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Integrated near-infrared spectral sensing
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Spectral sensing is increasingly used in applications ranging from industrial process mon-

itoring to agriculture. Sensing is usually performed by measuring reflected or transmitted light

with a spectrometer and processing the resulting spectra. However, realizing compact and

mass-manufacturable spectrometers is a major challenge, particularly in the infrared spectral

region where chemical information is most prominent. Here we propose a different approach

to spectral sensing which dramatically simplifies the requirements on the hardware and

allows the monolithic integration of the sensors. We use an array of resonant-cavity-

enhanced photodetectors, each featuring a distinct spectral response in the 850-1700 nm

wavelength range. We show that prediction models can be built directly using the responses

of the photodetectors, despite the presence of multiple broad peaks, releasing the need for

spectral reconstruction. The large etendue and responsivity allow us to demonstrate the

application of an integrated near-infrared spectral sensor in relevant problems, namely milk

and plastic sensing. Our results open the way to spectral sensors with minimal size, cost and

complexity for industrial and consumer applications.
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Optical spectroscopy has been used for decades for quan-
tifying the chemical composition of objects with dimen-
sions ranging from a few nanometers to millions of

kilometers. Recently, the need for in-situ and on-the-field sensing
has been driving the quest for spectral sensors with reduced
footprint, increased portability and lower cost, suitable for con-
sumer applications and embedding into smartphones1–4, and
several portable spectroscopy products have reached the market
(see Ref. 4 for an overview). Chip-level integration and mass
manufacturing using semiconductor processing methods are
required for this purpose. While substantial progress has been
made in the visible spectral region and up to 1100 nm, using the
high maturity of silicon processing2,3, progress in the integration
of near-infrared (NIR) spectrometers has been limited. The near-
infrared part of the electromagnetic spectrum, and in particular
the region 1000–1700 nm, is especially interesting for spectro-
scopy of organic materials, due to the presence of absorption
bands arising from overtones and combinations of vibrational
modes of O-H, C-H, and N-H bonds. NIR spectrometry provides
higher sensitivity than visible solutions for important application
cases in agri-food and health care5,6. Integration of NIR spec-
trometers has been mainly pursued using dispersive waveguide
geometries7–11 and the combination of micro-electromechanical
(MEMS) filter structures co-packaged12–14 or integrated with
detectors15. However, nearly all applications use diffuse trans-
mittance or reflectance, involving spatially-incoherent light,
which prevents the use of single-mode waveguide structures. On
the other hand, MEMS approaches are affected by sensitivity to
mechanical vibrations and make monolithic integration with NIR
detectors challenging.

In general, integrating a spectrometer on a chip is exceedingly
difficult. However, the goal of spectral sensing is not the mea-
surement of a spectrum, but rather the characterization of the
material which has interacted with light. Human eyes are
excellent spectral sensors, providing essential information on
food, health condition, and material properties, based on the
signals from only three types of cone cells, which have broad
and overlapping spectral responses. Other animals have devel-
oped more advanced multispectral viewing systems, involving
up to 16 different filters16. This motivates us to ask the question:
What are the minimal hardware requirements for a given class
of sensing problems? In general, spectral sensing is based on the
measurement of the light emitted, transmitted, or reflected by
an unknown material employing a sequence of filters. This can
be done wavelength-by-wavelength (grating spectrometers), in
the Fourier domain (Fourier-transform spectrometers), or in
any other basis (e.g., computational spectrometers based on
chaotic filters7,11). The use of generalized filters can in fact
greatly simplify their on-chip integration and has been
investigated17–23. Given the responses of the filters and the
expected spectral characteristics of the sample, the input spec-
trum can be reconstructed and chemometric approaches are
then applied for the intended classification or quantification
goal (Fig. 1d–f).

Here we report a NIR spectral sensor, which is suitable for
diffuse transmittance/reflectance measurements, is fully inte-
grated, and has no moving parts. It is based on a small array of
detectors with distinct spectral responses. We then build a pre-
dictive model directly based on the photocurrent data. Our
approach is motivated by the observation that the intermediate
step of spectral reconstruction is not needed—the signals from
the detectors can be directly used to train a model for the sensing
problem at hand, in the same way as the signals from cone cells
are used to train human perceptive abilities. This observation
greatly simplifies the requirements on the hardware, leading to a
simple and compact sensor design.

Results
Design of a NIR multi-pixel array for spectral sensing. In
pursuit of a simple integrated filter-detector design, we investigate
the use of a simple set of resonant-cavity detectors as a suitable
platform for spectral sensing. We developed a fully-integrated
NIR sensor based on an array of resonant-cavity-enhanced (RCE)
photodetectors operating in the 850–1700 nm wavelength range
(see Fig. 1a).

