM 0.24 0.16 0.866 0.876 13 0.066 5.372
CO BiGRU 0.22 0.13 0.889 0.899 9 0.068 5.561
CO BiLSTM 0.22 0.13 0.887 0.917 8 0.113 9.565
CO ConvLSTM 0.29 0.17 0.804 0.829 11 0.103 8.618
CO VAE 0.21237 0.16243 0.89473 0.90192 16 -1.12169 -11.05221
CO GRU-A 0.395 0.276 0.636 0.705 19 0.172 15.305
CO LSTM-A 0.448 0.311 0.531 0.608 22 0.182 16.349
CO IMDA-VAE 0.18 0.12 0.920 0.920 9 -0.00072 -0.0555

TABLE VI: Performance comparison of the proposed using
pollution testing datasets from Arizona.

Polluant Model RMSE MAE R2 EV MAPE (%) MBE RMBE (%)

NO2 GRU 6.49 5.449 0.914 0.914 20 -0.248 -0.609
NO2 LSTM 6.298 5.221 0.919 0.919 18 0.214 0.533
NO2 BiGRU 6.028 4.949 0.926 0.926 7 0.348 0.867
NO2 BiLSTM 5.535 4.432 0.937 0.938 15 0.496 1.241
NO2 ConvLSTM 7.375 5.756 0.889 0.895 18 1.728 4.45
NO2 VAE 5.94335 5.05048 0.92761 0.94932 21 -0.02125 -1.97247
NO2 GRU-A 7.908 6.809 0.872 0.873 23 0.663 1.668
NO2 LSTM-A 9.022 7.298 0.833 0.834 25 0.631 1.587
NO2 IMDA-VAE 5.361 4.415 0.941 0.942 16 -0.84549 -2.04861

O3 GRU 0.008 0.006 0.957 0.958 8 -0.001 -1.047
O3 LSTM 0.008 0.006 0.958 0.959 8 -0.001 -1.201
O3 BiGRU 0.008 0.006 0.959 0.961 8 -0.002 -1.555
O3 BiLSTM 0.008 0.006 0.957 0.958 8 -0.001 -1.373
O3 ConvLSTM 0.01 0.008 0.929 0.933 10 -0.002 -2.206
O3 VAE 0.00707 0.00568 0.96564 0.96647 7 -3.2545 -7.45071
O3 GRU-A 0.008 0.006 0.959 0.964 8 -0.003 -2.588
O3 LSTM-A 0.007 0.006 0.963 0.966 7 -0.002 -1.911
O3 IMDA-VAE 0.007 0.006 0.965 0.965 7 0.00014 0.13453

SO2 GRU 0.338 0.286 0.465 0.574 34 -0.153 -23.546
SO2 LSTM 0.387 0.334 0.301 0.497 41 -0.205 -29.22
SO2 BiGRU 0.235 0.196 0.742 0.778 24 -0.088 -15.079
SO2 BiLSTM 0.252 0.214 0.703 0.756 27 -0.106 -17.654
SO2 ConvLSTM 0.312 0.27 0.522 0.664 34 -0.17 -25.915
SO2 VAE 0.51242 0.50263 0.9013 0.93812 22 -0.00108 -1.03356
SO2 GRU-A 0.405 0.339 0.233 0.366 39 -0.169 -25.433
SO2 LSTM-A 0.422 0.356 0.166 0.327 42 -0.186 -27.253
SO2 IMDA-VAE 0.201 0.179 0.811 0.921 20 -0.153 -23.58239

CO GRU 0.082 0.063 0.959 0.96 6 0.016 1.569
CO LSTM 0.083 0.064 0.957 0.961 6 0.023 2.241
CO BiGRU 0.071 0.055 0.969 0.969 5 0.009 0.85
CO BiLSTM 0.064 0.051 0.975 0.975 5 -0.004 -0.356
CO ConvLSTM 0.086 0.067 0.954 0.955 7 0.008 0.776
CO VAE 0.07616 0.06187 0.96387 0.96669 7 -0.49933 -50.1772
CO GRU-A 0.135 0.108 0.887 0.887 11 0 -0.047
CO LSTM-A 0.112 0.091 0.922 0.923 10 -0.014 -1.331
CO IMDA-VAE 0.061 0.048 0.977 0.977 5 0.00043 0.04082

testify the superior performance of the IMDA-VAE approach
(see Tables VII, VIII, IX, and X).

The final experiment aims to assess the potentials of the
IMDA-VAE technique in forecasting several pollutants simul-
taneously (i.e., multivariate forecasting) by using historical
data from all pollutants. Here, we used only ambient pollution
data from California, and datasets from other stations are
omitted because they give relatively similar results. The major
advantage of multivariate forecasting is that by using only one
model, forecasting several pollutants can be obtained simul-

Fig. 8: Validation metrics for multivariate forecasting of CO
concentrations.

