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The emerging field of silicon photonics enables the fabrication of on-chip, ultra-

high bandwidth optical networks which are critical for the future of microelec-

tronics. One of the bottlenecks for multi-core, multi-processor electronics is the

on-chip copper wire interconnect network. Integrated photonics seek to trans-

fer the data transmission from the electrical domain to the optical domain just

as fiber has done for long haul communications. Nonlinear optics has a role to

play in providing some of the necessary components for such a network. Silicon

has emerged as a key material for integrated photonics due to the CMOS pro-

cessing capabilities, its high index contrast, electro-optic properties and strong

nonlinearity. However, silicon experiences severe nonlinear losses which limit

the efficiency of processes such as four-wave mixing and Raman amplification.

This dissertation examines a new material platform for integrated nonlin-

ear photonics by developing silicon nitride waveguides and resonators. We

start with background information on the field and motivation for integrated

photonics and nonlinear optics. We then develop a theoretical foundation for

optical waveguides and ring resonator devices by deriving the key governing

equations and parameters. The material properties and fabrication techniques

are described in detail and we are able to measure the nonlinear refractive in-

dex of silicon nitride through the nonlinear self-phase modulation. We explore

the process of four-wave mixing in waveguides to demonstrate efficient wave-



length conversion and parametric gain. By leveraging the parametric gain and

high quality factor resonators, we demonstrate the first fully integrated optical

parametric oscillation and frequency comb generation. We go on to show one

of the potential applications of this device as a multiple wavelength source for

wavelength division multiplexed optical networks. We also discuss harmonic

generation in which infrared light is converted to visible wavelengths. We ex-

ploit an interface effect to induce the second order nonlinearity in the material

which could enable a host of other nonlinear process previously inaccessible to

CMOS-compatible photonics. In the summary we discuss a wide array of future

work that could build on the material presented here.
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CHAPTER 1

INTRODUCTION

We have recently seen enormous growth in the field of optical communica-

tions. The wide deployment of optical fiber and the development of low-cost

amplifiers enabled the transmission of data rates exceeding 1 Tb s−1 over many

kilometers on a single fiber. In fact optics have now taken over for electronics

for most long-haul communication. Concurrently, the continuation of Moore’s

law [1] has seen computing capacity grow exponentially. The ability to generate

and consume massive amounts of data with applications ranging from popu-

lar consumption to medical diagnostics have placed humanity squarely within

the information age. However copper wire interconnects have degraded per-

formance at the high data rates processors are now approaching [2]. Integrated

photonics has been suggested as a possible solution to overcome this data bot-

tleneck [3, 4]. Already optics have become standard in data centers and high-

performance computing applications connecting rack to rack across distances

of only a few meters.

1.1 Integrated CMOS-Compatible Photonics

The emerging field of silicon photonics seeks to unify the high bandwidth of op-

tical communications with complimentary metal-oxide-semiconductor (CMOS)

microelectronic circuits. One of the limiting factors for optical communications

has been the high costs associated with both integration and exotic materials

(III-V). By using CMOS-compatible materials, which are abundant and cheap,

we can leverage the mature processing technology of the microelectronics in-
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dustry to significantly reduce the cost of integrated photonics. The use of these

materials could also enable the close integration of electronics with photonics in

a monolithic approach and avoid the parasitics of bonding or multi-chip solu-

tions.

A key benefit of optical communication systems is wavelength-division mul-

tiplexing (WDM) which enables a single waveguide to carry multiple data

streams and is essential to reach the full bandwidth potential of photonic in-

tegrated circuits. Many components have recently been developed in silicon to

enable such a network including electro-optic modulators [5, 6, 7], integrated

germanium photodetectors [8, 9, 10], switches [11, 12, 13], and filters [14, 15],

among other devices. Some of the key components that enable high-bandwidth

optical communication networks rely on nonlinear phenomena. Additionally,

with any multi-wavelength or high power architecture, nonlinear effects cannot

be ignored in design and performance evaluation.

1.2 Nonlinear Optics

With the advent of the laser just over fifty years ago [16] strong optical fields

were accessible for the first time. The large field strength enabled the discov-

ery of second-harmonic generation (SHG) [17] and the field of nonlinear optics

was born. Over the past fifty years the field has grown immensely and ranges

from fundamental studies of light matter interaction to practical applications

in optical communication systems. Some of the most exciting applications are

parametric, in which the optical energy in the process is conserved.

Since nonlinear interactions depend on the field intensity, the tighter the fo-
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cus of an optical beam, i.e. the smaller the effective area, the stronger the non-

linear response. The interaction length, another important factor in determining

the strength of nonlinear processes, is traditionally determined by the diffrac-

tion limit of the focused beam. Since beams with a smaller focal area have a

shorter diffraction length, there is an intractable trade-off between intensity and

length.

By using an optical waveguide, we can increase the interaction length be-

yond the diffraction limit. Much work has been done exploiting the low-loss

of optical fibers to show a rich array of potential nonlinear processes. More re-

cently, work has been done on integrated photonic devices, which confine light

to an even smaller scale. Silicon-based nonlinear devices have already enabled

high-speed data processing [18], parametric amplification [19], signal regener-

ation [20], demultiplexing [21], and utlra-fast signal detection [22]. However,

nonlinear loss mechanisms limit the efficiency of many processes in silicon. This

dissertation explores the interactions of strong fields in silicon nitride waveg-

uides in hopes of overcoming the limitations of silicon.

1.3 Organization

This dissertation focuses on the applications of silicon nitride waveguides and

ring resonators for parametric nonlinear processes. In chapter 2, we examine

the waveguide solution to Maxwell’s equations in dielectric materials for both

linear and nonlinear regimes. We also introduce the concepts of effective index,

group index and group velocity dispersion which arise from the solutions to the

wave equation. The ring resonator is also described and the pertinent proper-
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ties for the device are analyzed. We move on to discuss the relevant CMOS-

compatible photonic materials and fabrication techniques in chapter 3. We con-

clude that for nonlinear optics silicon nitride has the potential to outperform the

current state of the art. In chapter 4, the measurements on the losses for silicon

nitride waveguides as well as the intrinsic nonlinear parameters for the device

are described. We introduce four-wave mixing and demonstrate both paramet-

ric gain and high-efficiency wavelength conversion in chapter 5, and by utilizing

the parametric gain we are able to achieve optical parametric oscillation on-chip

as discussed in chapter 6. In that chapter we also introduce a fully integrated

frequency comb generation. In chapter 7, we describe one of the potential uses

for such a device: as an integrated multi-wavelength source. We measure the

performance of the individual comb lines and test their linewidth, temporal sta-

bility and capacity for high-speed data transmission. The final topic we discuss

is harmonic generation in silicon nitride rings. In chapter 8, we explore the ex-

pected third harmonic generation which arises from the bulk nonlinearity and

also the unexpected second harmonic generation which comes from interface

effects. We conclude with a summary in chapter 9 which also includes many

potential research directions to build on the work presented in this dissertation.
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CHAPTER 2

NONLINEAR OPTICS IN WAVEGUIDES

2.1 Introduction

In this chapter we will work from first principles to examine electromagnetic

fields in dielectric waveguides. We will work from Maxwell’s equations for di-

electrics in section 2.2, where we show how the polarization field can be depen-

dent on the strength of the electric field when higher order terms are included

giving rise to nonlinearities. In section 2.3, we derive the wave equation for a

single optical frequency in an isotropic material for both linear and nonlinear

cases. We then show the solutions for a rectangular waveguide in section 2.4

and discuss simulation methods to solve for the optical modes of the equations.

In section 2.5, we describe the effective index, group index and group velocity

dispersion for nano-waveguides.

Optical resonators have long been used to enhance the intensity of light for

nonlinear interactions. By forming a ring, essentially a bent waveguide that

connects to itself, we can form an integrated resonator with strong electric field

enhancement. In section 2.6, we develop the theoretical foundation for a ring

resonator: resonance conditions, the photon lifetime, field enhancement, and

free-spectral range.
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2.2 Maxwell’s Equations and Constitutive Relations

Maxwell’s equations as formulated in the macroscopic case in terms of free

charge and current presented in differential form are as follows:

∇ · D = ρ (2.1a)

∇ × E =
−∂B
∂t

(2.1b)

∇ · B = 0 (2.1c)

∇ ×H = J +
∂D

∂t
(2.1d)

Where E is the electric field, H is the magnetic field D is the electric flux density

and B is the magnetic flux density. For the purposes of this dissertation, we will

assume the current density, J, and the charge density, ρ, are 0 since we will be

examining source free mixed dielectric structures.

We can also define the constitutive equations relating the flux densities to

the field amplitudes as follows:

D = ǫ0E + P (2.2a)

B = µ0H +M (2.2b)

where ǫ0 = 8.85 × 10−12 F m−1 and is the permittivity of free-space and the vac-

uum permeability µ0 = 4π × 10−7 H m−1. For the remainder of the dissertation

we will deal solely with nonmagnetic materials so that the magnetic polariza-

tion, M, is zero.

The polarization field, P, will be examined from two perspectives. The first

is the simplest case in which the polarization is assumed to depend linearly on

the strength of the electric field:

P = ǫ0χ
(1)

E (2.3)
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where χ(1) is the linear susceptibility of the material and is related to the relative

permittivity of a material, ǫ, with the relationship χ(1)
= ǫ − 1. The material

permittivity and permeability have so far been represented as scalar quantities

for simplicity. Strictly speaking these are tensor values, but for the isotropic

mediums we will be examining here, we can view them as scalar quantities

for homogeneous medium and vector quantities when we work with multiple

materials.

For nonlinear optics, the polarization can be written as a power series of the

electric field amplitude [23], and Equation 2.3 can be expanded:

P = ǫ0
[

χ(1)
E + χ(2)

E
2
+ χ(3)

E
3
+ · · ·

]

(2.4)

where χ(2) is the second order susceptibility and χ(3) is the third order suscepti-

bility. In centrosymmetric materials the bulk χ(2) vanishes making χ(3) the lowest

nonlinear term of the polarization. However, as will be discussed in Chapter 8,

an effective χ(2)can arise in waveguides from the interface between the core and

the cladding. The first term of the power series is equivalent to the polarization

defined in equation 2.3. The higher order terms can be lumped together and

defined as the nonlinear polarization PNL. For most materials, the relative dif-

ference in strength for χ(n)

χ(n+1) is about seven orders of magnitude. Therefore, we

can usually ignore all but the lowest order nonlinearity.

2.3 Wave Equation

To solve the equations for light propagating in a dielectric medium we employ

a separation of variables to isolate the spatial and temporal components of the
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fields involved in Maxwell’s equations. Taking these considerations into ac-

count, we rewrite the E, H and P as follows:

E (r, t) = E (r) e jωt
+ c.c. (2.5a)

H (r, t) = H (r) e jωt
+ c.c. (2.5b)

P (r, t) = P (r) e jωt
+ c.c. (2.5c)

Here ω is defined as the angular frequency of the wave. We also need to take

into account material dispersion which accounts for the change in permittivity

as a function of frequency so ǫ becomes ǫ (ω). In the simplest case, we will use

equation 2.3 to define the relation between D and E, with the result from com-

bining equations 2.2a and 2.3 being D = ǫ0ǫE. In the assumption of linear and

isotropic materials, the scalar value of ǫ is the square of the familiar parameter

n, the material refractive index. For a propagation in a single dielectric medium,

we can take the curl of equation 2.1b and substitute equation 2.1d to get [24]:

∇ × ∇ × E (r, t) = −µ0ǫ0ǫ (ω)
∂2E (r, t)

∂t2
(2.6)

Here we can define the speed of light in vacuum, c = 1/
√
µ0ǫ0 =

2.998 × 108 m s−1. With a little manipulation and the assumption that the gradi-

ent of the refractive index is zero, by substituting equation 2.5 into equation 2.6

we arrive at the familiar wave equation[25, 26]:

∇2
E (r) − n2 (ω)

ω2

c2
E (r) = 0 (2.7)

and a similar solution can be shown for the magnetic field amplitude, H.

By substituting equations 2.5a and 2.5b into the divergence equations 2.1a

and 2.1c we find the solution to equation 2.7 must be plane waves. We can
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further define the electric and magnetic spatial field components as treated

in [24, 26] so we have:

E (r) = E0e jk·r (2.8a)

H (r) = H0e jk·r (2.8b)

where E0 and H0 are the scalar electric and magnetic field amplitudes, k is the

wavevector and from solving equation 2.7 is related to the angular frequency,

refractive index and speed of light:

|k| = n (ω)
ω

c
=

2π

λ
(2.9)

where we also relate the wavevector to the wavelength of light, λ.

Taking into account the higher order terms of the polarization by using equa-

tion 2.4 we can derive a variant of equation 2.7 to include the nonlinear effects

of PNL [23, 25]:

∇2
E (r) − n2 (ω)

ω2

c2
E (r) = − ω

2

ǫ0c2
P

NL (r) (2.10)

Using this equation will enable us to build up the various nonlinear phenomena

observed in waveguides in the following chapters.

2.4 Waveguide Solution

The guided waves of interest in this dissertation are derived from plane wave

solutions to the Helmholtz form of equation 2.7 as applied to a channel waveg-

uide. The principle of guiding for the structure is total internal reflection (TIR).

In this section, we present a ray picture of TIR as derived from Snell’s law and

the law of reflection, then we examine the wave description of the phenom-

ena. Next, we examine the solution for an infinite slab showing the formation
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of transverse electric (TE) and transverse magnetic (TM) modes. Finally, we

show that a solution for a rectangular waveguide can be analytically solved and

discuss numerical simulations or “mode solvers”.

2.4.1 Total Internal Reflection

The physical process which enables an electromagnetic wave to be guided in a

core of higher index material surrounded by a lower index cladding is TIR.

Ray Tracing

The simplest way to visualize TIR is by the ray picture. We will consider the case

for a high index material surrounded on both sides by the same lower index

material as shown in figure 2.1. The two basic laws covering this geometric

optic picture are given as follows:

n1 sin θ1 = n2 sin θ2 (2.11a)

φi = φr (2.11b)

From Snell’s law, equation 2.11a, we can calculate the angle of refraction at an

interface of two materials with different indices and from the reflection law,

equation 2.11b, we know the angle of reflection is equal to the angle of incidence.

At a critical angle, θc, no light will be refracted into the lower index material

and using Snell’s law we can solve this angle to be:

θc = sin−1

(

n1

n2

)

(2.12)
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Figure 2.1: An illustration of ray optics with a high index material, n2,
surrounded by a lower index material, n1. At a shallow angle
of incidence, θ2, the light is refracted into the lower index ma-
terial at the corresponding angle, θ1 and reflected in the high
index material at angle θ2. For angles larger than the critical
angle such as θc, no light is refracted into the cladding material
and there is total internal reflection in the guiding layer.

As shown in figure 2.1 angles of incidence at the critical angle or greater will

be confined to the larger index material and angles shallower will leak into the

lower index materials.

Wave Description

Let’s now consider instead of light rays, figure 2.1 consists of plane waves prop-

agating with each ray constituting the wavevector, k. Let’s also examine the

case for the Transverse Electric (TE) polarized wave, so that the E-field is along

the x-axis or out of plane. We will consider the case in which the waves are

refracted into the low index material and then generalize for the TIR case. This

derivation follows [24] and the transverse components of E in the respective
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materials follow the form:

E1 (y, z) = τE0e jk0n1(y cos θ1−z sin θ1)
+ c.c. (2.13a)

E2 (y, z) = E0e jk0n2(y cos θ2−z sin θ2)
+ c.c. (2.13b)

where τ is the transmission coefficient of the wave at the interface and k0 is the

free-space wavenumber. For an arbitrary angle of incidence, we use Snell’s law

to solve for θ1. Substituting into equation 2.13a, we can examine the resulting

wave in the low index material:

E1 (y, z) = τE0e
jk0

(

yn1

√
1−(n2

2
/n2

1) sin2 θ2−zn2 sin θ2

)

+ c.c. (2.14)

We notice the propagation coefficient in the z-direction becomes the same as for

E2 from equation 2.13b. We will define the propagation coefficient as β such

that:

β = k0n2 sin θ2 (2.15)

also note β is the z-component of k. The second consequence of equation 2.14

is when θ2 exceeds the critical angle, the radical becomes imaginary. Therefore,

the y-component of E1 will decay exponentially meaning the wave is confined

to the high-index region.

2.4.2 The Infinite Slab

From the discussion of the wave picture of TIR we can begin to form a concep-

tual picture of a waveguide. In figure 2.2a, a drawing of the symmetric infinite

slab waveguide is presented. In this picture, we will assume propagation in the

z-direction and we will imagine that the high index slab extends out indefinitely

in the x-direction. By taking a slice in the yz-plane, the infinite slab waveguide

is transformed to the two dimensional picture in figure 2.1.

12



x

y

z

(a) (b)

Figure 2.2: Three dimensional waveguide depictions. a. An infinite slab
waveguide, in which the blue guiding core should extend in-
finitely in the x-direction, and b. A buried channel waveguide
with propagation along the z-axis. The slab in the center of both
pictures will give the same 2-D cross-section and look the same
as figure 2.1 for the TIR example.

Although it is not made clear in the previous section, the solution to equa-

tion 2.13 cannot have any arbitrary β that satisfies the critical angle condition.

Rather, discrete modes are formed as solutions to the guided wave equation be-

cause there is a phase-shift (the Goos-Hänchen shift) at the interface of the core

and cladding materials. Therefore, to avoid destructive interference as the wave

propagates, the total phase-shift (from the propagating wave and the two-shifts

at the guide boundaries) must be an integer multiple of 2π.