Each pixel of the array (Fig. 1b) contains a thin absorbing layer
positioned inside a Fabry–Perot (FP) cavity, resulting in a strong
spectral dependence of the quantum efficiency ηL,R(λ)24. This
spectral response is controlled for the pixels individually by
changing the length of each FP cavity via a tuning element inside
the cavity (see inset Fig. 1a). This provides direct integration of
the filters and the detectors in a single robust device, eliminating
alignment errors and the need for micromechanical tuning.
Besides, the RCE structure allows reaching high efficiencies with
a thin active region and low dark current25. The active layers
consist of a p-i-n InP photodiode with a 200 nm InGaAs
absorber layer. A SiO2 spacer layer is positioned in between the
bottom Ag mirror and the active layers in order to improve the
absorption in the InGaAs layer. The tuning layer is made of a
dielectric layer with a 10-nm thick semi-transparent Au mirror
on top. Additional metal layers employed for the n- and p-
contact of the photodiode are positioned outside the cavity
region on top of two corresponding InGaAs contact layers. Two
100-nm thick InP barriers separate these contact layers from the
InGaAs absorber layer.

The optical response is evaluated using finite difference time
domain (FDTD) simulations (see Methods). Figure 1c shows the
calculated responsivity when the tuning layer is varied from 0 to
450 nm. The response curves of the detectors show four distinct
broad peaks, attributed to the different FP modes (S1, S2, S3, and
S4). When increasing the thickness of the tuning layer, all modes
shift to higher wavelengths, but not with the same rate, due to
their different spatial field distributions (see Methods and
Supplementary Fig. 1). Mode S2 shows the largest tuning range
of 370 nm when the tuning layer thickness is increased from 0 to
450 nm. Full coverage of the NIR range (850–1680 nm) is
obtained using multiple modes. The different modes are
characterized by a full width at half maximum (FWHM) of
~50–100 nm with corresponding Q-factors λ/Δλ between 10 and
30 and a maximum responsivity of ~0.13–0.46 A/W. The
interaction between the different resonant modes causes the
observed avoided crossings and the variation in the FWHM.
Additional simulations show that increasing the reflectivity of the
top mirror suppresses the background absorption and results
in sharper peaks, at the expense of lower responsivity24 (see
Supplementary Fig. 2a). As expected for a planar cavity, the
angular dependence of the resonant wavelength is low (max
~20 nm for 20°, see Supplementary Fig. 2c), as compared to
plasmonic filters26 or photonic crystal slabs21, which is a major
advantage for efficient light coupling.

Realization of the multi-pixel array. We realized the proposed
sensors, where an array contains 16 pixels, each with 150 μm×
750 μm active area and varying height. During the fabrication
process (see Methods and Supplementary Fig. 3) the epitaxially
grown InP wafer is bonded on a silicon wafer via adhesive wafer
bonding (see Fig. 2a). This hybrid integration approach, known as
InP-membrane-on-silicon (IMOS)27, allows for double-side pro-
cessing of the active layers, key for the fabrication of the bottom
mirror. Importantly, to introduce the wavelength tuning of the
photodiodes, the three-dimensional height of the dielectric tuning
layer (ma-N resist) is simultaneously varied for all pixels in a
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single step using grayscale lithography28. Figure 2b shows an
optical microscope image of a fabricated detector array, display-
ing different colors arising from spectral resonances in the visible
region related to the varying pixel height. The non-uniformity
observed within the pixel is a result of a non-optimized proximity
effect correction employed in the grayscale electron beam litho-
graphy (see Methods).

Figure 2c shows the measured responsivity of 16 pixels with
tuning layer thickness varying from ~20 to ~450 nm, as measured
with a focused illumination spot and a two-finger probe (see
Methods). Several peaks can be identified (M1, M2, M3, and M4)
and associated with the modes (S1 to S4 in Fig. 1c) expected from
simulation. Mode M2 shows a redshift of 310 nm in the measured
tuning range for a ma-N tuning layer thickness increase from 22
to 451 nm, which is in the same order as the 350 nm shift
expected from simulations (see Methods and Supplementary
Fig. 4a). The maximum measured responsivity is ~0.36 A/W for

mode M1 and 0.26 A/W for mode M2. The FWHM of M2 varies
between ~100 and 210 nm, with corresponding Q-factors between
5 and 15, as determined via multiple Lorentzian peak fitting. This
higher FWHM and deviations in the responsivity as compared to
simulations are attributed to the surface roughness of the tuning
layers and can be improved by further optimizing the fabrication
process. The decreased photoresponse below ~950 nm is caused
by the increased absorption in the InP layers below this
wavelength. The sharp responsivity cut-off below 840 nm is due
to the long-pass filter used in the characterization setup and
the small ripples present on top of the spectra are attributed to the
reflections in the optical measurement system.