Fig. 9: Validation metrics for multivariate forecasting of SO2

concentrations.

Fig. 10: Validation metrics for multivariate forecasting of NO2

concentrations.

Fig. 11: Validation metrics for multivariate forecasting of O3

concentrations.

taneously compared to univariate forecasting that requires a
model for each time-series data. However, multivariate fore-
casting is relatively challenging because the cross-correlation
among variables and time dependencies of multiple variables
need to be modeled. Here, an important variable that can
impact the forecasting accuracy is the timestep, which consists
of the amount of data (in days) used to look back from the
past to predict the following values. In this experiment, we
evaluate the forecasting performance using different timestep

values: 3, 6, 9, 12, and 15. Table XI illustrates the comparative
forecasting results of the considered models. We can see that
our model recorded the best score with the highest (R2, EV)
for all experiments, especially for timestep=15, it records 0.9,
which is a good performance for multivariate forecasting of
all pollutants.

Furthermore, in this study, we compared the time cost
between the proposed method with attention and without



12

TABLE VII: Performance comparison of the proposed ap-
proach, using CO pollutant.

State Model RMSE MAE R2 EV MAPE

Arizona GRU 2.000E-02 1.560E-02 0.9404 0.9404 8.4787
Arizona LSTM 2.000E-02 1.520E-02 0.9413 0.9417 8.1507
Arizona BiLSTM 1.730E-02 1.420E-02 0.9478 0.9479 7.3555
Arizona BiGRU 2.000E-02 1.490E-02 0.9423 0.9428 7.8493
Arizona VAE 1.702E-02 1.510E-02 0.94081 0.94292 8.78567
Arizona GRU-A 2.000E-02 0.0152 0.9447 0.9457 8.9539
Arizona LSTM-A 2.240E-02 0.0182 0.919 0.919 10.8221
Arizona IMDA-VAE 1.612E-02 1.296E-02 0.95877 0.95896 7.13433

California GRU 1.72E-02 1.10E-02 0.889 0.889 7.293
California LSTM 1.76E-02 1.20E-02 0.871 0.878 8.179
California BiLSTM 1.20E-02 9.00E-03 0.927 0.931 5.436
California BiGRU 1.20E-02 9.00E-03 0.925 0.928 5.168
California VAE 1.42E-02 1.00E-02 0.8912 0.89784 7.66479
California GRU-A 1.73E-02 0.0113 0.8895 0.8908 7.3162
California LSTM-A 1.73E-02 0.0125 0.8756 0.8777 8.2712
California IMDA-VAE 1.10E-02 7.70E-03 0.94766 0.94782 4.71853

Pennsylvania GRU 3.610E-02 2.540E-02 0.7818 0.8372 12.5766
Pennsylvania LSTM 3.460E-02 2.400E-02 0.8057 0.8504 12.15
Pennsylvania BiLSTM 3.460E-02 2.300E-02 0.7984 0.8602 10.8596
Pennsylvania BiGRU 3.460E-02 2.290E-02 0.8063 0.8633 10.8826
Pennsylvania VAE 3.380E-02 2.100E-02 0.82191 0.82218 14.0252
Pennsylvania GRU-A 4.240E-02 0.0313 0.703 0.8221 15.2904
Pennsylvania LSTM-A 4.120E-02 0.0302 0.7268 0.8361 14.7612
Pennsylvania IMDA-VAE 2.881E-02 1.940E-02 0.86364 0.86393 10.60016

Texas GRU 2.450E-02 1.840E-02 0.8093 0.8219 23.5827
Texas LSTM 2.450E-02 1.840E-02 0.7999 0.8089 23.6235
Texas BiLSTM 2.240E-02 1.720E-02 0.8325 0.8502 21.5842
Texas BiGRU 2.450E-02 1.780E-02 0.8047 0.8181 21.1139
Texas VAE 2.500E-02 1.850E-02 0.78396 0.79411 27.21827
Texas GRU-A 2.830E-02 0.0207 0.7542 0.7708 28.3301
Texas LSTM-A 2.830E-02 0.0213 0.7482 0.7568 28.2549
Texas IMDA-VAE 2.191E-02 1.564E-02 0.84519 0.86233 19.62706

TABLE VIII: Performance comparison of the proposed ap-
proach, using NO2 pollutant.