From the wave picture, we will now show the formation of guided modes

in the waveguide building from equations 2.7 and 2.8. We will examine the TE

case in which the electric field is polarized in the x-direction and equation 2.8a

becomes [24, 27]:

Ex (y, z) = E0Ex(y)e− jβz (2.16)

and we can solve equation 2.7 for all space:

∂2Ex

∂y2
+

(

k2
0n2

i − β2
)

Ex = 0 (2.17)

where k0 = ω0/c is the free-space wavevector and ni is the refractive index in the
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core or cladding. If we examine only solutions of β that experience TIR and can

therefore be confined to the core we find the general solution to equation 2.17

for the TE mode assuming the core region from figure 2.2a extends from ±a:

Ex (y) =



















































A1e−(y−a)
√
β2−k2

0
n2

1 for y > a

A2 cos

(

y

√

k2
0
n2

2
− β2

)

or A3 sin

(

y

√

k2
0
n2

2
− β2

)

for a ≥ y ≤ −a

A4e(y+a)
√
β2−k2

0
n2

1 for y < −a

(2.18)

where the cosine term corresponds to even modes of the waveguide (i.e. the

mode profile has even symmetry) and the sine solution corresponds to the odd

waveguide modes. The coefficients Ai can be reduced to a single value and

a transcendental equation for the allowable modes can be found by using the

boundary conditions at the interface that both Ex(y) and ∂Ex(y)/∂y are continu-

ous. We will define two new parameters: the delay coefficient γ which is equal

to the radical for the cladding regions and the transverse wavevector κ which

is equal to the radical in the cladding. For the even modes we can use the first

boundary condition to reduce equation 2.18 to:

Ex (y) =



















































Ae−γ(y−a) for y > a

A
cos(κy)

cos(κa)
for a ≥ y ≤ −a

Aeγ(y+a) for y < −a

(2.19)

and a similar solution can be found for the odd (sine) modes. In this case both

κ and γ are dependent on β. For determining the real solutions of β we rely on

the second boundary condition and find the eigenvalue equation:

tan (κa) =
γ

κ
(2.20)

It is useful at this point to add another definition:

ne f f ≡ β/k0 (2.21)
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where ne f f is the effective index of the guided mode which will become useful in

describing the modes for the channel waveguide in the next section. We can also

see how this intuitively redefines the parameters γ and κ in terms of refractive

index differences.

2.4.3 Channel Waveguide

The channel waveguide is the basic photonic structure used for the work done

in this dissertation. As depicted in figure 2.2b, the optical device is defined by

a rectangular core region surrounded by a lower index cladding material. Since

we are now confined in two dimensions we no longer have pure TE or TM

modes. However, we still have modes that are quasi-TE or quasi-TM where the

dominant part of E is in the x- or y-axis (shown in figure 2.3) respectively. For

the remainder of the dissertation these modes will simply be referred to as TE or

TM. Marcatili [28] pioneered a method for solving the rectangular waveguide

using a wave analysis similar to that shown for the infinite slab waveguide in

the previous section. The interested reader should look to [24, 27] for a good

review of this analysis. For our purposes we will examine the more general

effective index method [29] and discuss the software used for mode solvers of

arbitrary waveguide geometries.

Effective Index Method

A simple method for analytically solving for the allowed modes of a rectangular

waveguide is the effective index method first proposed by Knox and Toulios [29]

and applied to rectangular waveguides by Hocker and Burns [30]. The beauty
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of this method is that it turns a single two-dimensional problem into two one-

dimensional problems. In figure 2.3a, we draw the symmetric two-dimensional

waveguide with a core index of n2 embedded in a cladding material with a lower

index of n1. As with the wave solution [28], the hashed regions of the waveguide

in figure 2.3a can be ignored when solving for β in the waveguide.

n
2

n
1

n
2

n
1

n
2

n
1

n
1

n
eff

n
1 n

1

(a) (b) (c)

x

y

Figure 2.3: An illustration of the effective index method. a. The sym-
metric rectangular waveguide as in Figure 2.2b depicted in the
xy-plane. b. The slab equivalent of the rectangular waveguide
in the x-direction. c. After a solution is found for the first slab
waveguide, a second slab is formed in the y-direction with the
index of the core material set to the ne f f solved from the first
slab mode.

The first step is to take the thinner dimension, in this case the y-dimension,

and stretch the waveguide into an infinite slab along the opposite axis as in fig-

ure 2.3b, i.e. there is no longer a field dependence in the thinner dimension of

the waveguide. For solving the TE mode of the waveguide, where E is polar-

ized along the x-axis, we use equation 2.20 to calculate the allowed values of

β for the slab mode. From the solution for the propagation vector, we derive

the ne f f using equation 2.21. This value is then plugged into the core of the

thicker waveguide dimension shown in figure 2.3c. We view this problem as

another infinite slab waveguide, but must be careful to use the proper charac-

teristic equation. Given the polarization of E, we need to solve for the TM mode

of the second slab waveguide. The transcendental equation can be calculated
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from the TM-counterpart to equation 2.19 as:

tan (κa) =

(

n2

n1

)2
γ

κ
(2.22)

It should be noted that the effective index method is only valid for large as-

pect ratios [24], so that it is easy to determine in which dimension the waveguide

should first be expanded.

Mode Solvers

Two popular methods for numerically solving partial differential equations

(PDE) on arbitrary geometries are the the finite difference method (FDM) and

the finite element method (FEM). In work for this dissertation, both have been

used to solve for the modes of channel waveguides of various geometries using

the Helmholtz equation (equation 2.7). Both methods break the problem into a

mesh for analysis as shown in figure 2.4.

The FDM solver breaks the problem up into a grid of two dimensions. It

then substitutes the PDE out for a finite difference scheme between grid points.

In doing so it creates a system of equations in a matrix form that can then be

solved to find the eigenvalues of the system. The accuracy of the solution is

proportionate to the fineness of the grid, therefore, a very fine grid is required

near boundaries. Unfortunately, (from the perspective of required computa-

tional power) the rectangular grids must extend through the entire domain.

The FEM method is better able to handle arbitrary geometries such as

the trapezoidal shape which comes from waveguide etching discussed in sec-

tion 3.3.3. It breaks down the problem into a set of linearized equations solved

17



(a) (b)

Figure 2.4: Mode-solver meshes for a rectangular waveguide. a. For the
FEM solver with a triangular mesh. Here the triangles are ar-
bitrarily conformed to the interfaces of the structure. and b.
The mesh for the FDM solution, everything must be spaced in
a grid formation.

for each triangle. The boundary conditions are used to make sure the solution

is consistent with the surrounding triangle until an eigenvalue is found.

Both solvers are capable of solving for three cases. The first case requires

the input of a specific frequency, ω, for a straight waveguide and provides a

solution for β and using equation 2.21 the ne f f . The second case solves for a

bent waveguide. Here, by a simple transformation of coordinates, we can solve

β for the modes of a bent waveguide of some arbitrary radius. The third case

is an axisymmetric modesolver. As will be discussed in section 2.6, a cavity

is considered to have a resonance when an integer number of wavelengths fit

perfectly inside. In this case of the solver, the user must input the mode number,

(the number of wavelengths which fit in the cavity), and the bending radius and

the solver finds the resonant frequency.

Using the FEM solver, we solve for a sample straight Si3N4 waveguide clad

with SiO2. The waveguide has the same dimensions as the mesh plot shown

in figure 2.4a and we solve for an input wavelength of 1550 nm. Figure 2.5a
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1.5 µm

725 nm

TE (E
x
) TM (E

y
)

Figure 2.5: Mode profiles for a sample solution to a Si3N4 waveguide.
The solutions are for an input wavelength of 1550 nm and the
dominant component for the electric field of each mode is plot-
ted in the xy-plane. a. The first order TE mode of the waveg-
uide is plotted, we note the discontinuity of the electric field
at the waveguide sidewalls in the x-direction as expected. The
solver gives an ne f f for the waveguide of 1.8137. b. The first
order TM mode for the same waveguide with an ne f f of 1.7.

shows the Ex component of the the first-order TE mode of the waveguide and

figure 2.5b shows the Ey component of the first-order TM mode. By solving for

a range of wavelengths, we can track how ne f f changes with λ (we will see the

importance of this in sections 2.5 and 2.6). We also have free choice over waveg-

uide geometry, core and cladding materials, and can find cutoff dimensions for

higher-order modes or, for the case of asymmetric waveguides, propagation.

2.5 Group Index and Group Velocity Dispersion

In vacuum, the velocity of a plane wave is c. However, when traveling through

a dielectric medium of index, n, the light is said to slow to a speed of c/n. The

phase velocity is defined as the speed at which the phase of a single frequency

component travels. In general this value is defined in terms of the angular fre-
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quency and wavenumber such that:

vp =
ω

k
(2.23)

However, in a waveguide where light is confined and propagates in a given

direction we refine the definition:

vp =
ω

β
=

c

ne f f

(2.24)

where we have substituted the propagation constant for the wavenumber. We

substitute our definition of ne f f from equation 2.21 and arrive at the familiar

relationship for the speed of light in a medium with index, n.

Because we know β is a function of frequency, the phase velocity must also

change for different wavelengths. If we consider an optical pulse composed of

multiple frequencies, we can define the group velocity vg as the speed at which

the envelope travels:

vg =
dβ

dω
(2.25)

and substituting equation 2.21 we can rewrite equation 2.25:

1

vg

=
1

c

(

ne f f (ω) + ω
dne f f

dω

)

=
ng

c
(2.26)

where ng is the group index. Physically, the group velocity is the speed at which

information is carried. It can be useful to consider the value in terms of λ:

ng (λ) = ne f f (λ) − λ
dne f f

dλ
(2.27)

From these equations we can see that ng is approximately ne f f with a slight ad-

justment for how the effective index changes with wavelength. The adjustment

is often referred to as the dispersion of the material which can be defined as:

β2 =
d2β

dω2
=

1

c

(

2
dne f f

dω
+ ω

d2ne f f

dω2

)

(2.28)
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where β2 is known as the group velocity dispersion (GVD) parameter and is

responsible for phenomena such as pulse broadening. The parameter D is called

the dispersion parameter and is defined as the change of 1/vg with respect to

wavelength:

D =
1

c

dng

dλ
= −λ

c

d2ne f f

dλ2
(2.29)

Due to the phase-matching requirements for many of the nonlinear processes

involving waves at non-degenerate frequencies, these parameters become very

important for a waveguide. As we will later show, ng and D are very sensitive to

waveguide geometry [31, 32]. In the next section we will discuss how ne f f and

ng play a role in the properties of ring resonators.

2.6 Ring Resonator

After the waveguide, the second basic integrated optical structure used in this

dissertation is the ring resonator. The resonator is a waveguide formed into a

circle which can be accessed via a bus waveguide as shown in figure 2.6. The

ring forms a traveling wave cavity in which the optical field circulates in the

resonator. When light is on resonance, the field inside the cavity becomes en-

hanced and the intensity can grow very large. Looking at figure 2.6, we define

the resonance condition to be when the phase of B1 is the same as B2, such that

there is no phase-shift for the round-trip path of the resonator.

From equation 2.16 the phase-shift for an optical wave traversing an arbi-

trary distance is βz. Therefore, we can define the resonator phase-shift at a par-

ticular wavelength:

φ (λ) = β (λ) 2πr = ne f f (λ)
2π

λ
2πr (2.30)
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Figure 2.6: An illustration of a waveguide coupled ring resonator. The
generic resonator shown has radius, r, and a coupling gap, g,
from ring to waveguide. The diagram shows the coupling, κ,
and transmission, t, coefficients for the input and output fields
of the device as well as the round-trip loss factor, a.

with r the ring radius and λ the wavelength of operation. From this equation

we can derive the resonance condition for when φ is an integer multiple of 2π:

m (λ0) = β (λ0) r = ne f f (λ0)
2π

λ0

r (2.31)

where m, an integer, is the resonant mode number (remember this value is one

of the parameters referred to in section 2.4.3 for the axisymmetric mode solver

case) and λ0 is the resonance wavelength.

We can describe all the relevant attributes of the ring using a steady-state

derivation which follows the matrix formalism set forth by Yariv [33, 34, 35]. If

in figure 2.6 we assume the input only comes from the A1 side of the waveguide

and the coupling from ring to waveguide is lossless, then the electric fields can

be described by the transfer matrix:
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




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













(2.32)
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with t the transmission coefficient, κ the coupling coefficient and the condition

for a lossless coupler being:

|t|2 + |κ|2 = 1 (2.33)

and j being added to the coupling term in equation 2.32 for the π phase shift of

the ideal ring to bus waveguide coupler.

We would like to define all the fields in terms of the input field, A1, but

equation 2.32 only gives us two equations for three unknowns. We can relate

the fields inside the ring, B1 and B2 as follows:

B1 = ae jφ(λ)B2 (2.34)

where a is the round-trip propagation loss caused from either scattering, ab-

sorption or radiation. In terms of the m−1 power loss, α, which is commonly

used to describe the losses for waveguides:

a = e−απr (2.35)

Consider now the case for normalized input power, where |A1|2 is equal to

one. We can define the circulating power in the ring as a function of wavelength

from equations 2.32 and 2.34:

Pcirc (λ) =

∣

∣

∣

∣

∣

B1

A1

∣

∣

∣

∣

∣

2

=
a2κ2

1 + a2t2 − 2at cos (φ (λ))
(2.36)

and similarly for the transmitted power at the output of the waveguide:

Ptrans (λ) =

∣

∣

∣

∣

∣

A2

A1

∣

∣

∣

∣

∣

2

=
a2
+ t2 − 2at cos (φ (λ))

1 + a2t2 − 2at cos (φ (λ))
(2.37)

From equation 2.36, the maximum circulating power occurs when we meet

the resonance condition of equation 2.31. The equation for the transmitted
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power is reduced to:

Ptrans (λ0) =
(a − t)2

(1 − at)2
(2.38)

and therefore, we can have complete extinction of the input field when the trans-

mission coefficient has the same value as the round-trip loss in the ring. This is

known as critical coupling. We can show that this condition will also maximize

the circulating power for the resonator:

max |Pcirc (λ0)| = a2

(

1 − a2
) (2.39)

in a lossless resonator, i.e. a = 1, equation 2.39 goes to infinity. Therefore, as one

would expect, the lower the resonator losses, the larger the circulating power.
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Figure 2.7: A simulated transmission spectrum of a microring resonator.
In this example, we have simulated the ne f f for a range of wave-
lengths of a 100 µm radius silicon nitride ring with core di-
mensions of 725 by 1500 nm. We have defined the losses as
17.34 dB cm−1 to give a QL of about 10,000.

Another, and more common, method of examining the power inside a cavity

is to measure the quality factor, Q. There are two definitions for the Q of an
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optical resonator, which is a dimensionless parameter, that are equivalent for

sufficiently large values.

Q = ω0

U

−dU/dt
(2.40a)

Q =
ω0

∆ωFWHM

≈ λ0

∆λFWHM

(2.40b)

where U is the stored energy in the cavity and ∆ωFWHM is the full bandwidth at

half maximum of the transmitted power from equation 2.38 and is referred to as

the cavity linewidth. The approximation in equation 2.40b is equivalent to better

than one part in Q2. Therefore, for the large values used in this dissertation,

we can experimentally measure Q from the sharpness of the resonance in the

wavelength domain. From equation 2.40a, and under real systems where β is

complex to include losses, we can also say the Q is related to τp, the photon

lifetime:

Q = ω0τp (2.41)

where τp arises from absorption, scattering, bending and coupling losses. The

Q defined in equation 2.40 takes into account all the losses of the system: from

the ring and from the coupling. This is defined as the loaded Q, QL, and can be

directly measured using equation 2.40b from a measured transmission spectrum

such as the one in figure 2.7. We can also define the Q using the parameters from

the matrix formalism [36]:

QL =

√
taLπng

(1 − ta) λ0

(2.42)

and examining solely the losses in the ring we can define the intrinsic quality

factor, Qi, for the resonator:

Qi =

√
aLπng

(1 − a) λ0

≈
k0ng

α
(2.43)

where the approximation holds assuming low losses and critical coupling (i.e.

when the losses in the ring are equal to the coupling losses, a = t). We note when
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the critical coupling condition is met Qi is twice QL. We define the relationship

between these separate quality factors as follows:

1

QL

=
1

Qi

+
1

Qc

(2.44)

where Qc is the coupling Q. For cases in which we do not have critical cou-

pling, we are still able to calculate the parameters for the matrix formalism,

equation 2.32, using equations 2.42, 2.43, 2.44 and the following relations:

Qc =































2QL

1−
√

Tmin
for a < t

2QL

1+
√

Tmin
for a > t

(2.45)

where Tmin is the minimum transmitted power at λ0 from a measurement such

as the one in figure 2.7, and the condition for a < t is called under-coupled and

a > t is called over-coupled. The coupling strength, κ, is dependent upon the

gap, g, shown in figure 2.6 and the wavelength of operation. Going from larger

to smaller gaps and from shorter to longer wavelengths increases the coupling.

In this way, we can determine if a particular resonance is over- or under-coupled

by examining the change in coupling as a function of gap size or wavelength.

So far we have examined the ring properties for a single resonance at λ0;

however, it is of great interest to examine the resonator properties across a broad

spectrum for the nonlinear processes discussed later in this dissertation. We

define the free spectral range (FSR) as the spacing between adjacent resonances

using equations 2.26 and 2.31:

FS R(ω)
= (ω2 − ω1) ≈ 1

r dβ/dω
=

c

r ng (ω)
(2.46a)

FS R(λ)
=

λ2

2πrng (λ)
(2.46b)

where the approximation holds true for small changes in ω of adjacent reso-

nances. Equation 2.46 allows an experimental verification of ng derived from

26



simulation.