Application in spectral sensing. The mechanism of spectral
sensing using multiple pixels is illustrated in Fig. 1d–f. During
sensing operation, the detector array is illuminated with an

Fig. 1 Spectral sensing mechanism of a resonant-cavity-enhanced (RCE) multi-pixel array. a Top view sketch of a multi-pixel array where each pixel
(indicated by the different colors) has a different wavelength response. Inset: Sketch of an RCE detector, where both the absorber and the tuning element
are positioned within the vertical-cavity structure. b Cross section of a single RCE detector (not to scale). c Color plot of the simulated responsivity for
different thicknesses of the tuning layer. Spectra for 0, 200, 400 nm thickness are shown in white. S1 to S4 indicate the different resonances. d Sketch
showing the filter responses Ri(λ) (as calculated for two different tuning layer thicknesses) together with the incident light spectrum S(λ) (smoothened
experimental transmission spectrum of raw milk). e Schematic illustration of the generated photocurrent values for 15 pixels following Eq. 1, which can be
used f, directly for spectral sensing, e.g., to classify or quantify properties of the measured sample.

Fig. 2 Realization of a multi-pixel array. a 2″ InP membrane integrated on a Si wafer via adhesive wafer bonding. b Optical microscope image of a detector
array (magnification 5x). c Measured responsivity for 16 pixels of the same array with measured Ma-N thickness increasing from 22 to 451 nm. Resonant
modes are indicated by M1 to M4. An offset, with increasing steps of 0.05 A/W, is added for clarity. The zero-responsivity axis for each curve is indicated
by the dashed line in the corresponding color.
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unknown spectrum S(λ), resulting in a generated photocurrent Ii
for each pixel i, depending on its responsivity Ri(λ),

Ii ¼
Z λ2

λ1

SðλÞRiðλÞdλ; ði ¼ 1; 2; ¼ ;NÞ ð1Þ

where λ1 and λ2 define the operating wavelength range of the
sensor and N is the number of detector pixels. The incident light
spectrum can be retrieved by inverting this set of
equations20,23,29, using the knowledge of Ri(λ), and then used to
determine the target material property (e.g., fat concentration)
using standard chemometric methods. However, the step of
spectral reconstruction requires making assumptions on the
spectrum to be measured, is prone to numerical errors, and
artificially expands the set of spectral data, which is then com-
pressed again by the chemometric analysis into a limited number
(5–10) of spectral components. Here we instead show that pho-
tocurrent data from the detector array can directly be used as
input to train a quantification or classification model (blue arrow
in Fig. 1). This requires no assumptions on the spectra and uses
the available spectral information optimally.

As a proof of principle, we present here the use of the multi-
pixel array for the measurement of the nutritional properties of
milk—a sensing problem of practical relevance as it impacts the
economic value of milk and it helps monitor the cow’s health30.
In this experiment, commercially available raw milk standards
were used, containing calibrated fat concentrations varying
between 2.02 and 6.02 g/100 g. The samples were probed using a
transflection probe (see Fig. 3a). We note that the multimode
nature of the transflection probe (300 μm core diameter)
would prevent the use of integrated spectrometers based on
waveguides31, chaotic structures7, or nanophotonic cavities15, for
this and any other practical diffuse transmittance application.
Figure 3b shows the absorbance spectra, measured with a
commercially available mini spectrometer (see Methods), with a
strong water absorption peak around 1450 nm. The variation
with fat percentage is non-monotonic, as is clearly visible around
the absorption peak where the maximum absorbance is obtained
for a fat percentage around 4.5%, highlighting the need for
a spectral sensor. As commonly observed in NIR sensing
problems, the spectral features are broad, indicating that high
spectral resolution is not required.

We developed a custom amplifier board containing sixteen
trans-impedance amplifiers, an ADC multiplexer and a micro-
controller to read out the photocurrent array in a single-shot
measurement (see Fig. 4a and Methods). We characterized the
dynamic range of the sensor over five orders of magnitude using
the electronic board for readout (see Supplementary Fig. 5). Input

powers down to the pW level can be measured and the minimum
detectable power is limited by the electronics of the readout
board. One pixel was used to correct for the drift introduced by
the used amplifier board and the remaining 15 pixels for the
transflection measurements (see Methods). Figure 4b shows the
response curves in ADC units, as measured with the setup for
simultaneous readout. Note that for these sensing experiments we
used a multi-pixel array different from the one characterized in
Fig. 2c, as contacts pads are damaged by the probes used for the
experiment in Fig. 2c. Figure 4c shows the scaled absorbance for
the different milk samples for each pixel, where each pixel has a
broadband optical response. The 15 scaled absorbance values
from each measurement of the calibration sample set were mean-
centered and, after outlier elimination, directly used in the
prediction model (see Methods). Partial least squares (PLS)
analysis was applied to reduce the multidimensional pixel data to
latent variables (LVs), from which a regression model was built
for the prediction of fat content. The prediction performances
were evaluated using the coefficient of determination (R2) and the
Ratio of Performance to Deviation (RPD) (see Supplementary
Table 1). An RPD value above three is generally accepted as a
properly working prediction model32. Interestingly, only five LVs
are required to give R2= 0.92 and an RPD value of 3.57 (see
Fig. 4d), indicating an accurate prediction model.