State Model RMSE MAE R2 EV MAPE

Arizona GRU 3.320E-02 2.610E-02 0.9054 0.9151 27.6786
Arizona LSTM 3.000E-02 2.440E-02 0.9159 0.928 27.2443
Arizona BiLSTM 2.830E-02 2.360E-02 0.9264 0.9271 22.873
Arizona BiGRU 3.000E-02 2.350E-02 0.9243 0.9244 22.2422
Arizona VAE 3.000E-02 2.550E-02 0.92009 0.94457 25.19873
Arizona GRU-A 3.870E-02 0.0324 0.8663 0.8675 32.7772
Arizona LSTM-A 4.240E-02 0.034 0.8431 0.8438 32.1599
Arizona IMDA-VAE 2.720E-02 2.143E-02 0.93457 0.93674 19.74715

California GRU 2.240E-02 1.750E-02 0.9022 0.9085 24.2111
California LSTM 2.450E-02 2.080E-02 0.8717 0.911 32.3879
California BiLSTM 2.000E-02 1.590E-02 0.9252 0.9403 24.0743
California BiGRU 2.000E-02 1.530E-02 0.9262 0.9375 22.2067
California VAE 2.480E-02 1.910E-02 0.85128 0.93422 34.20658
California GRU-A 2.450E-02 0.02 0.8788 0.8859 28.39
California LSTM-A 2.830E-02 0.0228 0.8395 0.8549 33.2576
California IMDA-VAE 1.612E-02 1.200E-02 0.94634 0.94668 13.59851

Pennsylvania GRU 6.630E-02 5.170E-02 0.7242 0.7407 34.7455
Pennsylvania LSTM 6.630E-02 5.270E-02 0.7209 0.7384 35.6146
Pennsylvania BiLSTM 6.320E-02 4.640E-02 0.7473 0.7796 27.3349
Pennsylvania BiGRU 6.080E-02 4.590E-02 0.7633 0.7916 27.9394
Pennsylvania VAE 5.895E-02 4.290E-02 0.78842 0.79404 38.3737
Pennsylvania GRU-A 7.870E-02 0.0624 0.6052 0.6739 37.659
Pennsylvania LSTM-A 8.000E-02 0.0626 0.5961 0.6737 36.7711
Pennsylvania IMDA-VAE 5.891E-02 4.286E-02 0.78047 0.80233 24.68344

Texas GRU 4.120E-02 3.460E-02 0.7623 0.8136 35.2952
Texas LSTM 4.360E-02 3.690E-02 0.7355 0.8012 37.5332
Texas BiLSTM 3.740E-02 3.130E-02 0.8059 0.8345 30.0722
Texas BiGRU 3.740E-02 3.050E-02 0.8126 0.8319 29.1011
Texas VAE 4.720E-02 3.800E-02 0.69557 0.81882 40.75016
Texas GRU-A 4.240E-02 0.0354 0.7447 0.7864 36.165
Texas LSTM-A 4.360E-02 0.0363 0.7322 0.7595 36.8032
Texas IMDA-VAE 3.391E-02 2.726E-02 0.84087 0.8599 24.97254

attention. As expected, the traditional approach without atten-
tion is less time-consuming than the approach with attention
due to computation cost related to the attention mechanism.
More specifically, when conducting the experiments using an
ordinary laptop (CPU Intel i3), the average execution time in
second for the VAE and IMDA-VAE is 0.0076 and 0.0227,
respectively. Thus, the average time allocated to the attention

TABLE IX: Performance comparison of the proposed ap-
proach, using SO2 pollutant.

State Model RMSE MAE R2 EV MAPE

Arizona GRU 1.000E-02 1.020E-02 0.3849 0.5466 102.308
Arizona LSTM 1.000E-02 1.040E-02 0.3486 0.5076 99.3034
Arizona BiLSTM 1.000E-02 7.200E-03 0.6789 0.7276 69.6978
Arizona BiGRU 1.000E-02 7.800E-03 0.6362 0.7162 79.7304
Arizona VAE 1.000E-02 1.080E-02 0.35603 0.83327 101.53512
Arizona GRU-A 1.410E-02 1.180E-02 0.1735 0.3909 120.3919
Arizona LSTM-A 1.410E-02 1.270E-02 0.0553 0.3321 131.2864
Arizona IMDA-VAE 7.750E-03 6.500E-03 0.73399 0.83608 58.86316

California GRU 2.400E-02 1.100E-02 0.742 0.757 13.208
California LSTM 2.500E-02 1.300E-02 0.656 0.759 15.524
California BiLSTM 1.900E-02 8.000E-03 0.884 0.905 9.419
California BiGRU 2.100E-02 9.000E-03 0.846 0.873 10.295
California VAE 2.400E-02 1.500E-02 0.01251 0.77078 29.45029
California GRU-A 1.410E-02 1.240E-02 0.7031 0.7321 14.6651
California LSTM-A 1.410E-02 1.250E-02 0.6966 0.7089 14.466
California IMDA-VAE 9.490E-03 7.430E-03 0.893 0.895 7.653