The final parameter we introduce is the finesse, F , which can be defined as:

F = FS R(λ)

∆λFWHM

(2.47)

where the FSR and cavity linewidth can both be experimentally measured or

simulated if the losses, coupling coefficients and group index of the ring are

known. The finesse can also be related back to the coupling parameters for the

low-loss regime. When operating at the critical coupling condition and low loss,

from equations 2.33, 2.42, 2.46b and 2.47 the finesse becomes:

F = aπ

κ2
(2.48)

and considering equation 2.36 under the same conditions we find:

Pcirc =
a

κ2
=
F
π

(2.49)

Therefore, simply from the transmission spectrum, we can determine all the key

ring parameters presented in this section.
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CHAPTER 3

MATERIALS AND FABRICATION

3.1 Introduction

The quality of an optical device is determined by two main factors: the purity of

the materials and the fidelity of fabrication. The dielectrics commonly available

in CMOS foundries include silicon (Si), silicon dioxide (SiO2), silicon nitride

(Si3N4), silicon oxynitride (SiON), high-k dielectrics, and germanium (Ge). For

monolithic integration with electronics, we are limited to the use of the above

materials. In this chapter we will discuss the relevant material parameters of the

films for low-loss waveguides as well as nonlinear optics. We also discuss the

fabrication challenges, techniques and methods used for Si3N4 optical devices

presented in this dissertation.

3.2 Material Parameters

The field of silicon photonics has focused on operation in the near infrared

wavelengths of the C-band centered at 1550 nm. In this section we will explore

the optical properties of the standard CMOS materials in this wavelength range.

For each material we will discuss the material growth and processing, refractive

index, transparency window, demonstrated propagation losses and nonlinear

properties.

The refractive index of the material comes directly from the linear suscepti-
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bility, χ(1), presented in equation 2.3 and can be found as:

n =
√
ǫ =

√

χ(1) + 1 (3.1)

with the assumption that χ(1) is real. If it is a complex number, the real part of χ(1)

should be substituted into equation 3.1 and the imaginary part is proportional

to the linear absorption losses, αL. As discussed in section 2.3, due to material

dispersion ǫ is a function of optical frequency and therefore n changes with opti-

cal wavelength. To accurately calculate the β values for a waveguide at different

wavelengths, we need to precisely know the refractive index at the frequency in

question. In order to model n (λ), we use the Sellmeier equation which takes the

form:

n (λ) =

√

1 +
A1λ2

λ2 − B1

+
A2λ2

λ2 − B2

+
A3λ2

λ2 − B3

+ · · · (3.2)

where Ai and Bi are coefficients found from experimental measurements.

Since all the materials considered in this chapter are centrosymmetric, the

χ(2) vanishes for the bulk approximation and the lowest nonlinear susceptibility

is the χ(3) which affects the polarization as shown in equation 2.4. In chapter 8,

an effective χ(2) from surface interactions will be discussed but for now this can

be ignored. The remaining nonlinear susceptibility gives rise to an intensity

dependent refractive index:

n (I) = n0 + n2I (3.3)

where n0 is the linear refractive index, I is the optical intensity such that I =

|E|2 and n2 is the nonlinear refractive index. Using equations 2.4 and 3.3, the

relationship between χ(3)and n2 can be derived as [23, 25]:

n2 =
3

8n0

Re
(

χ(3)
)

(3.4)

Pumping above the half bandgap of a material can lead to two-photon absorp-

tion (TPA): the simultaneous absorption of two photons such that the sum of
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their energies is greater than the band gap. The imaginary part of χ(3) is then

related to the two-photon absorption parameter, βtpa, defined as [25]:

βtpa =
3ω

4n0c
Im

(

χ(3)
)

(3.5)

3.2.1 Silicon

Silicon has become the workhorse of the microelectronics industry due to its

abundance and versatility. The vision of combining photonics with electronics

involves leveraging CMOS processing to place silicon waveguides on micro-

electronic chips [3, 4]. The vision of front-end optical integration would place

optics on the same device layer as electronics [37]. On the other hand, back-end

integration would require deposited films or wafer bonding [38]. As deposited

silicon is amorphous (a-Si) and can be annealed to form polycrystalline silicon

(poly-Si), we will consider the properties of these phases of Si as well.

The optical properties of crystalline silicon (c-Si) have been well studied.

The refractive index of the film at 1550 nm is 3.45 and the coefficients for the

Sellmeier equation can be found in most optical handbooks. Silicon’s high re-

fractive index enables the formation of sub-micron waveguides capable of very

tight bends when SiO2 is used as a cladding material. The intrinsic loss of the

material can be very low. Since the purity of silicon wafers is very good there

should be very few impurities thus minimizing scattering and absorption de-

fects.

The first integrated waveguides using silicon relied on a thick core and

a shallow etch to form a ridge waveguide. These waveguides have been

shown to demonstrate very low propagation losses on the order of 0.1 to
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0.4 dB cm−1 [39, 40, 41]. However, light is not tightly confined in these waveg-

uides. Therefore, they are unable to bend sharply and have a lower effective

nonlinearity. High confinement, channel waveguides (figure 2.2b) have been

demonstrated in silicon with dimensions of approximately 0.25 µm by 0.5 µm.

The losses for these waveguides are typically much higher on the order of 1 to

2 dB cm−1 [42, 43, 44, 45]. Silicon microresonators have also been extensively in-

vestigated with the largest Q for an integrated device being 4 × 105 [46] and for

a free-standing disc, 5 × 106 [47].

Silicon also has a large bulk nonlinearity at telecommunications wave-

lengths, with a value of n2 measured to be ∼4 × 10−14 cm2 W−1 [48, 49]. The pre-

viously mentioned high-index contrast also enables a very small modal volume

which in turn increases the effective nonlinearity as will be discussed in chap-

ter 4. Unfortunately, at telecom wavelengths silicon suffers from two-photon

absorption since its gap energy is 1.12 eV. The losses induced by TPA are rel-

atively small, however, the generated carriers lead to free carrier absorption

(FCA) which is deleterious to nonlinear processes. Much work has gone into

reducing the free-carrier lifetime [50] in order to mitigate such effects.

Most of the work in integrated photonics has until this point focused on the

silicon-on-insulator (SOI) platform. SOI is starting to become a popular sub-

strate in the microelectronics industry because it reduces capacitance and re-

sistance compared to bulk-Si CMOS. However, the SOI used in photonics in

general requires a buried oxide (BOX) layer of greater than 1 µm (including all

the devices with the lowest propagation loss [39, 40, 41, 42, 43, 44, 45]), as op-

posed to the thinner BOX layer (about 100 nm) used for electronics. An addi-

tional constraint to front-end integration is the actual chip space required for
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photonic devices compared to electronics devices. Nevertheless, recent works

have explored the possibility of using electronic substrates by a clever under-

cutting method in thin-BOX, SOI wafers [51] and bulk Si wafers [52, 53], as well

as a local oxidation method in bulk Si wafers [54].

Although the optical quality of poly-Si is poorer than c-Si, much work has

been done to demonstrate devices suitable for integrated photonics [55, 56]. The

main advantage of poly-Si over a-Si is the electrical properties which are suffi-

cient to make many of the electro-optic devices that make silicon photonics such

a promising field. Deposited a-Si must be hydrogenated in order to achieve low

waveguide losses [57]. In these waveguides, the nonlinearity has been shown

to be very strong [58, 59], however due to the poorer electrical properties, there

is no easy way to extract generated carriers.

3.2.2 Silicon Dioxide

The second material we will examine is silicon dioxide, SiO2. The development

of silica optical fibers in the last fifty years has dropped the optical propaga-

tion loss to 0.2 dB km−1. More recently, high-Q resonators using silica have been

demonstrated with microspheres [60] and on-chip with microtoroids [61]. Some

work has been done on doped-SiO2 as a core material for integrated waveg-

uides [62, 63], but it is normally used as a cladding material due to its low re-

fractive index, 1.44 @ 1550 nm, and low optical losses. Although silica is trans-

parent down to the ultraviolet, it begins to absorb at longer wavelengths beyond

2.5 µm [64].

The highest quality of SiO2 available on-chip is thermally grown from bulk
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Si. The growth kinetics are well-studied and rates are dependent on the atmo-

sphere (dry, O2, or wet, H2O) and temperature of the furnace process [65]. The

BOX layer of SOI wafers have thermally grown oxide, however, for the cladding

layer this is normally impossible since growth of SiO2 would consume the Si de-

vice layer. An oxide layer can be grown from Si3N4 [66, 67] as well, but this pro-

cess is very slow. SiO2 can also be deposited through chemical vapor deposition

(CVD). Both low-pressure (LPCVD) and plasma-enhanced (PECVD) recipes are

capable of producing high quality films. We will discuss this process in more

detail in section 3.3.4.

The band gap for SiO2 is greater than 9 eV and therefore it does not suf-

fer from significant nonlinear losses [25]. The strength of the silica nonlin-

earity is more than 2 orders of magnitude smaller than silicon estimated at

2 cm2 W−1 [25]. However, because of low propagation losses, negligible nonlin-

ear losses, and high-Q resonators, SiO2 has been a popular platform for demon-

strating many third-order nonlinear optical processes in fiber and resonators.

3.2.3 Silicon Nitride

Silicon nitride is a CMOS-compatible material that is commonly used in the

microelectronics industry for masking [65]. The material also has a few no-

table ceramic forms that are used for their mechanical strength and heat resis-

tant properties, most commonly in turbine engines [68]. There are a number of

methods for preparing the material including reaction bonding, hot-pressing or

sintering, nitridation of Si, sputtering, evaporation and CVD [69]. Dense and

bulk Si3N4 takes two crystalline forms with similar but slightly different prop-
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erties [68]. However, the CVD deposited thin films used here (with techniques

described in section 3.3.1) are amorphous in nature [68, 69]. The film can be

oxide-rich, creating SiON, silicon rich, SiN, or stoichiometric, Si3N4. The opti-

cal properties of the material are less well known than for SiO2 and Si. Philip

was the first to perform measurements of the dielectric constants [70], but no

data exists for energies below 1 eV. In section 4.2, we describe measurement for

n in the c-band and the calculation of Sellmeier coefficients. Additionally, the

deposition chemistry leads to dangling H and O bonds with the Si and N in the

films. These bonds lead to absorption peaks near the c-band with the strongest

centered at 1520 nm [71, 72] and can cause excess propagation losses for infrared

waveguides.

Previously, silicon nitride waveguides have been made using both LPCVD

and PECVD for operation at both visible and infrared. The earliest work ex-

amined slab waveguides in the visible for LPCVD films [73] with losses of

0.1 dB cm−1 and PECVD [74] with losses near 1 dB cm−1. The first measurement

of Si3N4 waveguides in the c-band was performed by Henry et al. [75], who

used LPCVD ridge waveguides to show losses down to 0.3 dB cm−1 after an an-

nealing step to reduce the absorption from the dangling Si-H bond.

There has been renewed interest in Si3N4 as the guiding material for inte-

grated photonics over the past decade. The first channel waveguides used thin

LPCVD films and demonstrated sub 1 dB cm−1 in the visible [76]. Other groups

have grown LPCVD films as thick as 250 nm before observing cracking of the

films due to stresses [77]. Losses as low as 0.1 dB cm−1 have been shown in

200 nm thick films at 1550 nm [78] after high temperature annealing. In these

waveguides, the optical mode is very delocalized and requires a thick BOX
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layer to prevent leakage into the Si substrate. Thicker films have been grown in

PECVD by playing with the deposition frequencies [79]. Losses in the infrared

for a waveguide core of 400 nm were shown to be 2.1 dB cm−1 [80]. Due to the

low optical losses, high-Q resonators have been shown in the visible [81, 82] and

in the infrared [83].

The material nonlinearities have not been well-characterized. Since the band

gap for Si3N4 is generally between 4.5 and 5 eV [84], depending on deposi-

tion, we can assume negligible TPA for infrared light. Since it is an electrical

insulator, the material does not support free-carriers and FCA is not a con-

cern. The strength of n2 was not known until very recently. In section 4.4, we

will explain in detail why it is expected that the nonlinear strength of Si3N4

should be between that of Si and SiO2 from the estimate given by Miller’s

rule [85]. Concurrently with measurements made for this dissertation, a value

of 2.5 × 10−19 m2 W−1 was reported for the n2 of Si3N4 [86]. The measurements

shown in section 4.4.2 are in good agreement with this value.

3.2.4 Materials Summary

We present a summary of the key material parameters presented in sections 3.2.1

to 3.2.3 in table 3.1. Although there are other materials available for use which

we have not covered in detail, these are the most commonly used in the Si

photonics community. We choose to use Si3N4 as the core material because

it comprises the best attributes of Si and SiO2 for integrated nonlinear optics.

As we will show, the low propagation losses and negligible nonlinear losses of

Si3N4 outweigh the stronger nonlinear parameter and tighter confinement in Si
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waveguides.

material Si SiO2 Si3N4

n @ 1550 nm 3.45 1.46 1.99
Eg 1.12 ∼ 9 ∼ 5

Transparency window (µm) 1.1-9 .13-3.5 .25-8
βtpa(cm GW−1) @ 1550 nm 0.79 << 0.01 ∼ 0

n2 (m2 W−1) @ 1550 nm (4 − 9)×10−18 (2 − 3)×10−20 2×10−19

Table 3.1: Relevant optical parameters for CMOS-compatible materials.

3.3 Fabrication

Our optical devices are fabricated on 4” silicon wafers which are much less ex-

pensive than the custom-made SOI used for silicon waveguides. We grow a

thermal oxide on the virgin Si wafer. Using a wet oxidation process at 1200 ◦C, a

4 to 5 µm BOX layer is formed. This thickness is sufficient to optically isolate the

waveguide from the silicon beneath. With the capacity of the furnace tubes, the

oxidation can be done for 100 wafers at a time which drives down processing

costs.

3.3.1 Deposition

We choose to use LPCVD to form our Si3N4 core layer. Although we must be

careful about film stress and cracking, LPCVD gives the lowest optical losses

demonstrated. We use a horizontal loading furnace tube and load the target

100 mm wafers with the thick BOX layer facing the back of the tube single-

spaced with two buffer wafers on either side. The deposition takes place at
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800 ◦C under 200 mTorr pressure. The two reacting gases are ammonia, NH3,

and dichlorosilane (DCS), SiH2Cl2 which combine to form Si3N4, H2 and HCl.

For the deposition step the flow rate of NH3 is 196 standard cubic centimeters

per minute (sccm) and 60 sccm for the DCS. The deposition process was opti-

mized for the microelectronics industry, which requires films which are a max-

imum of 200 nm. When thicker films are deposited and annealed, the stresses

lead to cracks [75, 87, 88] and make the films optically unusable. From our test-

ing, we find 400 nm to be the thickness limit before cracking for our modified

LPCVD process. The deposition rate drifts run to run but is close to 3.4 nm/min.

A typical deposition of 100 min yields films between 330 and 350 nm.

As discussed in section 5.3, we require a thicker Si3N4 core than is possible

from a single deposition. To overcome the cracking limit, we employ a ther-

mal cycling technique [89, 90]. After the initial deposition of between 350 and

400 nm, we allow the wafers to cool to room temperature. After a clean, the

wafers are annealed at 1200 ◦C in an ambient N2 environment for 3 hours. The

anneal serves two purposes for improving the optical quality of the film. First,

the deposition process described above results in the dangling H bonds men-

tioned in section 3.2.3. The high temperature anneal serves to outgas any excess

hydrogen or oxygen in the film leaving a more stoichiometrically pure Si3N4.

Second, the anneal also reduces stress which prevents the deposition of thicker

films. After allowing the wafer to cool again, we repeat the LPCVD deposition

so that the total thickness of Si3N4 reaches the design target. In principal this

process can be repeated, however, the thicker the film the more likely the wafer

is to break or form cracks during the anneal step.
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3.3.2 Lithography

Lithography is the process of transferring a designed pattern to the device layer.

For microfabrication the two major types of lithography or photolithography

and electron beam lithography (e-beam or EBL). Both lithographies require the

target wafer to be patterned with a resist (photoresist or e-beam resist respec-

tively) which is then exposed to the design. In photolithography, a pattern is

written on a fused quartz reticle patterned with chrome to serve as a photomask

with alternating transparent and blocked sections. The features written on this

mask are much larger than the final designed features. Using a projection sys-

tem called a stepper, UV light is used to expose the resist on the wafer. E-beam

lithography does not require the patterning of a separate mask. The tool uses a

collimated beam of electrons to expose the resist in a direct pattern write.

The advantage of using photolithography is the fast speed and small cost as-

sociated with transferring a pattern from a mask to a wafer. However, the draw-

backs to using photolithography are limited mask flexibility and the minimum

feature size of 0.5 µm (for the i-line process). E-beam allows a great amount of

flexibility with patterning a wafer because of the direct write capabilities. Fea-

ture sizes can also be much smaller than with photolithography. Minimum line

sizes depend on the specific resist used, but features less than 100 nm wide are

routinely possible. However, writing times for e-beam can be very long de-

pending on the pattern area, dose and current used. This can lead to very high

production costs and potential drift in tool performance during the course of a

single write. For the research purposes pursued in this dissertation, we choose

to use e-beam because of the flexibility, feature size and resolution advantages

over photolithography.