The prediction accuracy can be compared to the analysis
performed on the full spectra measured by a commercial mini
spectrometer (Fig. 3b). PLS was also applied to analyse the
multidimensional spectral data (see Methods). Using all 696
wavelength points obtained together with three LVs gives an
R2= 0.94 and an RPD value of 4.05. Here no sophisticated pre-
processing was performed on the spectra (e.g., smoothing), so this
prediction performance should only be seen as an indication. While
higher prediction performance has been reported for fat in milk using
bulky spectrometers30, the prediction accuracy of the fat content
obtained from our sensor measurements is close to values reported
with commercially available NIR range centimeter-scaled systems33.

Discussion
Our array allows accurate predictions of the fat content in milk,
despite providing a much lower number of measured variables
compared to conventional spectrometers. This is related to the
absence of sharp spectral features in the measured spectra, which
is also confirmed by the spectrally broad LVs which result from
the PLS analysis on the measured full spectra (see Supplementary
Fig. 8). We expect that similar sensing performance can be
obtained for a wide range of organic and inorganic materials. We
indeed show in Supplementary Discussion 1 that the same
approach can successfully be applied to a different case, namely
the classification of different types of plastic. 48 samples were
evaluated, belonging to four plastic types: 1 (PET), 4 (LDPE), 5
(PP), and 6 (PS). Using an optimized PLS-LDA (linear dis-
criminant analysis) model, we obtained 89.6% accuracy in cross-
validation of the calibration dataset and 94.9% in prediction of
the test dataset. Moreover, optimization of the technology and of
the pixel design can further improve the prediction results. In
order to confirm this, we performed a series of simulations uti-
lizing a more comprehensive dataset of milk transmittance
spectra from ref. 30. The expected photocurrents for a given
sensor design were calculated from Eq. (1) using the simulated
responsivity curves and used to train a prediction algorithm (see
Supplementary Discussion 2). A particle swarm optimization
applied to the tuning layer thicknesses leads to an RPD of 7.63
and R2= 0.98 using 15 pixels with the same geometry and layer
stack of Fig. 1b. The strong improvement is attributed to the
reduction of the resonant line widths in combination with an
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optimized set of tuning layers for the specific sensing problem. To
further prove the generality of the approach, a similar analysis is
performed for a different sensing problem, the measurement of
sugar content in tomatoes (see Supplementary Discussion 3),
showing the ability of the detector array to perform accurate
sensing predictions based on more complex spectral signatures.
Calculating the expected photocurrents using the measured filter
responses of Fig. 4b results in a prediction model with an R2 of
0.92 and RPD value of 3.83 while optimizing the tuning layer
thicknesses for this specific application further improves the
prediction accuracy with an R2 of 0.95 and RPD value of 5.09.
While the optimum sensing performance is in principle obtained
by matching the spectral filters to the LVs of the spectra, an
approach known as multivariate optical computing34, our opti-
mization method allows keeping the exact same cavity structure
and avoids complex filter structures. In addition, a reduction of
the linewidth will decrease the spectral overlap between adjacent
pixels and thereby the correlation between the generated photo-
current values, which will enhance the prediction performance at
a comparable signal to noise levels. Finally, while the presented
detector array is designed to operate in the NIR range up to
1.7 µm, this range can be extended into the mid-infrared (up to
2.5 µm) by changing the absorber material, e.g., using extended
InGaAs35, InGaAsSb36 alloys or to even higher wavelengths (up
to 10 μm) when using type-II superlattices based on InAs/GaSb or
InAs/InAsSb37 superlattices. When extending to the mid-infrared
range a different tuning layer should be used which is suitable for
greyscale lithography and transparent in the mid-infrared e.g.
hydrogen silsesquioxane (HSQ)28,38–40.

In conclusion, RCE multi-pixel arrays represent a major step in
the miniaturization of spectral sensors. Their size, comparable to
a smartphone camera image sensor, together with the ease of

fabrication and robust structure enables its use in portable sen-
sing applications. Most components that can be detected by
commercially available spectrometers such as sugar, starch, fat,
protein, etc., present relatively broad spectral signatures in the
NIR and might also be detected using an array-based spectral
sensor optimized and tailored to the application. Optimization of
the linewidth and reduction of the active pixel area would allow
further increasing the resolving power for more demanding
sensing applications. The sensors may be applied in many areas
where NIR spectroscopy has demonstrated its potential, such as
precision agriculture, clinical settings, personalized health care,
lab-on-chip diagnostics and can ultimately be integrated into
smartphones for consumer applications.