Pennsylvania GRU 2.000E-02 1.600E-02 0.6345 0.7881 37.9877
Pennsylvania LSTM 2.240E-02 1.700E-02 0.5737 0.7245 42.3646
Pennsylvania BiLSTM 1.730E-02 1.270E-02 0.7277 0.8298 26.8206
Pennsylvania BiGRU 2.000E-02 1.600E-02 0.612 0.7988 30.7536
Pennsylvania VAE 1.900E-02 1.550E-02 0.69652 0.75061 64.53344
Pennsylvania GRU-A 2.830E-02 2.260E-02 0.3054 0.657 48.9787
Pennsylvania LSTM-A 3.000E-02 2.370E-02 0.2325 0.623 50.985
Pennsylvania IMDA-VAE 1.265E-02 9.680E-03 0.86125 0.86258 27.89178

Texas GRU 2.450E-02 1.730E-02 0.6975 0.7201 69.1408
Texas LSTM 2.450E-02 1.960E-02 0.6487 0.6838 79.1535
Texas BiLSTM 2.000E-02 1.350E-02 0.7784 0.7906 50.0694
Texas BiGRU 2.000E-02 1.320E-02 0.765 0.7747 48.0348
Texas VAE 2.220E-02 1.610E-02 0.73183 0.73997 42.91426
Texas GRU-A 2.450E-02 1.850E-02 0.6639 0.6914 75.4354
Texas LSTM-A 2.650E-02 1.840E-02 0.6403 0.6599 72.9253
Texas IMDA-VAE 1.975E-02 1.071E-02 0.78816 0.79334 37.78046

TABLE X: Performance comparison of the proposed approach,
using O3 pollutant.

State Model RMSE MAE R2 EV MAPE

Arizona GRU 3.000E-02 2.400E-02 0.9518 0.9518 10.0178
Arizona LSTM 3.320E-02 2.570E-02 0.9424 0.9424 10.8426
Arizona BiLSTM 2.650E-02 2.080E-02 0.9641 0.9665 9.2641
Arizona BiGRU 2.650E-02 2.150E-02 0.9619 0.9639 9.376
Arizona VAE 2.980E-02 2.090E-02 0.95581 0.95748 8.48824
Arizona GRU-A 3.160E-02 0.0253 0.9461 0.9564 11.9185
Arizona LSTM-A 3.610E-02 0.0286 0.932 0.9489 13.1987
Arizona IMDA-VAE 2.646E-02 2.111E-02 0.96372 0.96418 8.19743

California GRU 3.200E-02 2.400E-02 0.926 0.936 9.19
California LSTM 3.200E-02 2.300E-02 0.934 0.935 9.535
California BiLSTM 3.200E-02 2.100E-02 0.945 0.947 8.157
California BiGRU 3.200E-02 2.200E-02 0.942 0.946 8.613
California VAE 3.200E-02 2.400E-02 0.92453 0.93472 9.23233
California GRU-A 2.830E-02 0.0206 0.9408 0.9421 9.253
California LSTM-A 3.740E-02 0.0303 0.8902 0.9001 11.8519
California IMDA-VAE 2.530E-02 1.996E-02 0.95063 0.95742 6.87696

Pennsylvania GRU 5.660E-02 4.650E-02 0.8505 0.8527 32.6143
Pennsylvania LSTM 5.390E-02 4.410E-02 0.864 0.8672 30.7883
Pennsylvania BiLSTM 5.570E-02 4.530E-02 0.8574 0.8608 30.9349
Pennsylvania BiGRU 5.660E-02 4.610E-02 0.8513 0.8532 33.1447
Pennsylvania VAE 5.390E-02 4.410E-02 0.86707 0.8676 32.10249
Pennsylvania GRU-A 5.740E-02 0.0468 0.8482 0.8678 30.3479
Pennsylvania LSTM-A 5.660E-02 0.0451 0.8543 0.8727 30.0304
Pennsylvania IMDA-VAE 5.050E-02 4.166E-02 0.88242 0.88535 28.86358

Texas GRU 3.610E-02 2.850E-02 0.8478 0.8614 18.154
Texas LSTM 3.460E-02 2.770E-02 0.8562 0.8763 18.13
Texas BiLSTM 3.160E-02 2.550E-02 0.8858 0.8868 15.0679
Texas BiGRU 3.320E-02 2.590E-02 0.8759 0.8814 16.2527
Texas VAE 2.590E-02 2.080E-02 0.92111 0.92493 12.72924
Texas GRU-A 3.610E-02 0.0295 0.8498 0.8502 17.6332
Texas LSTM-A 3.870E-02 0.0316 0.83 0.8329 19.5214
Texas IMDA-VAE 2.550E-02 2.078E-02 0.92438 0.92464 11.7666

mechanism is approximately around 15 milliseconds in this
case. On the other hand, when conducting the experiment
using a PC with an Intel i7 CPU and equipped with a GPU,
both approaches have an average execution time of less than
10−4 seconds. In short, when using time-series, the attention
mechanism is not time-consuming.