38



In order to design our pattern for lithography, we use computer aided de-

sign (CAD) to draw structures: rectangles for waveguides, circles for rings or

discs, and writing to number guides and mark chips. The most effective way to

ensure the fidelity of our designs is through scripting. For the waveguides writ-

ten here this was done using custom macro for the commercial software L-Edit

and later through the open-source gdspy package. An example layout is shown

in figure 3.1. The pattern is written to the graphic data system II (GDSII) for-

mat, a standard in the microelectronics industry. We then use LayoutBEAMER

software to transfer the GDSII pattern into the file format the e-beam tool uses.

Figure 3.1: An example layout for e-beam writing of devices. The green
boxes represent the individual e-beam fields. The red lines are
the waveguides and ring resonators. There is also writing in
green to label the waveguides, ring radius, gap distance and
waveguide width. The large writing in the top right corner
identifies the chip.

We use the JEOL-9300 tool which is a 100 keV e-beam tool. The current can

be adjusted from 500 pA to 10 nA. Larger currents lead to larger spot size for the

tool and worse resolution. For our fabrication, we set the current to 2 nA. The

dose delivered to the resist depends on the resist used and is defined in terms

of µC. The green boxes shown in figure 3.1 represent the field boundaries of the

tool. The field size determines how much area the tool writes before it moves

the location of the beam. For the JEOL-9300 this is 1 mm. In order to ensure

the highest quality devices, we make sure rings are written in a single field to
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avoid stitching errors. Stitching errors, such as the one shown in figure 3.2, oc-

cur at the field boundaries when the tool’s position drifts over time and causes

misalignment of the pattern at these points. They can also arise from the accu-

mulation of charge at the field boundaries which later in the write deflects the

beam.

Figure 3.2: Stitching error at an e-beam field boundary. The stitching re-
sults in misalignment of the waveguide across the boundary.
The offset can result in a shift in the waveguide center as shown
on the left, or a complete gap formation as shown on the right.
In both cases, the waveguide experiences high optical loss.

For our processing we choose to use MaN-2405 resist. Before applying the

resist, we clean the wafer using either a MOS clean or piranha clean (H2SO4 and

H2O2). We then spin Surpass 3000, an adhesion promoter, on the wafer to ensure

the resist will not peel off. We coat the wafer with MaN-2405, spinning at 1000

rpm for 30 s to achieve a resist thickness of approximately 700 nm. The thick-

ness is necessary to survive the etch process, but also limits the smallest feature

size because at high aspect ratios the resist can collapse. We then pre-bake the

resist for 1 min at 95 ◦C. In an attempt to mitigate charging at field boundaries,

we spin a chemical e-spacer on the wafer at 2000 rpm for 30 s prior to exposure.

40



To expose the resist, we use a dose between 900 and 1000 µC. The resist is devel-

oped using a Hamatech spin developer with MiF-726 for 90 s. Before etching,

we do a descum of the wafer to clean small amounts of resist that were not re-

moved with the developer. We also do a hard bake of the resist at 135 ◦C for 5

minutes. The hard bake serves to increase the selectivity of the resist during the

etch process. Baking at a higher temperature can cause the resist to reflow. Al-

though this process has been shown to reduce waveguide losses [89, 91], it can

cause mask erosion during etching which limits the control over waveguide di-

mensions and leads to trapezoidal waveguide cross-sections.

3.3.3 Etching

Once lithography is completed, we are left with a resist defined pattern on top

of our Si3N4 film. In order to define channel waveguides, we need to etch the

exposed portion of the film. The two principal methods for etching are wet

and dry etching. For Si3N4, wet etching in hot phosphoric acid, H3PO4, has

been commonly used with a rate of 10 nm/min depending on concentration and

temperature [92]. However, wet etching is generally isotropic and will under-

cut the Si3N4 under the resist mask. Therefore, we choose reactive-ion etching

(RIE), which is an anisotropic dry etch technique that will define rectangular

waveguides. The principal etch gases for Si3N4 RIE are the fluorine containing

CHF3 [93, 94], CF4 [95] and SF6 [96]. The gases can be combined with levels of

O2, CO2 or H2 to adjust the process etch rates or selectivity.

For devices processed here, we use a CHF3/O2 etch chemistry with an in-

ductively couple plasma (ICP)-RIE etcher using the PlasmaLab Systems Oxford
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100 tool. In this tool there are two radio frequency (RF) sources; one is induc-

tively coupled to the low-pressure gases, and the second is connected to the

sample chuck. The strong RF field on the gases creates a high density plasma by

causing the CHF3 to be stripped of electrons and disassociate into F and CHF+
2

ions among other possibilities. The reactive species are accelerated into the op-

positely charged sample wafer and modify the surface chemistry. The surface

reactions that etch Si3N4 are [93, 94]:

Si3N4 + 12F→ 3SiF4 + 2N2 (3.6a)

Si3N4 + 12CHF+2 → 3SiF4 + 6N2 + 6H2 + 12CF (3.6b)

with other combinations possible for the CHF+
2 reactions [93] which give less

stable fluorosilanes than the tetrafluorosilane, SiF4 [94]. The addition of O2 to

the etch gases gives a few added benefits. It increases the concentration of re-

active fluorine at the wafer surface by reacting with CHF3 to form more volatile

compounds such as CO and CO2 [94]. In doing so it helps block the formation

of polymers at the surface which slow the etching time and are deleterious to

optical performance. O2 also increases the selectivity of the etch to the e-beam

resist. This prevents mask erosion which can give severely angled sidewalls for

the waveguide.

In our process we flow 52 sccm of CHF3 with 4 sccm of O2. We etch the wafer

for a maximum of five minutes at a time to prevent the excessive formation of

polymers on the wafer surface. In between etches, an oxygen plasma clean of

the chamber is performed. Depending on the thickness of the Si3N4 film, we

may have to perform multiple etch steps given the etch rate is usually near

90 nm/min. For films greater than 600 nm thick, we also perform a back-side

etch of the wafer to prevent stresses of the wafer which can lead to cracking
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during the final anneal step. A cross-section SEM is shown in figure 3.3. In this

case, the wafer underwent the reflow process previously discussed and mask

erosion caused the sidewall angle to be greater than 20◦. More recently, this

angle has been decreased to less than 10◦. As mentioned in section 2.4.3, we are

accurately able to model these shapes so the consequences are manageable. Still,

for some applications more vertical sidewall angles are necessary and recent

work has shown this is possible with an improved etch process [97].

PECVD SiO2

LPCVD SiO2

Thermal SiO2

Si3N4

500 nm

Figure 3.3: Micrograph of a Si3N4 waveguide cross-section. The sam-
ple was prepared using a Transmission Electron Microscope to
view the waveguide profile. We can see a severe slope to the
sidewalls due to a combination of the etch process and mask
erosion.

3.3.4 Cladding

After etching, we strip the remaining resist using an asher in which oxygen

plasma removes the resist but leaves the substrate untouched. We are left with

exposed Si3N4. Since the second deposited layer has not been annealed, we re-

peat the thermal annealing step from section 3.3.1 on the unclad channel waveg-
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uides. In order to form buried channel waveguides we must clad the material

with SiO2. We are unable to use thermally grown SiO2 for the top cladding ma-

terial as is used with the substrate. In order to make symmetric waveguides it

is ideal that we then deposit a material which is as close in index to the ther-

mally grown SiO2 as possible. We use both methods of CVD for the cladding

mentioned in section 3.2.2.

The LPCVD SiO2 is called high-temperature oxide (HTO). HTO is deposited

by the reaction of 196 sccm N2O with 66 sccm DCS at 800 ◦C under pressure of

less than 100 mTorr. The deposited film is conformal to the surface of the wafer

which is essential for filling in small gaps between waveguide and resonator.

The quality of HTO is very high, with an index profile close to the thermally

grown SiO2. Unfortunately, the deposition rate is very slow, usually around

1 nm/min. Because of the cost associated with long use of the furnace tube, we

generally deposit between 250 and 500 nm of HTO on the waveguides as shown

in figure 3.3. This layer is thick enough to fill in most coupling gaps and since

the mode is tightly confined there is little interaction of light beyond the HTO

film.

In order to finish cladding the waveguides, we use a PECVD SiO2. This

process is done at a lower temperature, 400 ◦C, and the deposition rates,

120 nm/min, are much faster than HTO. In the PECVD chamber, 18 sccm SiH4

and 1800 sccm N2O are flown into the chamber and a 13.56 MHz, 100 W RF

power source induces the plasma. The ions disassociate and are recombined

on the film. Unlike HTO, the PECVD SiO2 is not conformal to the surface of

the wafer and can lead to air gaps at the interface of the film and waveguides.

Additionally, the index of the film is slightly higher than thermally grown SiO2
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because it is silicon rich. At the stage of our fabrication process in which we use

PECVD SiO2, these factors are unimportant due to the HTO already deposited

on the film.

3.3.5 Chip Processing

Following cladding, the waveguides are fully formed and require no further

processing. In order to test the devices, we need to cut out the individual die

on the wafer. We cover the wafer with a photoresist to protect it while dicing.

We then use a silicon blade dicing saw to very carefully cut through the facets

of the chips. The dicing step can be critical to insertion losses of the device.

Each chip can then be cleaned and tested directly or the facet may be polished

to improve coupling efficiencies. We use either a special type of slurry or soap

as lubrication while using diamond polish pads of various roughness loaded on

a polisher typically used for TEM sample preparation. The final result is a very

smooth facet and ideally low insertion loss. In some cases the polished facets

cause high back reflections and a fabry-pérot modulation of the transmission

spectrum.
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CHAPTER 4

SILICON NITRIDE WAVEGUIDES: LOSS REDUCTION AND

MEASUREMENT OF THE NONLINEARITY

4.1 Introduction

The key parameters for determining the strength of nonlinear interactions are

phase-matching, the interaction length, the material nonlinearity, and the opti-

cal intensity. In this chapter, we discuss the basic material properties needed

for proper design and simulation of our devices. First in section 4.2, we dis-

cuss the measuring of the refractive index and determination of Sellmeier co-

efficients. Precise knowledge of the material dispersion is necessary for device

design to meet the phase-matching condition, discussed in section 5.3. There

are many ways to calculate the nonlinear refractive index for bulk materials,

most notably a z-scan [23, 98]. However, for thin films the measurement is not

straightforward. In section 4.4 we will discuss self-phase modulation (SPM) in

Si3N4 waveguides in order to calculate the material n2.

Waveguide losses can be a limiting factor in nonlinear interactions, as well

as propagation length and resonator quality factor. The propagation loss di-

rectly determines the effective length [25] of a device, and determines the power

build-up in a resonator. In section 4.3, we describe methods for measuring the

propagation loss of waveguides, measure the losses for a number of film thick-

nesses and discuss methods for loss reduction.
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4.2 Refractive Index Measurements

In order to accurately model our devices, we need to know the refractive index

of the film we use. The previous optical data given for Si3N4 does not include

energies lower than 1 eV [70]. Additionally, given the many different methods

for deposition can yield slightly different chemical compositions it is important

for us to determine the material refractive index for our films. We do this using

ellipsometry which analyzes the polarization changes in light reflected from the

sample across a broad wavelength range. From the ellipsometric data we can fit

equation 3.2 to get Sellmeier coefficients for out nitride films. Figure 4.1 shows

the fit curve and the measured data points.
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Figure 4.1: Ellipsometric data points and Sellmeier fit for Si3N4. The blue
dots are the data points for the refractive index. The red curve
is generated from Sellmeier coefficients determined by a fit to
the measurement.
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4.3 Waveguide Losses

Losses arise from scattering, absorption, bending, and defects. Scattering loss

occurs at the interface between the core and cladding. When the interface is

not perfectly smooth light will scatter as ∆n2 and the inverse of the wavelength

squared [99, 100]. The sidewall smoothing techniques of oxidation [101], resist

reflow [47, 89], or improved etch chemistry are attempts to mitigate scattering

loss. Absorption losses arise in two ways. First is the intrinsic absorption loss

of the material, which for light at frequencies below the bandgap comes entirely

from defects to the material. The second cause of absorption loss is from surface

states at the interface between core and cladding [47, 102]. When a waveguide

is bent, there is the potential for radiation loss. The sharper the bend and the

looser the confinement, the larger the leakage of light. The bend loss becomes

a major concern when considering the minimum size resonators achievable on-

chip. For the waveguides made here, we can also have random losses across

the waveguide from defects such as film cracks mentioned in section 3.3.1 and

stitching spots as shown in figure 3.2.

There are a few well known methods for measuring the propagation loss of

optical waveguides. The first is the cut-back method. This method was orig-

inally developed in fiber where the length of the fiber was literally cut-back

as losses were continuously measured. In this way, an accurate per length loss

measurement can be calculated. In integrated structures, where it is not straight-

forward to reduce the length of the device by a known quantity, the cut-back

method involves measuring many waveguides of varying length. It is impor-

tant to have enough waveguides to overcome any random defects which may

influence the loss measurement in a single structure. As shown in equation 2.43,
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a measurement of a resonator Q can give a value for propagation loss. If the ra-

dius is large enough that bending loss is not a concern, this value is assumed

to be the same for a straight waveguide of the same cross-section. Propagation

loss can also be determined by measuring the scattering of light from a top view

of the waveguide using an IR camera [103]. Here the camera is calibrated to the

scattered light at the input, and then measures the scattered light again at var-

ious points along the length of the waveguide. The light detected by the cam-

era is numerically evaluated to give a normalized propagation loss. The final

method for calculating losses is the Fabry-Pérot method [104]. In this method,

the waveguide facets act as mirrors and the Fabry-Pérot maximum and mini-

mum are measured to derive the losses in the waveguide. In order to calculate

propagation losses in our devices, we focus on the first two methods: cut-back

and resonator.

4.3.1 Cut-Back Method

The insertion loss from input to output of an integrated photonic chip can be

broken up into coupling loss and propagation loss. The cut-back method en-

ables us to calculate and separate these losses. The method assumes that the

coupling loss into each waveguide is the same, and that propagation losses are

constant with distance (i.e. they are not dominated by point defects). As men-

tioned in section 3.3.1, the LPCVD Si3N4 films had previously been shown to

have the best losses but a cracking limit of 400 nm. In this section, we show

losses for three film thicknesses: 200 nm, the thickness of the best previous low

loss demonstrations [78]; 400 nm, the thickest single layer deposited films; and

725 nm to show that we can break the film stress limit without suffering severe
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optical losses.

The basic test-setup for optical devices includes an input tapered fiber, a

chuck holder for the chip and an output collection lens. A source (single fre-

quency or broadband) is sent through polarization paddles to select either TE

or TM light to couple into the chip. In this section, all measurements are done for

the TE polarization except where mentioned. The fiber holder is set on a stage

with three axis piezo-control to very carefully align the fiber to the chip facet.

The chip is placed on a chuck, which sits on a rotation stage, using double-sided

tape and the edge facet is aligned perpendicular to the fiber. Output coupling

can be done in two ways: mirroring the input fiber coupling, or using a lens to

collimate the output beam. For the propagation loss measurements, the output

is collected with a lens and sent to a power meter. A polarizer can be placed in

between the output and the power meter to check the polarization. The mea-

surements are normalized to the power when the chip is not in the setup and

the fiber output is coupled directly to the lens.

We pattern waveguides on the 200 nm films with widths of 1.1, 1.8 and

2.2 µm and variable lengths between 1 and 4 cm. The data is shown in figure 4.2

with large optical losses in comparison to previous results. The higher than ex-

pected losses could come from a few areas. First, since the loss decreases with

width, the etch chemistry for these first generation of waveguides was proba-

bly not optimized leaving a rougher sidewall and inducing more loss. Second,

the confinement in such thin waveguides is very poor. Therefore, at waveguide

bends, a significant portion of the mode will overlap with the sidewall (exacer-

bating the deleterious effects of the poor etch), and radiation could cause more

loss than theoretically expected.
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Figure 4.2: Propagation losses for 200 nm thick waveguide of varying
widths. The losses decrease for the wider wavguides but are
still 2.1, 1.0 and 0.9 dB cm−1 for the 1.1, 1.8 and 2.2 µm wide
guides respectively.

We push the film deposition to the cracking limit to get a Si3N4 core thickness

of 400 nm. We pattern waveguides 1.5 µm in width and of varying lengths in a

paper clip formation. The propagation losses for these devices is 1 dB cm−1 as

shown in figure 4.3. For these devices, we do not have to worry about increased

losses at the bends because the larger core gives a tighter confinement. The

results for films of this thickness are noisy because cracks that develop in the

film cause point defects in the waveguides. The coupling loss for this device

can also be calculated from the y -intercept of the fit. We calculate this value to

be 5 dB per facet.

The multilayer deposition process described in section 3.3.1 enables Si3N4

films greater than 400 nm. The major challenge in processing these films was to

ensure propagation losses did not dramatically increase. The concerns include

excess losses caused by the interlayer boundary, etch mask erosion and film

frailty for processing. In order to achieve large waveguide lengths while main-
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Figure 4.3: Propagation losses for 400 nm thick waveguides. The losses
are shown for 1.5 µm waveguides. The linear fit gives losses of
1 dB cm−1 with coupling loss of 10 dB.

taining a small footprint, we designed spiral waveguides shown in figure 4.4.

The design has the added benefit of avoiding stitching errors from the e-beam

write.