Methods
FDTD simulations of the resonant-cavity enhanced photodetectors. The
optical responses of the resonant-cavity enhanced (RCE) devices were evaluated
using finite difference time domain (FDTD) simulations. A two-dimensional
representation of the structure was used in combination with periodic boundary
conditions in the in-plane direction to reduce the simulation space. The refractive
index of the photoresist layer (ma-N, Micro Resist Technology) is equal to n ≈ 1.61
in the wavelength range of interest. The imaginary part of the refractive index has
been obtained via FTIR measurements giving k ≈ 0.0006 over the full range. The
quantum efficiency (η), assumed equal to the calculated absorptance, is used to
determine the responsivity using

R ¼ η
q
hν

ð2Þ

where q is the electron charge, ν the optical frequency, and h Planck’s constant. In
this calculation, the assumption is made that every photon is converted into an
electron-hole pair.

Increasing the thickness of the tuning layer introduces a redshift of the resonant
modes. The different modes indicated in Fig. 1c, are characterized by a full width at
half maximum (FWHM) of ~50–100 nm and a maximum responsivity of
~0.13–0.46 A/W. For a 200 nm InGaAs layer on an InP substrate in the air, the
responsivity is below 0.18 A/W everywhere in the 850 to 1600 nm range. Forming
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an RCE structure instead introduces a wavelength selectivity of the optical
responses with peak absorptance that can exceed the value corresponding to a
single InGaAs layer with the same thickness, while suppressing the background
response. The observed responsivity values of our spectral sensor do not equal the
highest responsivities reported for RCE detectors41, however, the chosen approach
allows for tuning across the full NIR range. It should also be noted that the optical
responses are spectrally broad and therefore have an overlapping response curve,
resulting in correlated photocurrent values for adjacent pixels. The observed
variations in the FWHM Δλ and corresponding Q factor are explained by varying
spatial distribution of the modes. When the overlap between the E-field
distribution of the resonant mode and the InGaAs layers (including the contact
layers) is the highest, the largest FWHM is obtained. The electric field (E-field)
distribution across the structure determines the amount of tuning. Supplementary
Fig. 1 shows the total electric field distribution of modes S2 and S3 for three
different thicknesses of the tuning layer and a 10 nm Au top mirror. The
calculations show that the largest wavelength tuning of the resonant modes as a
function of tuning layer thickness is observed when most of the E-field is located in
the ma-N layer (see Supplementary Fig. 1b, e), whereas the observed tuning is
minimized for E-field being equally distributed between the ma-N and the active
layers (see Supplementary Fig. 1a, f). Besides, the number of lobes within the active
layers increases for higher mode orders.

The spectral width and the peak responsivity of the optical modes are
influenced by the reflectance of the semi-transparent top mirror. Supplementary
Fig. 2a shows the calculated responsivity curves for the thickness of the Au top
mirror varying between 5 and 40 nm for a structure with a 300 nm tuning layer.
While increasing the thickness of the top mirror, and thereby its reflectance, the
resonances become sharper and the background is more suppressed. However, this
goes together with a decrease in the peak responsivity, since less light is coupled to
the resonance when the cavity is under coupled. The reflectance of the Au mirror
for a wave incident from the ma-N layer with varying thickness of the Au layer is
shown in Supplementary Fig. 2b. For a 10 nm-thick mirror the maximum
reflectance of the mirror is close to 74% for the highest wavelength around
1700 nm, while its value decreases to just 26% for a wavelength of 700 nm. In this
work, we have chosen a 10 nm-thick Au mirror, to ensure a high responsivity and
thereby an adequate signal-to-noise ratio (SNR) for the sensing experiments.

Use in a real sensing application requires a large tolerance of the RCE detector
arrays in terms of angular dependence. Indeed, since the collection area on the
measured sample is in general larger than the area of the used pixel array, a lens
will be used to focus the light on the detectors. Supplementary Fig. 2c shows the
spectral responses of a device with a 450 nm tuning layer for different angles of the
incoming light with respect to normal incidence. The maximum angular
dependence is observed for mode S2, showing a ~20 nm blue shift for a 20° change
in the angle (a typical angular aperture in a compact sensing system), which is
much less than the FWHM (~70 nm) of this mode. For an incoming angle of 40°,
the wavelength shift (65 nm) becomes comparable to the FHWM of mode S2.