In summary, the overall forecasting results demonstrate the
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TABLE XI: Multivariate with multi-output Performance re-
sults using pollution datasets from California.

timesteps model RMSE MAE R2 EV MAPE

3 GRU 15.11 6.563 0.841 0.849 26
3 LSTM 15.50 6.875 0.832 0.841 27
3 BiLSTM 14.78 6.406 0.847 0.854 26
3 BiGRU 14.12 6.08 0.861 0.863 24
3 VAE 15.779 7.113 0.826 0.839 28
3 GRU-A 14.066 6.066 0.861 0.864 24
3 LSTM-A 13.808 5.876 0.866 0.867 23
3 IMDA-VAE 13.44 5.620 0.87369 0.87526 21

6 GRU 14.37 6.137 0.856 0.858 25
6 LSTM 15.21 6.644 0.838 0.845 27
6 BiLSTM 13.59 5.741 0.871 0.871 23
6 BiGRU 13.55 5.691 0.872 0.872 23
6 VAE 14.763 6.500 0.848 0.855 26
6 GRU-A 14.259 6.129 0.857 0.859 24
6 LSTM-A 13.811 5.828 0.866 0.867 24
6 IMDA-VAE 12.91 5.251 0.884 0.884 21

9 GRU 14.70 6.491 0.849 0.856 28
9 LSTM 13.89 5.905 0.865 0.865 25
9 BiLSTM 13.68 5.742 0.869 0.869 23
9 BiGRU 13.18 5.56 0.878 0.878 22
9 VAE 14.427 6.289 0.854 0.862 26
9 GRU-A 13.683 5.877 0.869 0.869 24
9 LSTM-A 13.886 5.975 0.865 0.866 26
9 IMDA-VAE 12.54 5.174 0.888 0.890 20

12 GRU 14.92 6.545 0.845 0.854 27
12 LSTM 13.63 5.808 0.871 0.872 23
12 BiLSTM 13.98 6.106 0.864 0.869 28
12 BiGRU 13.34 5.654 0.876 0.876 22
12 VAE 13.105 5.532 0.881 0.882 24
12 GRU-A 13.516 5.896 0.873 0.873 26
12 LSTM-A 14.392 5.930 0.856 0.86 21
12 IMDA-VAE 12.53 5.073 0.891 0.891 20

15 GRU 13.42 5.764 0.875 0.877 25
15 LSTM 13.47 5.726 0.874 0.875 24
15 BiLSTM 13.34 5.751 0.876 0.877 24
15 BiGRU 13.59 5.968 0.872 0.875 26
15 VAE 12.644 5.416 0.889 0.889 25
15 GRU-A 13.374 5.873 0.875 0.876 27
15 LSTM-A 14.225 5.912 0.859 0.863 24
15 IMDA-VAE 11.96 4.838 0.901 0.901 20

high ability of the VAE based on robust variational inferences
to approximate data probability distribution of a given pollu-
tion time-series, with a self-attention mechanism incorporated
at multi-level to highlight and emphasize the correlation be-
tween data points of a given sequence. It has been shown
that the variational inference with attention units improves
time-dependencies modeling and univariate and multivariate
forecasting without recurrent connections or memory cells. It
should be highlighted that the best forecasting performance
of the proposed IMDA-VAE approach has been obtained for
univariate forecasting. Also, it has been shown that univari-
ate forecasting outperformed multivariate forecasting in this
setting. This is mainly due to the absence of high cross-
correlation between the considered pollutants. This may
be improved by considering meteorological variables, such
as temperature and pressure, which facilitate the description
of pollution dynamics, particularly for SO2. The proposed
IMDA-VAE approach can be used for online forecasting due
to its simple architecture; only the encoder part is used for the
forecasting, and data are processed in only one direction.