(a) (b)

Figure 4.4: Spiral designs for small footprint long waveguides. a. A
scanning electron micrograph of a single spiral. The device is
contained entirely within an e-beam field. b. A photograph
of an integrated photonic chip, showing many different spirals
with waveguides as long as 25 cm.
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We pattern 1.5 µm wide waveguides on the 725 nm films. The waveguides

vary in length from 1 to 10 cm. The losses are plotted in figure 4.5 and are mea-

sured to be 0.51 dB cm−1 with a coupling loss of only 3 dB. The improvement in

losses compared to previous efforts on thinner films is due to improved process-

ing for deposition, patterning and etching. Because with thicker core layers the

light is more confined to the Si3N4 and the phase-matching conditions can be

met, the waveguides from these results are used for the nonlinear experiments

discussed in chapter 5.
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Figure 4.5: Propagation losses for thick film Si3N4 waveguides. Here we
plot the losses for waveguides with a 725 by 1500 nm cross-
section. The losses of 0.51 dB cm−1 are the first demonstration
of low-loss, high-confinement Si3N4 waveguides at telecom-
munications wavelengths.

4.3.2 Resonator Losses

The second method for loss calculation is from the transmission spectrum of

microring resonators. From equation 2.43, the intrinsic Q of a device is directly

related to the propagation loss. The transmission spectrum of a device gives
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QL from equation 2.40b and the 3 dB linewidth of the resonance. With accurate

knowledge of this value, the normalized minimum transmission and the cou-

pling state (over-, under- or critical-coupling), we can calculate Qi and therefore

the losses.
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Figure 4.6: Transmission spectrum for a high-Q resonator. The blue x’s
are measured data and the red curve is a Lorentzian with pa-
rameters fit to the data. The linewidth of the device is 1.2 pm
which gives a QL of 1.23 × 106.

In figure 4.6, we plot data from a spectral scan of a measured resonance. We

fit the parameters of sample Lorentzian until we get good agreement with the

measurement. When a ring is under-coupled, backscattering causes the clock-

wise and counter-clockwise modes to split. When this splitting is large, the

resonance peaks separate into two distinct lines. However, in this case, the

modes are nearly degenerate and causes only slight broadening of the mea-

sured linewidth. We can see the roll-off from the fit is not nearly as sharp as

the measurement. Therefore, we can say the Q of the fit is the minimum for the

actual resonator and put an upper bound on waveguide losses. For this case,

the intrinsic Q is 3.1 × 106, which gives from equation 2.43 a loss of less than
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0.11 dB cm−1. By a careful analysis of the change in resonator linewidth as a

function of power, a differentiation between the scattering loss and absorption

loss can also be made [89, 105]. For our Si3N4, we have previously shown that

for high-Q resonators roughly half the loss can be attributed to each factor [89].

4.4 Material Nonlinearity

As discussed in section 3.2, the nonlinear refractive index is related to the real

part of the material parameter χ(3). For materials in which the nonlinearity has

not been measured, an accurate estimate can be made based on the linear re-

fractive index [85] or the band gap of the material [106]. A derivation of Miller’s

rule for calculating n2 in SI units is given:

n2 =
160π2

cn2
0

[

χ(1)
]4

(4.1)

where χ(1) is in electrostatic units. From equation 4.1, we derive a theoretical

value for n2 at 1550 nm to be 4 × 10−19 m2 W−1. A plot showing Miller’s rule as

a function of index is shown in figure 4.7∗. The measured values for various

glasses are plotted against the fitted rule and show good agreement. We have

also delineated where Si3N4 falls on this curve.

The standard technique for measuring the real and imaginary parts of χ(3) in

bulk materials is the z-scan technique [23, 98]. In thin films a z-scan becomes

impractical and different techniques must be used to determine the n2 and βtpa.

In other material, self-phase modulation has been used to determine these val-

ues for waveguides [107, 108, 109, 110]. Here, we follow a similar approach and

calculate n2 at 800 nm.

∗The figure is adopted with permission from [85]
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Figure 4.7: Nonlinear refractive index as a function of linear refractive
index for a number of glasses. This figure plots the n2 for a
number of glasses. The solid curve is a plot of Miller’s Rule,
equation 4.1. We have pointed out where Si3N4 would fall on
the theoretical curve.

4.4.1 Self-Phase Modulation

Self-phase modulation (SPM) arises from the nonlinear phase-shift induced by

the χ(3) susceptibility with strong optical intensities. For an optical pulse, this

instantaneous phase delay leads to an intensity dependent spectral broadening

of the input. By measuring the broadening for different intensities and calculat-

ing the phase shift, we are able to use equations 4.3 and 4.4 to determine n2 for

Si3N4.

We performed the experiments on the waveguides measured to calculate
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losses for 200 nm films from section 4.3.1. The optical source is a titanium sap-

phire pulsed laser system. The repetition rate is 86 MHz and the pulse width is

measured to be 91 fs. We use a variable attenuator to control the input power

to our waveguides. The coupling set-up is approximately the opposite of that

used for loss measurements. We use a free-space objective to couple light into

the waveguide and at the output collect the light with a lensed fiber. A short

fiber takes the waveguide output to an optical spectrum analyzer (OSA) to view

the spectral broadening of the pulse. We ensure the fiber is short enough so that

the fiber does not induce any SPM [107].
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Figure 4.8: Self-phase modulation in a Si3N4 waveguide. A short pulse
from a titanium sapphire laser centered at 820 nm is coupled
into our 9 mm long waveguide. We see increased spectral
broadening with larger optical intensity.

As we couple light with increased intensity, we induce larger and larger

nonlinear phase-shifts and increase the spectral broadening. Figure 4.8 shows

the results for a 9 mm long waveguide. The characteristic peaks and val-

leys are linearly related to φNL
max, the maximum nonlinear phase shift, such that

φNL
max = (m + 0.5) π where m is the number of dips in the spectrum [25]. We can
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compare this to the measurement of the spectral broadening for an accurate cal-

culation of the phase shift.

4.4.2 Calculation of n2

By estimating the maximum phase shift from the spectral plot in figure 4.8, we

can derive a value for n2 using the following relation:

φNL
max = γP0Le f f (4.2)

where P0 is the peak input power to the waveguide, Le f f is the effective interac-

tion length and γ is the nonlinear parameter defined as:

γ =
ωn2

cAe f f

(4.3)

with Ae f f , the effective modal area. We use an effective length to take into ac-

count propagation losses for our device and define this value as:

Le f f =
1 − e−αL

α
(4.4)

We estimate the φNL
max with 1.2 kW to be 2π. The waveguide length is 9 mm

and the propagation loss of 6 dB cm−1 gives an Le f f of 5 mm. The effective area

of the mode is 3.8 × 10−13 m2 from simulation, and we take the center wave-

length to be 820 nm. Because the mode is loosely confined to the waveguide,

we take into account that only 70% of the power is in the Si3N4 core. These val-

ues yield the value of n2 as 1.1 × 10−19 m2 W−1, which agrees well with the only

other measurement [86] and is within range of the theoretical results shown in

figure 4.7.
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A second way of using SPM to measure the material n2 is from a careful mea-

surement of the linewidth broadening. The linewidth broadening is directly re-

lated to φNL
max, and therefore we expect linear increase with pump power. We

perform a second experiment using waveguides with a 400 by 1200 nm cross-

section. These guides confine more light to the Si3N4 and have lower propaga-

tion losses, which leads to lower pump powers for the same phase shifts from

the first experiment. We plot the linewidth broadening as a function of input

power in figure 4.9.
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Figure 4.9: Pulse linewidth broadening from SPM in Si3N4 waveg-
uides. The red diamonds are measurements from a 1.6 cm,
400 by 1200 nm waveguide with variable input pulse powers.
The blue line is a theoretical fit using the model from equa-
tion 4.5. A good fit is reached when the n2 value is set to
1.2 × 10−19 m2 W−1.

The theoretical broadening is linearly proportional to n2 for a Gaussian pulse

as shown in [109]:

δλ = δλ0 + 4

√

2 ln 2

e

λn2Le f f P

cAe f f tp

(4.5)

where δλ0 is the input pulse bandwidth and tp is the pulse linewidth. With an

initial pulse bandwidth of 5 nm, we use a value of n2 = 1.2 × 10−19 m2 W−1 for
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the fit to the measured data shown in figure 4.9.

60



CHAPTER 5

FOUR-WAVE MIXING

5.1 Introduction

Four-wave mixing (FWM) is a third order nonlinear process. As the name sug-

gests, the process involves four waves, usually designated as two pump waves,

a signal and an idler wave. The process is parametric in that when the two

pump photons are annihilated strict energy conservation dictates the frequen-

cies of the converted signal and idler waves. Degenerate FWM occurs when the

pump photons are the same frequency; in this case a strong single pump source

can provide both photons for the nonlinear interaction. With a simple pump in-

put, FWM occurs with the mixing of the pump and the background noise. The

process can also have a seeded signal wave. In this case the signal can experi-

ence parametric gain and the information on the frequency will be converted to

the idler wavelength.∗

Although the process will occur in bulk materials with overlapped

beams [23], FWM becomes much more efficient over the long interactions

lengths provided in waveguides. In optical fibers very efficient parametric am-

plification and frequency conversion have been demonstrated [111]. In silicon-

based photonics, early demonstrations showed very weak conversion efficien-

cies [112, 113] over a limited bandwidth. By using phase-matched waveg-

uides, parametric gain was demonstrated on-chip using a pulsed source [19].

However, because of the TPA and FCA in silicon waveguides, the conver-

sion efficiency for continuous-wave (CW) pumping is shown to be signifi-

∗Portions of this chapter are reproduced with permission from [90]
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cantly lower [114], but can be very broad-band [115] due to the short interac-

tion length. Other materials have been used for FWM in integrated photon-

ics including doped glass [116], which suffers from a weaker nonlinearity, and

chalcogenides [117], which are more complicated for fabrication and struggle

with high input powers (thus limiting their efficiency). A number of applica-

tions for the FWM have been explored recently, including high-speed wave-

length conversion [118], high data rate broadcasting [119], tunable optical de-

lay [120], signal regeneration [20], and an optical time-lens [22]. As previously

discussed, we believe the use of Si3N4 will be able to overcome the limitations of

other materials to provide a robust system for broadband parametric gain and

high efficiency frequency conversion.

5.2 Coupled Amplitude Equations

The FWM effect arises directly from the nonlinear polarization induced by χ(3)

in the material when we consider the interactions between waves at four fre-

quencies. In chapter 2, we introduced the optical susceptibilities in the case for

only a single field. Considering multiple fields we can rewrite equation 2.5c

as [23]:

P (r, t) =
∑

n

Pn (r) e jωnt
+ c.c. (5.1a)

Pn (r) = χ(1)
n En + PNL

n (5.1b)

PNL
n =

∑

i, j,k

ǫ0χ
(3)

(

ωn = ωi + ω j + ωk : ωi, ω j, ωk

)

EiE jEk (5.1c)

where we have ignored the χ(2) contribution to PNL
n and note that the subscripts

represent individual frequencies. From equation 5.1c, we note the subscripts i,
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j, and k can represent any field such that their sum (or difference) add up to the

frequency ωn. For the case when we have multiple fields interacting, we want

to rewrite the polarization of each individual field in the form:

PNL
n = Pn (z) e j(βnz−ωnt) (5.2)

for a wave propagating in the z-direction. We can find Pn (z) from equation 5.1c

and substitute this into the nonlinear wave equation, equation 2.10. From here,

we can then solve for the coupled amplitude equations which will take the gen-

eral form [23]:

dEn

dz
=

j2πωn

nc
PNL

n (5.3)

where En is the field amplitude at frequency ωn and is related to the intensity by

In = ncǫ0 |En|2 /2.

In the degenerate case of FWM (DFWM), the frequencies for the idler wave,

ωi, is defined by the pump and signal frequencies such thatωi = 2ωp−ωs. We can

write the coupled amplitude equations considering a strong undepleted pump

and low power signal and idler waves as [25, 121, 122, 123]:

dEp

dz
= −
αp

2
Ep + jγ

∣

∣

∣Ep

∣

∣

∣

2
Ep (5.4a)

dEs

dz
= −αs

2
Es + 2 jγ

∣

∣

∣Ep

∣

∣

∣

2
Es + γE

2
pE∗i e− j∆βz (5.4b)

dEi

dz
= −αi

2
Ei + 2 jγ

∣

∣

∣Ep

∣

∣

∣

2
Ei + γE

2
pE∗se

− j∆βz (5.4c)

where αn represents the losses at frequency ωn which for Si3N4 can be assumed

to arise only from linear loss mechanisms and we have assumed that the Ae f f

for all waves is the same (this is lumped into the γ parameter defined in equa-

tion 4.3). The first term is responsible for the linear loss in the waveguide.

The second term of 5.4a represents the SPM, while the second term for equa-

tions 5.4b and 5.4c are from cross-phase modulation (XPM) of the pump on the
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signal and idler respectively. All these terms induce a nonlinear phase-shift on

the respective waves. The final term in equations 5.4b and 5.4c is the energy

transfer term, which is responsible for parametric gain and wavelength con-

version. The energy transfer is dependent on the linear phase-mismatch, ∆β,

defined as:

∆β = 2βp − βs − βi (5.5)

The term arises from the Pn (z) term in equation 5.2 when substituted into the

coupled amplitude equations.

To find the final phase-matching condition for an efficient FWM process we

must take into account not only the linear phase-shift but also the nonlinear

phase-shift from SPM and XPM. Considering the case for a strong pump and

weak signal and idler waves, the net phase-matching term can be shown to be

approximately [25, 111, 122, 19]:

κ = 2γPp − ∆β (5.6)

As we can see from equations 5.5 and 5.6, meeting the phase-matching con-

dition is dependent both on pump power and the propagation constants at each

wave involved. In order for κ to be zero, we must achieve anomalous group

velocity dispersion (i.e. a positive D from equation 2.29 or a negative β2 from

equation 2.28). Since the material dispersion is normal, we must use the waveg-

uide dispersion (or modal dispersion) as counterbalance [31, 117].
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5.3 Dispersion Engineering

In this section we will show that by changing the dimensions of the waveguide,

we can drastically change the dispersion curves. As discussed in the previ-

ous section, we require anomalous dispersion at the pump wavelength. For

relatively low pump intensities, the phase-matching term reduces to the linear

phase-matching condition which occurs when pumping at a zero group veloc-

ity dispersion (ZGVD) point. We show sample dispersion curves for 1500 nm

wide Si3N4 waveguides of various core thickness in figure 5.1. For the very thin

waveguide cores the dispersion remains very normal which leads to an ineffi-

cient nonlinear process. From the simulated curves, we estimated the need for

guide thickness of more than 700 nm to achieve anomalous dispersion in the

c-band.
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Figure 5.1: Group velocity dispersion for Si3N4 with variable core thick-
ness. The waveguides all have the same width, 1500 nm, but
the core thickness drastically shifts the dispersion curve. Al-
though the width also affects the curves, to achieve anomalous
dispersion at a wavelength of 1550 nm the core thickness must
be at least 700 nm.
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After the deposition process described in section 3.3.1 for thick films was de-

veloped, we could simulate how width changes the dispersion curves for a core

thickness of 725 nm and with a sidewall angle of 10◦ from the etch described

in section 3.3.3. We see in figure 5.2 for relatively small changes in the waveg-

uide width we can alter the dispersion curve and shift the ZGVD wavelength.

Additionally, the wider waveguides have a flatter dispersion, which is neces-

sary to phase-match at a variety of pump wavelengths. Precise control over the

width is critical to meet the phase-matching condition of equation 5.6.
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Figure 5.2: Dispersion curves for varying waveguide width. The waveg-
uides all share a core thickness of 725 nm and a sidewall angle
10◦. For the narrower waveguides the ZGVD wavelength is
pushed closer to 1550 nm. For wider waveguides the disper-
sion curve becomes flatter.

The dispersion can also be altered in a curved waveguide where a sharp

bend deforms the mode from the straight waveguide case. In figure 5.3, we

view the change in the dispersion curve across a number of bend radii. The

tighter the bend radius, the more normal the dispersion becomes as the optical

mode is pulled into the SiO2 cladding. These curves become critical for the

devices discussed in chapter 6.
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Figure 5.3: Dispersion curves for variable bend radii. All the waveg-
uides have a cross-section of 725 by 1600 nm and a 10◦ sidewall
angle. For tighter bending radii, the dispersion drops signif-
icantly and can go from anomalous with no bend to normal
with a 20 µm bend at the wavelength of interest.

5.4 Wavelength Conversion

The conversion efficiency η from signal to idler wave is commonly defined

as η =
Pout

i

Pin
s

and can be measured by comparing the power of the signal and

idler at the output of a waveguide with accurate knowledge of the propagation

losses. By solving the coupled amplitude equations and assuming an unde-

pleted pump. We can solve for the conversion efficiency [25, 111, 122]:

η =

(

γPp

g
sinh

(

gLe f f

)

)2

(5.7a)

g =

√

(

γPp

)2
−

(

κ

2

)2

(5.7b)

where g is known as the parametric gain coefficient and Pp is the pump power

at the waveguide input.

We measure the conversion efficiency for a waveguide with a cross-section
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of 725 by 1450 nm with a 23◦ sidewall angle. The waveguide length is 6.2 cm and

has linear loss as described in section 4.3.1 of 0.5 dB cm−1. The waveguide cross-

section gives a ZGVD wavelength of 1565 nm. Therefore, we center the pump

laser at 1535 nm, just into the anomalous regime. The signal will be tuned from

1400 to 1525 nm which create idler waves from 1699 to 1545 nm respectively.

WDM

EO 

Modulator
EDFAPump

Signal

Pattern

Generator

OSA

1535 nm

Figure 5.4: Experimental set-up for FWM in Si3N4 waveguides. The
pump wavelength is kept fixed and is modulated and ampli-
fied to achieve large peak powers. The signal is tuned across
a wide wavelength range. Using a multiplexer the beams are
combined and coupled into the chip. With polarization rota-
tors, we are able to independently ensure the polarizations for
pump and signal are properly set and aligned. The output from
the chip is collimated and sent to an OSA for measurements.