Device fabrication. Fabrication of the device starts with the epitaxial growth of the
active layers on an undoped InP wafer by metalorganic vapor-phase epitaxy
(MOVPE). Zn doping is used for the p-layers (1.6 ∙ 1019 cm−3 for InGaAs and
1018 cm−3 for InP) and Si doping for the n-layers (1019 cm−3 for InGaAs and
5 ∙ 1018 cm−3 for InP). After the removal of an InP capping layer, the SiO2 spacer
layer is deposited on top of the InGaAs contact layer using plasma-enhanced
chemical vapor deposition. Evaporation is used to fabricate the bottom Ag mirror
on top of the active layers (see Supplementary Fig. 3a). The Ag is covered on both
sides with 2 nm evaporated Ge promoting the adhesion to the SiO2 layers. After the
metal evaporation, the sample is annealed at 350 °C for 30 s to minimize defects in
the mirror. To promote the adhesion to the adhesive polymer during wafer
bonding, SiO2 layers are deposited on both the InP and the Si wafer. The adhesive
polymer benzocyclobutene (BCB) is spin-coated on the Si wafer and used to glue
the two parts together. The two wafers are brought in contact (see Supplementary
Fig. 3b) and then bonded under vacuum at high temperature (280 °C) using a high
force (340 N). After the bonding process, the substrate is removed via wet-etching
leaving the n-doped InGaAs layer exposed on the top.

After this a mesa (180 μm× 980 μm) is etched down to the bottom p-doped
InGaAs layer, using a SiN hard mask, patterned using electron beam lithography
(EBL), in combination with several wet-etching steps. The p-doped InGaAs layer is
not etched, in order to leave a common p-contact layer for all pixels (see
Supplementary Fig. 3c). To electrically access the array, the p- and n- contacts are
evaporated on the doped InGaAs layers and combined with a lift-off process using
the pattern defined by EBL (see Supplementary Fig. 3d). To obtain ohmic contacts,
a Ti/Pt/Au (25/75/200 nm) metal stack is used for the p-layer and a Ni/Ge/Au (30/
50/250 nm) stack for the n-layer. Both contacts are positioned outside the optically
sensitive region (150 μm× 750 μm) to separate the electrical and optical properties.
At this point of the process, the optical responses of all pixels of a single array are
identical. However, there is already a wavelength-dependent response of the
detectors since a weak cavity is formed between the bottom Ag mirror and the top
n-InGaAs/air interface.

The response is tuned by changing the cavity length of each pixel
independently. A negative resist layer (ma-N 2410) is used as a tuning layer since it
can be directly used for grayscale lithography. During the EBL exposure, the dose is

increased stepwise for the different pixels, resulting in thicker layers for higher
doses after the development of the resist. During the exposure, a three-dimensional
proximity effect correction (PEC) is used to correct for the observed bowing of the
pixel surface when no PEC is applied. However, the used PEC also causes
roughness of the ma-N layer with height variations of ±15 nm. Further
optimization of the correction algorithm is needed to solve this roughness issue.
Besides, optical lithography can be used instead, resulting in more uniform pixels
and thereby improved optical characteristics. A final EBL step is used to define the
top Au mirror (see Supplementary Fig. 3e), using metal evaporation in
combination with a lift-off process.

The overall size of the sensor is currently limited by the size of the contact pads
for electrical readout. We are making use of wire-bonding of the electrical contacts
to read out all pixels simultaneously, for which a minimum contact pad size is
required (~100 μm width for our current equipment). Besides, in the current
design, the pixel size is optimized in such a way that the pixels form a square array
that has a high overlap with a circular illumination spot. Using 16 pixels provides
good coverage of the NIR spectral region of interest with filter line widths in the
50–100 nm range. The pixel area can be easily reduced to a few tens of μm, which,
together with narrow linewidth and flip-chip bonding, would allow a higher
spectral resolution to be achieved in a comparable chip area. We speculate that the
optimal trade-off between spectral resolution and signal-to-noise ratio will depend
on the sensing problem.

Single-pixel response function characterization. In the initial characterization
measurements, the spectral responsivities Ri(λ) of each pixel were individually
measured. A fiber-coupled 20W tungsten light source (average output power of
8.8 mW) was used for illumination. The light was filtered by a monochromator
resulting in output spectra with the wavelength tuned from 800 to 1700 nm and a
full width at half maximum (FWHM) of ~5.5 nm and ~2.5 µW output power.
The filtered light was focused (~80 µm spot) on the pixel using a 50x objective
(0.45 NA) with a ~4% coupling efficiency. An electrical two-finger probe was used
for the electrical readout of the photocurrent while the wavelength of the incoming
light was varied. The photocurrent values were converted to responsivity using the
power of the illumination spot as measured using an external power meter.