IV. CONCLUSION

Air pollution is a global issue, with most regions of the
globe affected by concentrations known to have adverse health
outcomes. The fast evolution of industrial technology has in-
duced various adverse environmental impacts. Monitoring the
ambient air quality is essential to achieve acceptable air qual-
ity. This work presented a novel deep hybrid model by intro-
ducing an attention mechanism to the variational autoencoder
(called IMDA-VAE) to improve air pollution forecasting. In
this study, we proved the efficiency of the proposed approach
for univariate and multivariate forecasting of air pollution
time-series data. Results showed that the proposed IMDA-VAE
model provides more accurate forecasting of concentrations of
four principal pollutants (i.e., NO2, O3, SO2, and CO) than
uni-directional and bi-directional recurrent networks, namely
VAE, Gated GRUs, LSTM, BiGRU, BiLSTM, ConvLSTM,
LSTM-A, and GRU-A. The forecasting accuracy has been
evaluated by six statistical indicators, including R2, RMSE,
MAE, MAPE, EV, MBE, and RMBE. Metrics demonstrated
the high ability of deep hybrid model with attention to
model temporal-dependencies in unsupervised learning with-
out complex recurrent networks gating and memory mecha-
nism; variational inference approximation exhibits promising
performance in time-dependent modeling. Besides, univariate
forecasts showed better accuracy than multivariate forecasting
in this setting. This mainly due to the absence of high cross-
correlation between the four studied pollutants.

Despite the adequate forecasting results of ambient air
pollution obtained using the proposed IMDA-VAE model,
the work presented in this study guides future works. Since
pollution measurements may contain noisy features with time
and frequency contributions, we plan to enhance the pro-
posed IMDA-VAE-based forecasting model by developing
a multi-scale IMDA-VAE model that combines IMDA-VAE
techniques with wavelet-based multi-resolution representation.
Another direction for future improvement is to incorporate
explanatory variables, such as meteorological measurements,
in constructing the deep learning models. Further, it will be
interesting to design an early detection system of abnormal
pollution to foster reactive control, enabling avoiding exposi-
tion to abnormal pollution with high concentrations.
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input–multiple-output general regression neural networks model for
the simultaneous estimation of traffic-related air pollutant emissions,”
Atmospheric Pollution Research, vol. 9, no. 2, pp. 388–397, 2018.



14

[6] F. Harrou, L. Fillatre, M. Bobbia, and I. Nikiforov, “Statistical detection
of abnormal ozone measurements based on constrained generalized
likelihood ratio test,” in 52nd IEEE Conference on Decision and Control.
IEEE, 2013, pp. 4997–5002.

[7] F. Harrou, A. Dairi, Y. Sun, and F. Kadri, “Detecting abnormal ozone
measurements with a deep learning-based strategy,” IEEE Sensors Jour-

nal, vol. 18, no. 17, pp. 7222–7232, 2018.
[8] M. Abhilash, A. Thakur, D. Gupta, and B. Sreevidya, “Time series

analysis of air pollution in Bengaluru using ARIMA model,” in Ambient

Communications and Computer Systems. Springer, 2018, pp. 413–426.
[9] U. Kumar and V. Jain, “ARIMA forecasting of ambient air pollutants

(O3, NO, NO2 and CO),” Stochastic Environmental Research and Risk

Assessment, vol. 24, no. 5, pp. 751–760, 2010.
[10] M. Arsov, E. Zdravevski, P. Lameski, R. Corizzo, N. Koteli, K. Mitreski,

and V. Trajkovik, “Short-term air pollution forecasting based on envi-
ronmental factors and deep learning models,” in 2020 15th Conference

on Computer Science and Information Systems (FedCSIS). IEEE, 2020,
pp. 15–22.

[11] M. H. Lee, N. H. Rahman, M. T. Latif, M. E. Nor, and N. A. Kamisan,
“Seasonal ARIMA for forecasting air pollution index: A case study,”
American Journal of Applied Sciences, vol. 9, no. 4, p. 570, 2012.

[12] L. M. B. Ventura, F. de Oliveira Pinto, L. M. Soares, A. S. Luna, and
A. Gioda, “Forecast of daily PM 2.5 concentrations applying artificial
neural networks and Holt–Winters models,” Air Quality, Atmosphere &

Health, vol. 12, no. 3, pp. 317–325, 2019.
[13] L. Wu, X. Gao, Y. Xiao, S. Liu, and Y. Yang, “Using grey Holt–Winters

model to predict the air quality index for cities in China,” Natural

Hazards, vol. 88, no. 2, pp. 1003–1012, 2017.
[14] Z. Zhao, W. Chen, X. Wu, P. C. Chen, and J. Liu, “LSTM network: a

deep learning approach for short-term traffic forecast,” IET Intelligent

Transport Systems, vol. 11, no. 2, pp. 68–75, 2017.
[15] P. Jiang, C. Li, R. Li, and H. Yang, “An innovative hybrid air pollution

early-warning system based on pollutants forecasting and extenics
evaluation,” Knowledge-Based Systems, vol. 164, pp. 174–192, 2019.

[16] A. Prakash, U. Kumar, K. Kumar, and V. Jain, “A wavelet-based
neural network model to predict ambient air pollutants’ concentration,”
Environmental Modeling & Assessment, vol. 16, no. 5, pp. 503–517,
2011.