Figure 5.4 shows the experimental set-up for measuring the wavelength con-

version. We use an electro-optic modulator to increase the peak power of the

pump during operation. The pump is modulated at 1 MHz with a duty cycle

100:1 created by a pattern generator. This leads to 10 ns of “on” pump for every

1 µs. The pump intensity is increased using an erbium doped fiber amplifier

(EDFA). We use a multiplexer to combine the pump and signal beams and a

tapered fiber to couple into the chip. The waveguide output is collected with

a lens and collimated to an optical fiber. We use an optical spectrum analyzer

(OSA) to measure the output power for the signal and idler waves.

In figure 5.5, we plot the measured conversion efficiency as a function of
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Figure 5.5: Signal to idler conversion efficiency in a Si3N4 waveguide.
With a pump centered at 1535 nm and with a peak power of
20 W the FWM signal to idler conversion efficiency is plotted
for the generated idler wavelengths. The red curve is the simu-
lated efficiency and shows good agreement with the measured
blue diamonds.

idler wavelength. On this graph we have corrected for the modulation on the

pump to increase the raw efficiency measurements by the duty cycle. The aver-

age pump power in the waveguide for this measurement is 200 mW which leads

to a peak power of 20 W. We see broadband conversion, with a 3 dB point more

than 90 nm from the pump. Since the efficiency is symmetric about the pump,

this gives a total conversion bandwidth of over 180 nm which can only result

from the strong phase-matching. We also plot the theoretical conversion effi-

ciency for our peak pump power assuming an n2 of 2 × 10−19 m2 W−1. The good

agreement demonstrates accurate modeling of the dispersion and estimate of

the nonlinear refractive index.
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5.5 Parametric Gain

With the high conversion efficiencies experienced by the idler wave shown in

figure 5.5, we also expect to observe gain on the signal wave. The on/off

gain is defined as the output signal power when the pump is on compared

to the output signal with no pump. The gain of the device is defined slightly

differently, by comparing the input signal power to the output signal power.

Working from the coupled amplitude equations, the gain, G, can be calculated

as [25, 111, 19, 122]:

G =
Pout

s

Pin
s

= 1 + η = 1 +

(

γPp

g
sinh

(

gLe f f

)

)2

(5.8)

If the phase-matching is poor or the value of g is small, we expect to see gen-

eration of a weak idler and little signal gain. In this case both the conversion

efficiency and idler grow as P2
p which can be described as the weak conver-

sion approximation. However, if we assume we have ideal phase-matching (i.e.

κ → 0) and gLe f f becomes much greater than 1, the gain becomes [25]:

G ≈ 1

4
e2γPpLe f f (5.9)

The experiment performed in section 5.4 has large peak powers but rela-

tively low average power. The conversion efficiency for the average power case

is closer to −20 dB and therefore, we cannot resolve the signal gain with the

OSA. In order to directly measure on/off gain, we filter the signal wavelength

from the output and send it to a high-speed photodetector. We view the result-

ing signal on an oscilloscope, figure 5.6. We measure an on/off gain of 3.8 dB

showing the strong peak pump powers induce parametric gain of the signal.

In order to directly measure the signal gain across a broad-band spectrum,

we modify the experimental set-up shown in figure 5.4. We now modulate both
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Figure 5.6: Temporal visualization of parametric gain. By filtering the
signal wavelength from the experiment in section 5.4, we can
use an oscilloscope to measure the on/off parametric gain.

the pump and signal at 5 MHz with the same 100:1 duty cycle to generate 2 ns

”on” states. The pump is tuned to 1550 nm and the signal is varied between

1475 and 1625 nm. We use a tunable optical delay to ensure the “on” state for

both pump and signal to overlap in the waveguide. We again use an OSA to

measure the signal power with the pump on and compare that to the power

with the pump off.

The peak pump power for the experiment is 24 W. In figure 5.7, we plot the

measured on/off gain as a function of wavelength. The waveguide’s propaga-

tion loss is 3 dB, therefore, any on/off gain greater than this value results in a net

gain. The waveguide is therefore behaving as a broadband parametric amplifier

covering more than 55 nm.
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Figure 5.7: Signal gain as a function of wavelength. The measured on/off
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through the waveguide superimposed. Any points residing
above this line demonstrate net parametric gain through the
waveguide. The simulated parametric gain is plotted as well
showing good agreement with experiment.
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CHAPTER 6

PARAMETRIC OSCILLATION

6.1 Introduction

Silicon-based optical amplification has been achieved through stimulated Ra-

man scattering [6, 124, 125], parametric mixing [19] and by silicon nanocrys-

tals [126] or nanopatterned silicon [127]. Losses in most of these structures

have prevented oscillation. Raman oscillators have been demonstrated [128,

129, 130], but with a narrow gain bandwidth insufficient for WDM.∗

As in lasing, optical parametric oscillation (OPO) occurs when the round-trip

parametric gain exceeds the loss in a cavity. The first OPO exploited parametric

gain from a χ(2) crystal placed inside a large free-space cavity [131]. By tuning

the size of the cavity in this set-up the generated frequencies can be selectively

tuned [23]. In this chapter, we present a different approach in order to make

an integrated OPO. In section 5.5, we demonstrated parametric gain in a Si3N4

waveguide utilizing a χ(3) process. As shown in section 4.3.2, the low optical

losses in Si3N4 can be translated into high-Q resonators. Here, we will discuss

the process of optical parametric oscillation induced by FWM-base parametric

gain for Si3N4 ring resonators. We will examine the threshold pump power both

theoretically and experimentally, and discuss the cascading process that occurs

during oscillation. The microresonator based OPO can also be used to generate

an optical frequency comb. In section 6.4, we examine this process and look at

broadband combs and combs centered at different wavelengths.

∗Portions of this chapter are reproduced with permission from [90]
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6.2 FWM-based Optical Parametric Oscillation

By achieving phase-matching in waveguides and with sufficient pump power

and interaction length we are able to achieve parametric gain in straight Si3N4

waveguides. By using an optical resonator, the power requirement and device

footprint for achieving gain can be reduced due to the enhancement of the opti-

cal field (as in equation 2.49). When all interacting waves of the DFWM process

are on resonance, we get an even greater enhancement of the nonlinear pro-

cess [116, 132, 133] and generate signal and idler waves from the background

noise that overcome the cavity loss. Because the FWM wavelengths are strictly

determined by energy conservation, phase-matching in the microresonator en-

ables the cavity modes to be evenly spaced in frequency and coincide with the

generated wavelengths.

When a pump laser is tuned to a cavity resonance (figure 6.1), the device is

capable of generating simultaneous parametric oscillations at signal and idler

waves. The FWM process can cascade generating new wavelengths at multiple

resonances. High-Q CaF2 toroidal resonators [134] and silica microtoroids [135]

and microspheres [136] have shown parametric oscillation based on this pro-

cess. However, because these materials have low nonlinearities, the Q neces-

sary for operation is extremely high. As a result, these devices are sensitive to

perturbations and not conducive to on-chip integration. Operation requires a

purged N2 environment and delicate tapered-fiber coupling.

A microring resonator using phase-matched design waveguides discussed

in section 5.3 is used to create an OPO. The first measured resonator has a 20 µm

radius with a cross-section of 727 by 1580 nm. The device has a QL of 100,000,

74



λλ

pump

Figure 6.1: On-chip optical parametric oscillation. A single pump laser
tuned to the resonance of a Si3N4 microring allows the gener-
ation of numerous new wavelengths. As the pump power is
increased by the field enhancement of the ring, the parametric
gain overcomes the round trip loss and neighboring resonances
begin oscillations. The pump and generated frequencies are
coupled out of the ring and back to the bus waveguide.

and the free spectral range is 9.4 nm (1.17 THz), giving a finesse of over 600. We

use a tunable laser initially centered 1560.7 nm and amplify the emitted light

using a high power EDFA. Before coupling into our waveguides, we filter out

the amplified spontaneous emission (ASE) of the EDFA to get a cleaner out-

put spectrum and to prevent any ASE noise from seeding a four-wave mixing

process in the cavity. We collect the output from the waveguide with a fiber

and view the results with an OSA. We observe oscillations initially in the sec-

ond cavity mode (the m±2 modes) on either side of the pump frequency (cavity

mode “m”). We show a sample output spectrum in figure 6.2. Here, the modes

“fill-in” via the cascaded four-wave mixing process as the pump power in the

resonator is increased. The power dropped into the ring at this point is 150 mW.

To show the flexibility of frequency spacing, we perform the same experi-

ment on a ring with a different radius. We use a ring with a 58 µm radius and

a cross-section of 711 by 1700 nm, giving anomalous GVD in the C-band and

a ZGVD wavelength of 1610 nm. The ring has a QL of 500,000 and a FSR of
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Figure 6.2: Demonstration of optical parametric oscillation in a 20 µm
ring. Pumping near 1561 nm, we generate 21 new wavelengths
over a 200 nm span with spacing equivalent to the ring FSR.

403 GHz. In figure 6.3, we plot the measured spectrum as a function of dropped

pump power to show how the generated oscillations change as a function of

power. We see the initial oscillation at frequencies near the peak of the the-

oretical parametric gain and with increased power the process cascading and

the modes filling. By increasing the pump power and then slowly tuning the

pump frequency deeper into the thermally shifted resonance, it is possible to

achieve a soft “thermal lock” in which the cavity heating is countered by diffu-

sive cooling [137], and the coupled power remains constant. At an input power

of 310 mW, the output spectrum with a broadband flat response shown in fig-

ure 6.4 is observed. Eighty-seven new frequencies are generated between 1450

and 1750 nm, corresponding to wavelengths covering the S, C, L, and U com-

munication bands. In this case, the cascaded oscillations have not only been

mixed through a DFWM process but also through non-degenerate FWM creat-

ing a frequency comb discussed in more detail in section 6.4. The suitability of

the generated comb as a multiple frequency source is discussed in greater detail
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Figure 6.3: Generated spectrum from a microresonator optical paramet-
ric pump power with varying input powers. We observe the
first oscillations at the peak of the parametric gain spectrum.
As we increase the power, more and more resonator modes os-
cillate as the FWM process is cascaded and threshold powers
are reached for more wavelengths.

in chapter 7.
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Figure 6.4: Flat broadband multiple wavelength generation. Using a
58 µm radius ring and pumping at 1557.8 nm, 87 wavelengths
are generated with equal spacing. By using each line as a car-
rier frequency, the source can be used to drive an on-chip WDM
network.

6.3 Threshold Power

We can theoretically calculate the threshold power for the ring resonator by

equating the parametric gain from equation 5.9 with the round trip power loss

from 2.35. This gives the condition for the pump power:

2γPp = α (6.1)

and if we assume a critically coupled cavity and use the resonant enhancement

factor from equation 2.49, the necessary power input to the cavity is shown to

be:

Pt =
2π2n2

gRAe f f

λ0n2Q2
i

(6.2)

where Pt is the threshold power. This equation is in agreement with deriving an

equation for the threshold power using coupled mode theory [134] and by cal-

culating the power needed to shift the resonance by one cavity linewidth with
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the static Kerr effect [138]. The important thing to note from equation 6.2 is that

the theoretical threshold power is proportional to ring radius and inversely pro-

portional to the quality factor. At small radii, a trade off between Q and radius

exists with smaller rings having lower Q due to a combination of radiation and

extra scattering and absorption from the increased modal overlap with the side-

walls. For larger rings, the Q does not continue to increase with the radius and

subsequently the threshold power for larger rings will begin to increase linearly

with physical size.
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Figure 6.5: Measurement of the oscillation threshold. The output power
in the first generated mode is compared to the pump power. In
this device, parametric oscillation occurs with 50 mW of pump
power and the subsequent slope efficiency is 2%.

We experimentally measured the threshold power for a 40 µm ring with a

QL of 200,000. We monitored the power of the first generated frequency while

increasing the pump power. We measure an oscillation threshold of 50 mW

dropped into the ring as shown in figure 6.5. From equation 2.49, the circulating

power of the resonator is about 10 W. This value is very close to the power used

to demonstrate net gain in straight waveguides from section 5.5. The power

79



with the first oscillating mode saturates when the pump power reaches 100 mW

due to the cascaded FWM causing a power redistribution to newly generated

modes. Additionally, in the sub-threshold behavior, the signal noise should

increase proportionately to the pump squared [139] as with the weak conver-

sion case discussed in section 5.5. On the log-log plot in figure 6.5, we roughly

see a slope of two for the increased power in the background noise from the

increasing pump before reaching threshold, further confirming the parametric

oscillation and analogy to lasing. Recently, we have demonstrated 20 µm radius

Si3N4 rings with Qi greater than 3 × 106. Theoretically, the oscillation threshold

for such a device would be less than 0.5 mW, which is well within the range of

standard laser sources.

6.4 Frequency Comb Generation

If we consider a commercial mode-locked pulsed laser, in the time domain a

train of pulses are emitted at the laser repetition rate, Tr. In the frequency do-

main, the short-pulse train is a comb of frequencies separated by fr = 1/Tr and

with a spectral bandwidth inversely proportional to the temporal pulse width.

In a free-running system, each successive pulse is not precisely the same and

spectrally this creates a slip between the pulse envelope and the carrier phase.

The offset is generally referred to as the carrier-envelope offset frequency, fceo

and creates a global shift for the exact frequencies of the comb. By measuring

and stabilizing the fceo, an optical frequency comb is formed in which the precise

frequency of all comb lines are known [140]. This has powerful implications for

metrology [141], high-precision optical clocks [142], astronomical (and other)

spectroscopy [143], arbitrary waveform generation [144], microwave synthesis
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and direct optical links to the microwave regime. Theodor W. Hänsch and John

L. Hall shared the 2005 Nobel Prize in part for development of the optical fre-

quency comb for precision spectroscopy.

More recently, a different class of optical frequency combs using the FWM

in microresonators explored earlier in this chapter has been developed [145].

After initial oscillation mediated by DFWM as in section 6.2, three additional

interactions can occur. The first is the cascading to higher order signal and idler

waves in which the generated modes act as a pump and the original pump acts

as signal. The second occurs when enough power is transferred to the gener-

ated modes and they are able to induce side-band oscillations of their own. The

final, and most important to generation of a precisely spaced frequency comb,

occurs when non-degenerate FWM results in mixing between all the generated

lines in the resonator such that the energy conservation required by this mixing

precisely determines and “locks” into place the comb lines. The first demonstra-

tions for these µ-combs was in silica microtoroids [146]. The work was followed

up in crystalline CaF2 resonators [147].

In this section, we will discuss the generation of optical frequency combs

in Si3N4 ring resonators. The repetition rate of our frequency comb is deter-

mined by the FSR of the individual ring and is usually in the hundreds of GHz

range. Traditional ultra-fast laser combs have much lower repetition rates, but

the µ-combs can access a very desirable frequency range linking RF and opti-

cal regimes. Additionally, the robust platform of the monolithically integrated

Si3N4 combs, compared to the other demonstrated µ-combs, enables on-chip

photonic integration and stable operating environment. The generation of fre-

quency combs once oscillation is achieved is relatively straightforward. Assum-
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Figure 6.6: A Si3N4 microresonator optical frequency comb. By increas-
ing the pump power after oscillations, higher order DFWM
and non-degenerate FWM occurs between resonator modes.
As the mode lines fill-in and begin mixing with each other
the resonator modes are “pulled-in” and the frequency spacing
becomes very precise generating an optical frequency comb.
Here, over 150 comb lines are generated spanning over 60 THz.

ing a properly dispersion-engineered cavity, by increasing the pump power we

can increase the breadth of the comb. By pumping the comb used to generate

the spectrum shown in figure 6.4 with 400 mW, we can generate the frequency

comb observed in figure 6.6. We have also recently experimentally shown the

optical comb lines are evenly spaced to within 1 part in 1015 [148]. The well-

defined spacing is critical for metrology and spectroscopy applications.

6.4.1 Octave Spanning Comb

The most common way of stabilizing the fceo is through f − 2 f self-referencing

technique [149]. In this technique, a frequency generated at the shorter end of

the spectrum, frequency f , is doubled using second-harmonic generation (SHG)
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and then compared to the corresponding comb line at the other end of the gener-

ated spectrum, frequency 2 f . The resulting beat-note is equal to the fceo and by

using feedback mechanisms to control the changes in this value the comb can be

fully stabilized. A necessary precondition for this technique is an octave span-

ning comb. Only recently in silica microtoroids has an octave spanning [150]

µ-comb been demonstrated. By engineering the dispersion to peak near the

pump wavelength and increasing the pump power, we are able to generate an

octave in a 100 µm Si3N4 ring resonator with cross-sectional dimensions of 725

by 1650 nm with a 10◦ sidewall angle. As seen in figure 6.7 [151], the comb

spans over 128 THz with line-spacing of 230 GHz. The pump power necessary

to generate this comb is about 750 mW dropped into the ring.
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Figure 6.7: An octave spanning Si3N4 µ-comb. The optical resonator has
a frequency spacing of 230 GHz and spans more than 128 THz
resulting in the generation of over 550 comb-lines. Generating
a full octave is necessary for f − 2 f self-referencing to stabilize
the comb.
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6.4.2 One Micron

Although we are able to achieve a full octave while pumping near 1550 nm,

the lack of available frequency doubling materials at the longer wavelengths

of 2.3 µm makes self-referencing difficult. Due to the flexibility in dispersion

with waveguide design discussed in section 2.5, we can redesign the optical

comb to be pumped at a different wavelength. We choose to pump at 1064 nm

because of the readily available high power pump sources developed at this

wavelength and the availability of doubling crystals and amplifiers for the ex-

tent of an octave-spanning comb in the c-band.
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Figure 6.8: Dispersion curves for optical comb generation with a 1 µm
pump wavelength. Both the TM (blue) and TE (red) curves
are anomalous at the pump wavelength allowing use of either
polarization for comb generation.