Comparison measured response curves with simulation. For the comparison of
the experimental responsivities to the simulated values, the heights of the fabricated
tuning layers were measured using a profilometer and used as input in the
simulation. This thickness measurement was performed on an array, which had the
same dose factors as the ones of the device used in the optical characterization
while being located on a different part of the sample. Supplementary Fig. 4a shows
the responsivity for the pixel with tuning layer thicknesses increasing from 22 to
451 nm. Peaks T1, T2, T3, and T4 can be directly related to the modes M1 to M4 in
the measured spectra. Mode T2 shows a redshift of 350 nm for an increase from 22
to 451 nm of the tuning layer. The FHWM of the peaks varies between 50 and
100 nm, which is lower than the value observed in the measured spectra. The
maximum responsivity is ~0.36 A/W for mode T1 and 0.45 A/W for mode T2. In
the measured response curves, the highest responsivity of mode M2 is observed for
the thinnest tuning layer, indicating that the optical performance is the least
impaired for the thinnest ma-N layer. For thicker ma-N layers, the difference in the
simulated and measured resonant wavelengths also increases, indicating a deviation
in the dispersion of the ma-N layer used in the simulations. It should be noted that
the ma-N material properties also depend on the dose used in the grayscale
lithography processes. Supplementary Fig. 4b–d show that indeed the comparison
between simulation and experimental response curves is the most accurate for the
thinnest ma-N layer. The discrepancies between simulation and experimental
results in terms of responsivity and FWHM are attributed to the observed
roughness in the tuning layer. This roughness is visible in the optical microscope
image of Fig. 2b and has a standard deviation of ~25 nm for the thickest tuning
layers. Besides, in the fabrication process of the presented detector arrays a quarter
of a 2″ InP wafer was used, resulting in a non-uniform height profile across the
sample, likely producing a difference between the measured thicknesses and the
ones of the tested device. A strong improvement of the uniformity (e.g., for the
resist spinning) can be obtained using full 2″ InP wafers bonded on a Si substrate,
resulting in a reproducible fabrication process and thereby a better match with
simulations in terms of resonant wavelengths.

Characterization of the responsivities in the sensing module. The filter arrays
used in the sensing experiments are electrically accessible via wire-bonded contacts,
so no electrical probes are required for readout. The spectral responsivity Ri(λ) of
each pixel can be obtained in a similar fashion as for the single devices (see
Methods Single-pixel response function characterization), however, the readout is
now performed using the developed ADC amplifier board. Supplementary Fig. 5
shows the dark-corrected ADC value as a function of the input power incident on
the measured pixel. A laser with a fixed wavelength close to the resonance wave-
length (at 1315 nm) was used for illumination, in combination with an attenuator
to cover a broad range of input powers. For each power twenty measurements, each
with an integration time of 512 ms, were taken, from which the average value and
the standard deviation were calculated. The ADC value as a function of input
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power is close to linear over five orders of magnitude, as follows from the fitted
exponent of 1.0978 (Supplementary Fig. 5). For small powers, the standard
deviation σ in the ADC signal is ~20 ADC, which is limited by the electronic board.
In order to determine the minimum measurable optical power, we fitted the
responsivity (ADC value per Watt) for low input powers (see inset Supplementary
Fig. 5). The ratio of standard deviation to responsivity provides a value ~1.1 pW for
the incident power which gives an ADC signal equal to the noise. The reverse bias
currents of the detector structures are below 100 nA for an applied voltage between
0 and −1 V.

A collimator (NA= 0.53, and anti-reflection coating 1050–1620 nm) was used
in such a way that the illumination spot covers the full array, allowing for
simultaneous measurements on all pixels. The position of the collimator was fixed,
ensuring a stable illumination condition in all experiments even for a non-
homogenous spot, which is of high importance during the sensing experiments.
Note that the characterization of the array is not required for the actual sensing
experiment but is merely to check the sensor after wire-bonding; the sensing is
directly performed on the measured photocurrent values without the need for
spectral reconstruction. The responsivities for the wire-bonded array used in the
presented sensing experiments are given in Fig. 4b. Note that this is a different
array with different tuning layer heights as shown in Fig. 2c. In addition, this array
is characterized using the fiber-coupled collimator with a different NA as employed
in the characterization setup for individual pixels. The difference in the optical
response between 850 and 1050 nm can be explained by the anti-reflection coating
present on the collimator.

Measurement procedure raw milk samples. Commercially available long-term
raw milk standards were used, containing calibrated fat concentrations varying
between 2.02 and 6.02 g/100 g (QSE GmbH, Germany). The frozen samples were
heated in a water bath at 43 °C for 50 min to defrost and completely dissolve all the
fat, resulting in homogenous emulsions. After cooling down, four original samples
were pair-wise mixed to increase the number of samples to 16, following the
scheme proposed in ref. 42 (see Supplementary Fig. 6). The four unmixed standards
(F1, F2, F7, and F8) were divided over two containers each and another fully
calibrated standard (F3) was added to the dataset and divided over three con-
tainers, resulting in a total of 23 milk samples with 17 different fat concentrations.
The milk samples were kept in a water bath set to 24 °C (equal to the ambient
temperature) to minimize variations in the transflection spectra due to temperature
fluctuations. The transflection spectra were measured using a fiber-coupled dip
probe (TP300-VIS-NIR, Ocean Insights). The path length of 2 mm, resulting in
transmittance of around 1%, is close to the optimal in the NIR range due to strong
light scattering on the fat globules in combination with water absorption in this
range43. To ensure that sufficient light reaches our detector array, a 20W halogen
light source was used as an illumination source (HL-2000-HP, Ocean Insights,
8.8 mW average output power). The output channel of the probe was directly
connected to the collimator using multimode fiber (400 µm core) to focus the light
on the full sensor array—this is the same system used in the calibration of the
arrays (see Methods Characterization of the responsivities in the sensing module).