[17] M. Arhami, N. Kamali, and M. M. Rajabi, “Predicting hourly air
pollutant levels using artificial neural networks coupled with uncertainty
analysis by monte carlo simulations,” Environmental Science and Pol-

lution Research, vol. 20, no. 7, pp. 4777–4789, 2013.
[18] K. Siwek and S. Osowski, “Data mining methods for prediction of air

pollution,” International Journal of Applied Mathematics and Computer

Science, vol. 26, no. 2, pp. 467–478, 2016.
[19] H. Liu, H. Wu, X. Lv, Z. Ren, M. Liu, Y. Li, and H. Shi, “An intelligent

hybrid model for air pollutant concentrations forecasting: Case of beijing
in china,” Sustainable Cities and Society, vol. 47, p. 101471, 2019.

[20] J. He, Y. Yu, Y. Xie, H. Mao, L. Wu, N. Liu, and S. Zhao, “Numerical
model-based artificial neural network model and its application for
quantifying impact factors of urban air quality,” Water, Air, & Soil

Pollution, vol. 227, no. 7, p. 235, 2016.
[21] W. Ding, J. Zhang, and Y. Leung, “Prediction of air pollutant con-

centration based on sparse response back-propagation training feedfor-
ward neural networks,” Environmental Science and Pollution Research,
vol. 23, no. 19, pp. 19 481–19 494, 2016.

[22] F. Harrou, Y. Sun, A. S. Hering, M. Madakyaru et al., Statistical process

monitoring using advanced data-driven and deep learning approaches:

theory and practical applications. Elsevier, 2020.
[23] W. Mao, J. He, and M. J. Zuo, “Predicting remaining useful life of rolling

bearings based on deep feature representation and transfer learning,”
IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 4,
pp. 1594–1608, 2019.

[24] X. Yuan, S. Qi, and Y. Wang, “Stacked enhanced auto-encoder for
data-driven soft sensing of quality variable,” IEEE Transactions on

Instrumentation and Measurement, vol. 69, no. 10, pp. 7953–7961, 2020.
[25] F. Harrou, T. Cheng, Y. Sun, T. O. Leiknes, and N. Ghaffour, “A

data-driven soft sensor to forecast energy consumption in wastewater
treatment plants: A case study,” IEEE Sensors Journal, 2020.

[26] F. Harrou, F. Kadri, and Y. Sun, “Forecasting of photovoltaic solar power
production using LSTM approach,” in Advanced Statistical Modeling,

Forecasting, and Fault Detection in Renewable Energy Systems. Inte-
chOpen, 2020, p. 3.

[27] Y.-S. Chang, H.-T. Chiao, S. Abimannan, Y.-P. Huang, Y.-T. Tsai,
and K.-M. Lin, “An LSTM-based aggregated model for air pollution
forecasting,” Atmospheric Pollution Research, vol. 11, no. 8, pp. 1451–
1463, 2020.

[28] Q. Tao, F. Liu, Y. Li, and D. Sidorov, “Air pollution forecasting using a
deep learning model based on 1d convnets and bidirectional gru,” IEEE

access, vol. 7, pp. 76 690–76 698, 2019.
[29] S. Al-Janabi, M. Mohammad, and A. Al-Sultan, “A new method

for prediction of air pollution based on intelligent computation,” Soft

Computing, vol. 24, no. 1, pp. 661–680, 2020.
[30] T.-C. Bui, V.-D. Le, and S.-K. Cha, “A deep learning approach for

forecasting air pollution in south korea using lstm,” Machine Learning,
2018. [Online]. Available: https://arxiv.org/abs/1804.07891v3

[31] S. Kim, J. M. Lee, J. Lee, and J. Seo, “Deep-dust: predicting
concentrations of fine dust in seoul using lstm,” Climate Informatics,
2019. [Online]. Available: http://arxiv.org/abs/1901.10106

[32] B. Freeman, G. Taylor, B. Gharabaghi, and J. Thé, “Forecasting air
quality time series using deep learning,” Journal of the Air & Waste

Management Association, vol. 68, pp. 866–886, 2018.
[33] V. Athira, P. Geetha, R. Vinayakumar, and K. Soman, “Deepairnet:

applying recurrent networks for air quality prediction,” Procedia

Computer Science, vol. 132, pp. 1394–1403, 2018. [Online]. Available:
https://doi.org/10.1016/j.procs.2018.05.068

[34] T. Xayasouk and H. Lee, “Air pollution prediction system using deep
learning,” WIT Transactions on Ecology and the Environment, vol. 230,
pp. 71–79, 2018.