In figure 6.8, we show the redesign of the waveguide cross-section gives

anomalous dispersion near one-micron. We see that unlike in our previous

FWM based experiments centered in the C-band, we can achieve anomalous

dispersion for both the TE and TM modes. This allows us to choose either po-
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larization for comb generation and possibly generate two orthogonal combs si-

multaneously in the same cavity. We use free-space coupling to pump a 100 µm

radius ring with cross-section of 725 by 1000 nm. Although the observed thresh-

old for oscillation of the TE mode is lower, because of coupling inefficiencies we

are able to generate a broader comb (figure 6.9) using the TM polarization. The

coupling loss into the waveguide reduces the maximum pump power we have

to drop on the ring and limits the breadth of the comb. However, with improved

design of the coupling section the increased power should enable octave span-

ning combs centered at one micron.
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Figure 6.9: Frequency comb pumped near 1 µm. The generated comb
spans over 55.5 THz with line spacing of 230 GHz (inset). The
comb is the first Si3N4 demonstration of the TM mode oscillat-
ing in the microresonator.

Although previous work has shown flexibility in pump wavelength for CaF2

resonators [152], this is the first demonstration of broad comb generation with a

flexible pump wavelength. The work has broad applications to perhaps mono-

lithic integration of combs centered at a variety of wavelengths on the same chip

and even coupled to the same bus waveguide. The only limitation is the broad

transparency window of Si3N4.
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6.4.3 Low Repetition Rate

In order to directly link between the optical regime and the microwave regime,

the repetition rate of the µ-comb must be within the detection range of fast

photo-diodes (generally a maximum of 50 GHz). Because of the resonator size

need to ensure such an FSR (as can be calculated from equation 2.46), we choose

to change the resonator shape from a ring to an arbitrary closed loop spiral as

shown in figure 6.10a. By making the minimum bend radius more than 100 µm,

we can ensure the dispersion will not be influenced by the curved sections com-

pared to the straight portions. Additionally, keeping a semi-ring at the coupling

region ensures precise control over the coupling parameter to enable critically

coupled devices. An additional benefit of using the enclosed spiral loop as op-

posed to the ring include reduced device footprint and avoiding the e-beam

stitch fields discussed in section 3.3.2.
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Figure 6.10: A 20 GHz FSR Si3N4 resonator. a. A micrograph of the en-
closed spiral resonator. The path length of the device is pre-
cisely controlled to be 7.2 mm. b. The optical transmission
spectrum showing the designed mode spacing and resonator
Q greater than 1 × 106.

86



Preliminary experiments have shown the resonator’s FSR to be as designed

(figure 6.10b) and oscillations at high input powers. Because of the necessity for

higher powers, we have not yet generated enough power in all the comb lines

to directly observe the microwave beat-note as has been done in low-repetition

rate silica [138] and CaF2 combs [137]. Improving the coupling efficiency and

using a higher powered EDFA should enable oscillation at every cavity reso-

nance and the generation of a detectable beat-note. Additionally, improvements

in the resonator Q could enable lower power comb generation in these devices

(equation 6.2).
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CHAPTER 7

ON-CHIP MULTIPLE WAVELENGTH SOURCE

7.1 Introduction

Silicon-based integrated photonics aims to deliver on-chip optical communi-

cations networks with bandwidths orders of magnitude larger than electronic

networks. As the microelectronics industry moves to multi-core and multi-

processor chips, CMOS-compatible photonics will replace much of the elec-

tronic communications backbone. A key benefit of optical communication

systems is wavelength-division multiplexing (WDM) which enables a single

waveguide to carry multiple data streams and is essential to reach the full band-

width potential of photonic integrated circuits. Many components necessary for

on-chip optical interconnects such as filters [153], modulators [6], switches [154]

and detectors [8] have been demonstrated over the past decade. However, an

integrated on-chip source capable of generating the many wavelengths neces-

sary to drive the network has been elusive. Because silicon is an indirect band

gap material, approaches thus far have focused on integrating III-V active de-

vices by bonding, such as microdisk lasers [155] or a hybrid waveguide [156].

Although both methods can be replicated on-chip to generate multiple wave-

lengths, scaling to the hundreds of wavelengths envisioned by optical network

architectures [119, 157] quickly becomes power hungry and space consuming.

All-optical approaches have included utilizing the Raman effect in silicon [128].

Although this process can be cascaded [158], the wavelength separation is de-

termined by the Raman shift which is inadequate for WDM standards.∗

∗Portions of this chapter are submitted as [159]
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In this chapter, we examine the characteristics of the generated comb lines

from the Si3N4 µ-comb described in section 6.4 and analyze their fidelity for

WDM sources. In principle, the highly nonlinear process used to generate the

comb could induce signal noise. The parametric process which generates the

new wavelengths also induces a distinct phase relationship between the gener-

ated comb lines [145, 160]. Additionally, the large quality factor of the resonator

leads to high circulating powers. The large intensities could also induce in-

stability in the system due to the sensitivities of both the parametric gain and

cavity lineshape to power and temperature fluctuations. Therefore, a robust

measurement of the generated frequencies is required to demonstrate the use-

fulness of the on-chip source. We perform measurements of the linewidths for

the generated frequencies and compare this with the pump laser linewidth. We

also discuss the stability and long-term performance of the generated µ-comb

by modulating individual comb lines. In section 7.3, we measure and discuss

both the bit-error rate (BER) and eye-diagram.

7.2 Linewidth Measurement

The linewidth of one of the generated modes is measured by selecting a single

mode from the output of the device with a tunable bandpass filter. The filtered

mode is amplified using a low-noise EDFA and the signal is split using a 50/50

coupler. The first arm of the signal is sent through a 20 km spool of fiber so that it

is no longer coherent with the other arm. The second arm is modulated at 5 GHz

with a pattern generator driving an electro-optic modulator. The two arms are

recombined, accounting for the difference in power between them using a vari-

able attenuator, and the signal is sent to an electrical spectrum analyzer. By
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measuring the FWHM of the noise about the 5 GHz line (and ignoring the nar-

row feature resulting from the unmixed signal), an accurate measurement of the

linewidth can be made.

The mode generated at 1564.2 nm has a measured linewidth of 424 kHz.

Replacing the new wavelength with the pump source, we measure 140 kHz.

We believe the broadening is caused by the cascaded FWM interactions in-

volved with the generation of the multiple wavelengths and is not strongly

influenced by the much broader cavity resonance. Nevertheless, the demon-

strated linewidth is sufficiently narrow for any type of on-chip optical commu-

nication. Furthermore, we measure the stability of a single generated frequency

by taking a single-shot measurement of the temporal power fluctuations. The

measurement shows less than 5% power variation over 50 µs with a 100 MHz

detection bandwidth. By comparing the noise from the generated OPO mode

and the background noise on the detector, we calculate the relative intensity

noise to have an rms value of 1.6% over this bandwidth range.

7.3 Modulated Comb Lines

The measurements are performed on a 116 µm radius 725 by 1550 nm Si3N4 ring

resonator OPO that generates over 100 new wavelengths across a 200 nm span

(Figure 7.1) by pumping the cavity at a resonance near 1541 nm. The intrinsic

Q of the ring is on the order of 106 which induces a cavity enhancement of the

input pump by more than two orders of magnitude. Recently, we have shown

that the spacings between these frequencies are even to within 1 part in 1015

of the center frequency [148]. In section 6.4.1, we have shown spectrally flat
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and very broad frequency combs spanning an octave. However, the broadband

combs can exhibit a high level of intensity noise measured with an RF spectrum

analyzer indicating that the generated wavelengths are unstable in frequency

and amplitude. For use as an on-chip source, the generated wavelengths must

lack frequency or power drift. The ring must also be stable enough to maintain

oscillations for an arbitrary period of time without falling “out of resonance”.
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Figure 7.1: Optical spectrum of the generated frequency comb at the
output of the Si3N4 waveguide with a pump wavelength of
1541 nm. The comb is in a stable low-noise state with this spec-
trum and we are able to manipulate and process the generated
frequencies when filtering out the pump.

We achieve stable operation of the comb by tuning the pump wavelength

to a spectral point in the microring resonance where the comb intensity noise

drops. We tune the pump laser into resonance from the “blue-detuned” side to

avoid thermal bistability. As we tune into the resonance the RF intensity noise

drops by more than 25 dB and measurement of the temporal output suggests

the comb is mode-locked [160]. In this low-noise operation state, a stable comb
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can be maintained for hours meeting the first condition necessary for an on-chip

source.

7.3.1 Experimental Setup

The experimental setup is shown in figure 7.2. The input and output coupling

to the chip are the same as described in section 5.4. For the pump input, we use

a voltage controlled narrow linewidth source to lock into a cavity resonance. We
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Figure 7.2: The experimental setup for the BER and eye diagram comb
measurements. The input of the device is an amplified nar-
row linewidth pump source tuned into the cavity resonance.
The output is split three ways. The first is to monitor the cav-
ity resonance and to provide feedback for tuning the pump
wavelength. The second monitors the comb spectral output.
The third is filtered using a bandpass filter to select comb lines
without the pump. These are then amplified and then a nar-
row filter selects individual lines. The lines are then modulated
and sent through a variable optical attenuator to control the re-
ceived power.
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view the cavity lineshape by sweeping the piezo-voltage of the pump laser and

viewing the response on an oscilloscope. By turning off the sweep and slowly

tuning the voltage, we tune deeper into the resonance. The output is split into

three separate fibers. The first provides the feedback needed to control the in-

put wavelength by examining the resonance as described. The second goes to

an oscilloscope and monitors the comb spectrum as in figure 7.1. The final is

sent through a bandpass filter to isolate a 10 nm spectral range consisting of six

newly generated wavelengths. The power at each wavelength coupled from

the ring to the bus waveguide is on the order of 1 mW; however, the inefficiency

of our off-chip collection and filtering require amplification for further process-

ing. Therefore, we use a low-noise EDFA to increase the power of the filtered

comb lines. We then use a 1 nm tunable filter to select individual wavelengths.

We modulate the selected wavelength with a lithium niobate Mach-Zehnder

modulator driven by a pattern generator to imprint a 231 − 1 non-return-to-zero

psuedo-random bit sequence (PRBS) at a data rate of 10 Gb s−1. The modulated

signal is then sent to either a sampling oscilloscope to generate eye diagrams or

to a variable optical attenuator (VOA), then into a 10 Gb s−1 lightwave receiver

and a bit-error-rate tester (BERT). For the baseline measurement of our set-up,

we modulate a tunable external cavity diode laser, operating at a wavelength

near the filtered comb lines.

7.3.2 Bit-Error-Rate Measurements

A common method for measuring the performance of a device or system is to

take BER measurements. This is done by counting the number of errors per bit

received using an arbitrary data pattern sent through the device under test and
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to a comparator. As the noise in the system increases and the signal to noise ratio

degrades, the number of measured errors increases dramatically. On the other

hand, for very low-noise systems in which few errors occur a BER test must run

for thousands of seconds or longer to ensure an accurate measurement.

The BER as a function of received optical power for our device is plotted in

Figure 7.3. We observe a negligible power penalty for the tested comb lines as

compared to the baseline across a 30 nm span, where power penalty is defined

as the difference in received power at a 10−9 error rate between the baseline

and test data. Additionally, we achieve error-free operation, that is a BER less

than 10−12, for the generated wavelengths. Although we expect the BER to be

linear with received power, we observe a slight curvature in the data. Since

the curvature is the same for the baseline and data measurement we conclude

it originates from our test equipment and is not fundamental to the microring

wavelength generator. If we examine the measurements for a BER of 10−6 or less,

we can achieve a good linear fit of the data curves. Additionally, we transmit

data from one of the comb lines through a 10 km spool of optical fiber to show

suitability for long-haul optical communications. In this case, we incur a very

small power-penalty in reference to the same comb line without the added fiber.

7.3.3 Eye Diagrams

Open eye diagrams confirm the low power penalty of the modulated spectral

lines. Figure 7.4 shows the eye diagram for each comb line on which we per-

formed BER measurements. As expected, the 10 Gb s−1 signal shows up clearly

on the oscilloscope with minimal noise and no closing of the pattern eye. We can
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Figure 7.3: BERT measurements of the filtered comb lines. The cw refer-
ence measurement acts as a back-to-back baseline with which
to compare the modulated comb lines. We note error-free oper-
ation of the comb lines and a minimal power penalty measured
at a bit-error-rate of 10−9

also see the difference the VOA makes in the quality of the received signal. The

eye-pattern in figure 7.4d is more closed than the others because it is taken at a

weaker adjusted received power. From the BER and clean eye measurements,

we can declare the independent filtering and modulation of comb lines without

distortion from generated neighbors.

In summary, we characterize the performance of the multiple wavelength

source generated from a microring resonator OPO and show that it is suitable

for an on-chip optical communications network. The frequency comb used

in this experiment had a line spacing of about 200 GHz. As discussed in sec-

tion 6.4, we can tune this parameter by modifying the resonators radius, which

allows for great flexibility in channel spacing and the potential to meet standard

WDM specifications. Although in this work filtering and modulation are done
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Figure 7.4: Eye diagrams for the six measured comb lines generated by
the microcavity for a. 1568 nm b. 1573.2 nm c. 1576.6 nm d.
1578.3 nm e. 1585.2 nm and f. 1597.5 nm. The clean and open
eye confirms the BER data showing no power-penalty.

off-chip, through the incorporation of cascaded silicon electro-optic ring res-

onators [161], the same functionality can be performed on-chip for a completely

integrated system. In that case, each silicon ring modulator would be aligned to

one of the hundreds of generated wavelengths to enable on-chip data transmis-

sion rates of over 1 Tb/s.
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CHAPTER 8

HARMONIC GENERATION IN RING RESONATORS

8.1 Introduction

As discussed in chapter 3, the materials used in CMOS-compatible photonics

are centrosymmetric and the bulk χ(2) vanishes leaving the χ(3) as the lowest or-

der susceptibility. We have discussed already some of the interesting phenom-

ena that arise from the χ(3) nonlinearity of Si3N4. In this chapter, we will exam-

ine the topic of harmonic generation. Third harmonic generation (THG) arises

from the bulk χ(3) nonlinearity and with sufficient optical powers and phase-

matching should be observable in Si3N4. Previous works have shown THG in

silicon photonic crystal cavities [162] and silica microtoroids [163]. Although

both are nominally on-chip devices, in practice integration is not straightfor-

ward for either: the light emitted from the silicon is out of plane and the SiO2

toroid requires the same specialized coupling set-up as the silica µ-combs de-

scribed in section 6.4.∗

We also examine second harmonic generation (SHG) in Si3N4 ring res-

onators. Here, we induce a χ(2) response utilizing the interface between two

centrosymmetric materials: the Si3N4 core and the SiO2 cladding. The waveg-

uide interface breaks the bulk symmetry and a second-order nonlinear response

can arise [165, 166, 167, 168] from the asymmetric dipole potential formed at the

surfaces. Previously, detecting the second harmonic wave from a reflected inter-

face has been used for monitoring surface properties [166, 168], even with cen-

trosymmetric materials, however no CMOS-compatible integrated devices have

∗Portions of this chapter are reproduced with permission from [164]
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shown guided SH. It has been shown that the use of Bragg reflectors to form mi-

crocavities which are either singly resonant [169] or doubly resonant [170] can

greatly enhance SH conversion efficiencies. More recent work has shown sim-

ilar results in deposited silicon [171] and even various compositions of silicon-

rich silicon nitride films [172, 173, 174]. It has also been suggested that waveg-

uides [175] could be used to enhance surface SHG.

In section 8.2, we describe the device design and physical process for both

SHG and THG in Si3N4. We describe the CW conversion of the pump to both SH

and TH waves in section 8.3. Unlike previous work in the area, we are able to

quantify the strength of the nonlinearity and conversion efficiency for the SHG

in our device and discuss the calculation of an effective χ(2) in section 8.4.

8.2 Device Design

8.2.1 Second Harmonic Generation

The nonlinear process of SHG also known as frequency doubling describes the

process of a conversion from a pump frequency, ωp, to the SH frequency, ωsh,

such that ωsh = 2ωp. We can model the process by using coupled amplitude

equations similar to the discussion of FWM in section 5.2, except examining

the nonlinear polarization induced by χ(2). For the case of Si3N4 waveguides,

where there is no bulk χ(2), we substitute in an effective susceptibility, χ(2)

eff
. We

begin our analysis by developing coupled amplitude equations along the lines
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of [23, 176]:

dEp

dz
=

jω2
pχ

(2)

eff

βpc2
EshE∗pe− j∆βz (8.1a)

dEsh

dz
=

jω2
sh
χ

(2)

eff

2βshc2
E2

pe j∆βz (8.1b)

∆β = 2βp − βsh (8.1c)

If we consider the undepleted pump condition, we can directly integrate equa-

tion 8.1b to obtain an expression for the SH field. Just like the FWM process, the

phase-matching plays a critical role in the conversion efficiency. We can expand

equation 8.1c to put it in terms of ne f f for pump and SH:

∆β = 2βp − βsh =
1

c

(

2ωpne f f ,p − ωshne f f ,sh

)

=
2ωp

c

(

ne f f ,p − ne f f ,sh

)

(8.2)

which gives the condition that the ne f f for pump and second harmonic must be

the same to achieve zero phase mismatch.