For each measurement, the average of ten acquisition cycles performed by the
sensor was taken, resulting in 16 ADC photocurrent values. One of the 16 channels
was disconnected to correct for the drift in the amplifier board. Three dark current
measurements were performed with the transflection probe in the air and the
illumination light source turned off. Each milk sample was measured three times.
Additionally, three reference measurements in the standard illumination condition
were taken with an empty probe. Air is taken as a reference since in the current
configuration there is a mirror positioned behind the sample. The photocurrent
values measured from samples with varying fat concentrations were corrected for
the dark current and drift. In this procedure, first, the dark current ADC values
were subtracted from the samples’ measured ADC signal for each channel
respectively. Then the residual value of the disconnected channel was used for drift
correction of the remaining 15 channels. As the drift is the same for every channel,
the residual value of the disconnected channel indicates the present drift in the
amplifier board. The corrected values were then transformed into scaled
absorbance: log10(Ir/Is), where Ir and Is represent the measured photocurrents of
the reference and milk samples, respectively. Note that in this procedure the Ir of
the reference signal is not corrected for the dark current and therefore this scaled
absorbance does not provide an absolute absorbance value.

PLS analysis on measured photocurrent values. Eight fat samples were assigned
to the test set (see filled circles Supplementary Fig. 6) and the remaining nine were
used for training the prediction algorithm, following the procedure of42. The
15 scaled absorbance values from each measurement of the calibration sample set
were mean-centered and then directly used in building prediction models to pre-
dict the concentration of fat. Outlier analysis was performed using Q residuals and
Hotelling’s T2, which indicates the variation remaining in each sample after pro-
jection through the model and the distance between each sample and the multi-
variate mean within the model, respectively44. Measurements with abnormally high
variance from the expected means and not belonging to samples containing the
highest or lowest fat concentrations were identified as outliers. Two out of 70
measurements of the entire sample set were identified as outliers and excluded
from subsequent analysis.

To model fat concentration using scaled absorbance values from our sensor
measurements, partial least squares regression (PLS)44 was used to reduce the
multidimensional pixel data to latent variables (LVs), from which a regression
model was built for the prediction of fat content. Eight samples were assigned to
the test set, while the remaining nine fat concentrations were the calibration set
used to train the prediction algorithm (see Fig. 4d). The PLS algorithm was
implemented in Python using packages from NumPy45, Matplotlib46, and Scikit-
learn47. The regression models were evaluated based on leaving one group out
cross-validation, where replicate measurements from each sample were kept
together in one group. To optimize the PLS regression models, the variations of
RMSE of calibration (RMSEC) and RMSECV were examined for increasing
numbers of LVs (Supplementary Fig. 7a). The subset of LVs whose contributions
appreciably decreased the RMSECV without making the RMSECV diverge strongly
from the RMSEC were identified and used in the subsequent evaluation of the test
sample set.

The statistical measures used to assess the prediction performance of the models
included RMSE from both the calibration (RMSECV and RMSEC) and test set
(RMSEP), the coefficient of determination (R2), and the ratio of performance to
standard deviation (RPD) (see Supplementary Table 1). Interestingly, only five LVs
are required to give R2= 0.92 and an RPD value of 3.57 (see Fig. 4d and
Supplementary Fig. 7c), indicating an accurate prediction model.

PLS analysis on full NIR spectra. Equivalent modelling and validation procedures
as described in the Methods for the pixel array were also applied to the normalized
full absorbance spectra of the milk samples. The commercially available mini
spectrometer (Avantes, AVASPEC-MINI-NIR256-1.7) measures in the range from
975 to 1670 nm in 1 nm steps resulting in 696 data points per measured fat sample.
PLS was applied to reduce the multidimensional spectral data to LVs from which a
regression model was built for the prediction of fat content. The loading plot in
Supplementary Fig. 8 illustrates the contribution of each variable (i.e., wavelength)
to the three most significant LVs and highlights the spectral regions relevant for the
measurement of fat. We observed that the three illustrated LVs were sufficient to
explain 97.2% of the variance in the fat concentration, as calculated from the R2

values. The LVs spectral functions are broad, indicating that a reduced number of
filters with limited resolution can be adequate for the sensing problem at hand.
Supplementary Fig. 7b shows the RMSEC and RMSECV as a function of the
number of latent variables. The predicted fat content as a function of the measured
fat is shown in Supplementary Fig. 7d, resulting in R2= 0.94 for three LVs.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request. Source data are provided with this paper.
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