[35] X. Li, L. Peng, Y. Hu, J. Shao, and T. Chi, “Deep learning
architecture for air quality predictions,” Environmental Science and

Pollution Research, vol. 23, pp. 22 408–22 417, 2016. [Online].
Available: https://doi.org/10.1007/s11356-016-7812-9

[36] X. Li, L. Peng, X. Yao, S. Cui, Y. Hu, C. You, and T. Chi, “Long
short-term memory neural network for air pollutant concentration
predictions: method development and evaluation,” Environmental

Pollution, vol. 231, pp. 997–1004, 2017. [Online]. Available:
https://doi.org/10.1016/j.envpol.2017.08.114

[37] P.-W. Soh, J.-W. Chang, and J.-W. Huang, “Adaptive deep learning-based
air quality prediction model using the most relevant spatial-temporal
relations,” IEEE Access, vol. 6, pp. 38 186–38 199, 2018.

[38] H. Chiou-Jye and K. Ping-Huan, “A deep cnn-lstm model for particulate
matter (pm2.5) forecasting in smart cities,” Sensors, vol. 18, 2018.
[Online]. Available: https://doi.org/10.3390/s18072220

[39] H. Wang, B. Zhuang, Y. Chen, N. Li, and D. Wei, “Deep inferential
spatial-temporal network for forecasting air pollution concentrations,”
Machine Learning, 2018. [Online]. Available: https://arxiv.org/abs/18
09.03964v1

[40] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” stat,
vol. 1050, p. 1, 2014.

[41] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference:
A review for statisticians,” Journal of the American statistical Associa-

tion, vol. 112, no. 518, pp. 859–877, 2017.
[42] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.
[43] J. An and S. Cho, “Variational autoencoder based anomaly detection

using reconstruction probability,” Special Lecture on IE, vol. 2, no. 1,
pp. 1–18, 2015.

[44] A. Dairi, F. Harrou, Y. Sun, and S. Khadraoui, “Short-term forecasting
of photovoltaic solar power production using variational auto-encoder
driven deep learning approach,” Applied Sciences, vol. 10, no. 23, p.
8400, 2020.

[45] G. Boquet, A. Morell, J. Serrano, and J. L. Vicario, “A variational
autoencoder solution for road traffic forecasting systems: Missing data
imputation, dimension reduction, model selection and anomaly detec-
tion,” Transportation Research Part C: Emerging Technologies, vol. 115,
p. 102622, 2020.

[46] H. Gunduz, “An efficient stock market prediction model using hybrid
feature reduction method based on variational autoencoders and recur-
sive feature elimination,” Financial Innovation, vol. 7, no. 1, pp. 1–24,
2021.

[47] A. Zeroual, F. Harrou, A. Dairi, and Y. Sun, “Deep learning methods for
forecasting COVID-19 time-Series data: A Comparative study,” Chaos,

Solitons & Fractals, vol. 140, p. 110121, 2020.
[48] M. R. Ibrahim, J. Haworth, A. Lipani, N. Aslam, T. Cheng, and

N. Christie, “Variational-lstm autoencoder to forecast the spread of
coronavirus across the globe,” PloS one, vol. 16, no. 1, p. e0246120,
2021.

[49] Y. Zerrouki, F. Harrou, N. Zerrouki, A. Dairi, and Y. Sun, “De-
sertification Detection using an Improved Variational AutoEncoder-
Based Approach through ETM-Landsat Satellite Data,” IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 14, pp. 202–213, 2020.



15

[50] L. Li, J. Yan, H. Wang, and Y. Jin, “Anomaly detection of time series
with smoothness-inducing sequential variational auto-encoder,” IEEE

Transactions on Neural Networks and Learning Systems, vol. 32, no. 3,
pp. 1177–1191, 2021.

[51] C. Zhang and Y. Chen, “Time series anomaly detection with variational
autoencoders,” arXiv preprint arXiv:1907.01702, 2019.

[52] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[53] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel,
and Y. Bengio, “Show, attend and tell: Neural image caption generation
with visual attention,” in International conference on machine learning,
2015, pp. 2048–2057.

[54] M.-T. Luong, H. Pham, and C. D. Manning, “Effective ap-
proaches to attention-based neural machine translation,” arXiv preprint

arXiv:1508.04025, 2015.
[55] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances

in neural information processing systems, 2017, pp. 5998–6008.
[56] C. Cortes, M. Mohri, and A. Rostamizadeh, “L2 regularization for

learning kernels,” in Proceedings of the Twenty-Fifth Conference on

Uncertainty in Artificial Intelligence. AUAI Press, 2009, pp. 109–116.
[57] J. Ngarambe, S. J. Joen, C.-H. Han, and G. Y. Yun, “Exploring the

relationship between particulate matter, CO, SO2, NO2, O3 and urban
heat island in Seoul, Korea,” Journal of Hazardous Materials, vol. 403,
p. 123615, 2021.
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