Given the material and waveguide dispersion, meeting the condition of

equation 8.2 is in general not achievable. A common scheme employs quasi-

phase-matching to overcome this limitation in which the crystal axis is inverted

in a periodic manner. This has the consequence of alternating the sign of χ(2) and

overcoming a nonzero phase mismatch [177]. Here, we match the effective in-

dex for the fundamental mode of the pump to a higher order mode in the visible

range. This method has previously been suggested for phase-matched THG in

SiO2, in both microtoroids [163], and microstructured fibers [178, 179]. We use

the FEM mode solver discussed in section 2.4.3 to calculate ne f f for a range of

pump and SH frequencies for a Si3N4 waveguide with a 725 by 1500 nm cross-

section. Figure 8.1 shows a plot of the effective index against wavelength for

the first 8 modes of the waveguide at the SH wavelength and the fundamen-

tal TE mode at the pump wavelength. Since the phase-matching condition is
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Figure 8.1: Phase-matching condition for SHG in Si3N4 waveguides. The
solid blue line represents the effective index of the fundamen-
tal TE mode of the pump. The dashed red lines represent the
effective indices for the modes corresponding to the SH wave-
lengths. The sixth-order mode of the SH (solid red) crosses the
blue line indicating a point of perfect phase-matching.

satisfied when the effective index at the pump and corresponding SH wave-

lengths are equal, crossing points between the blue and red lines are perfectly

phase-matched for the corresponding wavelength pair and mode number. As

the plot shows, we have a phase-matching point near our experimental pump

wavelength with the 6th transverse waveguide mode at the SH wavelength.

8.2.2 Third Harmonic Generation

By using the bulk χ(3) of Si3N4, THG unlike SHG is an expected nonlinear pro-

cess. Deriving the coupled amplitude equations and phase matching condition

is the same as shown in equations 8.1 and 8.2 except χ(2)

eff
is replaced by χ(3), all

“sh” subscripts should be replaced by “th” and Eth should be squared in equa-
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tion 8.1a, Ep should go to the third power in equation 8.1b and 2βp should be

3βp for the phase-matching equation. In the end, the phase-matching condition

is the same as for SHG: the effective index of the pump and TH wave must be

equal. By performing similar simulations as above, we find the fundamental TE

mode of the pump is best matched to the 18th order transverse mode at the TH

wavelength.

8.3 Experimental Results

In order to increase the efficiency of the harmonic generation we use a ring res-

onator with a 116 µm radius similar to the devices described in chapter 6. We

will first consider the generation and detection of SH light and then examine

the behavior of the TH. Interestingly, these processes can occur simultaneously.

If we consider the pump to be undepleted the two processes have no effect

on each other since they arise from different susceptibilities. However, in the

truly coupled amplitude case the problem becomes very complex. Additional

complexity is added to the problem when frequency comb generation occurs as

well. We will show how comb generation can result in the selective harmonic

generation of various comb lines (not the input pump) because of the favorable

phase-matching conditions at the generated wavelengths.

8.3.1 Observation of SHG

To measure SHG of a single pump source (no comb generation), a tunable diode

laser is amplified using an EDFA and coupled to the waveguide using a tapered
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lensed fiber. We use a polarization controller to launch light in the fundamental

quasi-TE mode of the waveguide. The pump wavelength, λP, is tuned into the

resonance of the ring cavity near 1554 nm and, with suitable power levels, we

are able to observe generation of the second harmonic. We are able to capture

the scattered harmonic light with a top-view color CCD camera. The image in

figure 8.2 shows the generated light (strongly enhanced in the ring) coupled to

the output waveguide.

IR pump in IR and SH out

waveguide

Figure 8.2: Top view of scattered SH light captured with a color CCD
camera. The input pump comes from the left in this picture
and the cavity enhancement of pump power leads to harmonic
generation. The light generated in the ring couples out to the
bus waveguide.

We use a spectrometer to measure the wavelength of the visible emitted

light. After the collection lens at the output of the chip, we place a beam split-

ter which redirects the generated visible light to the spectrometer. Figure 8.3

displays the output with the generated SH wavelength, λS H, measured to be

777.1 nm which, as expected, is λP/2. Since only the SH wavelength is detected,

we conclude we are not generating broadband photoluminescence which has

been previously described in silicon nitride [180, 181]. To measure the power

of the SH, both the IR pump and the visible signal are collected into an OSA.
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The powers measured by the OSA are corrected to the absolute power values

coming out of the waveguide, taking into consideration the coupling efficiencies

from the waveguide to the fiber and to the OSA for both pump and SH wave-

lengths, respectively. The OSA confirms the wavelength measurement for both
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Figure 8.3: Measurement of the SH wavelength using an optical spec-
trometer. The output from the waveguide coupled to a ring
resonator pumped at 1554.2 nm shows generation at exactly the
expected SH wavelength.

the pump and SH. We observe a maximum conversion efficiency of -35 dB with

100 µW of SH generated for a pump of 315 mW. At increased pump powers,

the ring’s resonance experiences a severe thermal shift which prevents efficient

coupling from the waveguide to the resonator.

8.3.2 Observation of THG

We pump a ring with the same cross section as in the SHG experiment but a

smaller radius of 58 µm at a resonance near 1560 nm. For most materials that

exhibit SHG, the third harmonic is more difficult to observe due to the relative
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strength of the χ(2) compared to the χ(3) (as mentioned in section 2.2). However,

since the χ(2)

eff
is generated in our case from an interface effect and the χ(3) is a bulk

susceptibility, at the proper phase-matching condition we observe only THG.

Additionally, since the TH has a cubic dependence on pump power compared

to the square dependence of the SH at larger powers the THG should dominate.

As shown in figure 8.4, we generate light at exactly the TH wavelength for our

1000900800700600500400
wavelength [nm]

520.1 nm

IR pump input IR and TH output

b.

a.

Figure 8.4: THG in Si3N4 ring resonators. a. Top view CCD image of
the waveguide coupled ring generating visible TH from an in-
frared pump. b. The spectrometer output from the waveguide
shown in a. The monochromatic response confirms the wave-
length and that THG is occurring.

pump at 520 nm. Unlike the SH, the TH has very poor coupling efficiency to the

OSA. However, we can measure the output power using the spectrometer by

calibrating the photon count to the integration time. Although this calculation

is not precise, it gives a very good idea for the order of magnitude for the TH
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generated by our device. With a few hundred mW’s of input power we measure

pW’s with this measurement scheme. This is on the same order as shown in a

silicon photonic crystal [162], but here light is coupled and guided in the bus

waveguide as opposed to out of plane emission.

8.3.3 Simultaneous Generation of µ-Comb and Harmonics

By pumping the rings at different wavelengths, we observe many interesting

phenomena which combine the comb generation from chapter 6 and both SHG

and THG. Figure 8.5 shows the spectrum from an OSA and the spectrometer the

output of a 116 µm ring with a 730 by 1650 nm cross section when the resonance

is pumped at 1542 nm for varying optical powers. Although the pump wave is

the strongest in the resonator, because it has poor phase-matching for SHG and

THG no harmonics are generated. After oscillation threshold is reached, some

of the newly generated modes have enough power and are properly phase-

matched for harmonic generation. We can also see that by varying the pump

power (and changing the comb shape) different dynamics for harmonic gener-

ation, favoring SHG or THG, can be observed.

8.3.4 Modal Profile Image

The captured mode image of the waveguide output (Figure 8.6) corresponds

well to the simulated mode profile for the 6th order SH mode which optimizes

the phase-matching condition. Since the ring and bus waveguide cross-sections

are identical, we expect the same-order mode generated in the ring resonator to
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Figure 8.5: Harmonic generation from generated wavelengths of a Si3N4

µ-comb. The detected visible light from the spectrometer com-
pared to the comb output from the OSA. Although we are
pumping at 1542 nm, some of the generated comb lines are bet-
ter phase-matched and therefore, we see their harmonics in-
stead of the pump’s. For different pump powers, we can favor
SHG or THG.

couple to the waveguide. Although the point coupling does not guarantee this,

because of the large ring radius the effective coupling length is long enough

when combined with polarization sensitivity to eliminate other modes. To ef-

fectively image the mode, we polish away the nanotapers [182], used to increase

coupling efficiency, at the output of the waveguide. We collect the output light

with a high NA objective to focus the image on a CCD camera. There are three

distinct lobes in the mode showing a good match with the simulated mode.
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a. b.250 nm

Figure 8.6: Calculation of mode-order for phase matched SH generation.
a. The simulated cross-section mode profile for the sixth-order
mode of our waveguide at 777.1 nm. b. The captured mode im-
age of the visible emission from our waveguide showing good
agreement with the simulated mode profile.

8.4 Analysis and Calculation of χ(2)

We calculate the χ(2)

eff
to be 4 × 10−14 m V−1 from the conversion efficiency ob-

served in the ring. For SHG with an undepleted pump, the expected signal

power may be calculated for a given pump intensity and propagation distance

by solving the coupled amplitude equations given by equation 8.1. Since we

are using a resonator, the intensity of the pump and SH are increased by the

respective cavity enhancement effects of the ring. In order to accurately model

the nonlinear susceptibility, we take into account the finesse of the cavity, the

simulated modal field overlap and phase-mismatch, and the radius of the ring.

The power Psh for second harmonic wave is then given by:

Psh =
CshC

2
p(ωpχ

(2)LPp)2

8n2
pnshc3ǫ0A2

p

Ashsinc2(∆βL/2) f (Ap, Ash) (8.3a)

Ci =
Pcirc

Pin

=

∣

∣

∣

∣

∣

∣

jκie
−αiL/2

e jβiL − τie−αiL/2

∣

∣

∣

∣

∣

∣

2

(8.3b)

where ni is the effective index for the modes, Ai is the mode area, L is the ring

circumference and Pp is the pump power dropped to the ring. The modal over-
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lap integral between the fundamental and second-harmonic fields is accounted

for by the function f (Ap, Ash) and is calculated in our case to be very high, 0.83

where the maximum is 1. Ci takes into account the circulating power in the

ring [132, 133] where κ and τ represent the coupling parameters from the waveg-

uide to the ring (as described in section 2.6), αi is the propagation loss in the ring

and βi is the propagation coefficient for the respective waves. We can directly

measure Cp from the transmission spectrum of the pump resonance and calcu-

late the value to be approximately 156. For the SH resonance we are unable to

directly characterize the intrinsic and coupling Q’s due to the difficulty of ac-

cessing the higher order transverse mode. Therefore, we estimate that Csh is at

most Cp and at least unity. From this approximation we come up with a range

of potential values for χ(2)

eff
of 3 × 10−15 to 4 × 10−14 m V−1. We believe the actual

enhancement at the SH wavelength to be closer to unity than Cp and χ(2)

eff
to be

on the larger side of this range.
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Figure 8.7: The power output from the generated SH light as a function
of input. The red-dashed line with slope near 2 on the log-log
plot represents the best fit line to the data and is very close to
the theoretical square prediction.
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From equation 8.3a, we see that the SH wave has a quadratic dependence

on the pump power. As mentioned earlier, we are able to accurately measure

the power at both pump and SH waves using an OSA and calibrating for the

different coupling efficiencies. In order to clearly demonstrate the theoretical

square dependence of the SH process, we plot the dropped pump power against

the generated SH on a log-log scale (figure 8.7) and calculate a best fit slope

of 1.9745 ± 0.0225. We note discernible SH in the waveguide coupled to the

resonator for input pump powers as low as 1 mW.

The THG efficiencies can be measured and plotted in the same fashion.

When measuring the photons detected by the spectrometer for varying pump

powers we indeed see the theoretical cubic power dependence. Although the

measured powers here are relative, from the estimate given in section 8.3.2

we expect a much stronger conversion efficiency given the circulating pump

power and value of χ(3) measured previously. We believe that imperfect phase-

matching and the weak spatial overlap between the fundamental and TH modes

may account for the weaker than expected conversion. This also suggests our

estimation of χ(2)

eff
may be a lower bound since we assume ideal phase-matching,

as suggested by our simulations, for the value given.

Our demonstration of guided on-chip visible light generation opens the

available spectrum for Si-based devices from the IR to the visible, increasing

bandwidth and enabling potential integration of silicon photo-detectors to on-

chip optical networks. Additionally, the doubly resonant SH generation pre-

sented here could produce squeezed states [183] of both the pump and SH fre-

quencies for quantum optics studies. Finally, the induced second-order nonlin-

earity could be used for difference frequency generation to combine two near
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infrared pumps to generate a mid-infrared source [184].
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CHAPTER 9

SUMMARY AND FUTURE WORK

Integrated optical devices increase the efficiency for a multitude of exciting

nonlinear processes with applications from wavelength converters to amplifiers

to optical clocks. By developing the silicon nitride platform, we have exploited

a broad transparency window, high-index contrast and low loss material to im-

prove the performance for four-wave mixing and harmonic generation devices.

Although the losses and high-Q resonators presented in this dissertation sur-

pass previous efforts in high confinement Si3N4 films, there is still room for ma-

terials and processing improvement. Roughness and absorption occurring at

the waveguide sidewalls is a serious limitation on the process. Recently, very

thin (and therefore loosely confined) Si3N4 waveguides were developed which

minimized the modal overlap with the sidewall for record low-losses [185]. De-

spite the limitations of these devices, especially for nonlinear interactions, the

work exploits a key to overall loss reduction that could be further developed by

improving processing of etching and potentially deposition. It should be noted

that although we are able to overcome catastrophic film cracking, the stresses

on thick films still can form a handful of cracks per wafer which significantly

reduce device yields. Even so, the current devices could also be used as the bus

waveguide for new three-dimensional designed network architectures [186] be-

cause it is deposited and the losses are more than an order of magnitude lower

than silicon waveguides.

We decided to examine Si3N4 because of its suspected high nonlinear re-

fractive index and negligible nonlinear losses. It should be noted that there

are potentially other solutions for achieving these material parameters for
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CMOS-compatible nonlinear optics. Recent work using a material named

HydexTM [187], which is essentially a deuterium rich silicon oxynitride, have

shown low linear loss and good nonlinear performance [188]. Although this

material is proprietary, and therefore not of much use to the scientific commu-

nity in general, it demonstrates the range of material compositions that can be

developed using CMOS CVD processes. A more interesting route might be to

explore low-stress nitride (LSN) also known as silicon-rich nitride [189] because

the chemical composition has more silicon than stoichiometric Si3N4. Although

the silicon content of the film may increase the TPA, the material may not sup-

port free carriers in which case a stronger n2 could outweigh the nonlinear losses

when compared to Si3N4. This material has the added benefit of a slightly larger

refractive index and is specifically designed to be stress free so film cracking

would not be an issue.

The parametric amplification and efficient wavelength conversion shown

here in the quasi-CW regime represent a great improvement over the gain only

seen in pulsed pump operation for silicon [19]. The high pump powers could

be compensated by increasing the interaction length with reduced losses. The

loss values for the waveguides was measured at 0.5 dB cm−1 where as the ring

resonators show losses as low as 0.1 dB cm−1. Of course the longer interaction

length reduces the operation bandwidth, but an ideal device could be designed

to create an all-optical broadband CW amplifier. Because of the wavelength flex-

ibility of the Si3N4 platform, varying designs could lead to different operation

windows which are not limited by an energy level material response like most

commercially available amplifiers.

Amplifiers based on the Raman effect have been well explored in integrated
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silicon waveguides [6, 124, 125, 128, 129]. The Raman effect scatters a small por-

tion of the optical energy of a field to a lower frequency determined strictly by

the vibrational modes of the material. Because silicon is crystalline, the band-

width for Raman gain is very narrow (about 1 nm) and occurs at a well defined

frequency shift. Their is a much broader Raman gain bandwidth for silica that

has been exploited for amplification in both fibers [190] and microtoroids [191].

This area is one of interest for Si3N4 as the effect has not yet been explored

and could provide integrated amplifiers (and potentially oscillators) without

the need for phase-matching which leads to tight constraints on the waveguide

dimensions. Just like the other nonlinear properties we would expect the Raman

parameters for Si3N4 to lie somewhere between silicon and SiO2. Therefore, we

could have a broader gain bandwidth than silicon and a lower threshold power

than SiO2.

The optical frequency comb has many applications, such as the multiple

wavelength source described in chapter 7. The use of a single input laser to

generate all the frequencies necessary for an integrated WDM network has ma-

jor implications for lowering power consumption and potential arrival time of

on-chip optical communications. An exciting follow-up work would be full in-

tegration of the pump source for the Si3N4 resonator on-chip as well, which if it

were electrically pumped could eliminate the need for an external laser source

that has been a constant energy drag for all-optical communications. Along

the same lines, integration of the µ-comb with silicon electro-optic modulators

would be an exciting demonstration of the potential for on-chip filtering and

modulation in a cross material platform. We have shown preliminary results

in this work for moving the comb to a different pump frequency. The growing

demand for comb sources in the visible and mid-IR is a potential area of explo-
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ration for Si3N4 waveguides with differing cross-sections, but potentially on the

same chip.

Perhaps most exciting are the applications to fundamental physics of the µ-

comb. Continuing along the lines presented with the octave spanning comb,

demonstration of f − 2 f locking and stabilization would provide a compact

source for a range of applications including high-precision spectroscopy, metrol-

ogy and optical clock sources. The frequency comb temporally generates ultra-

short optical pulses with a repetition rate determined by the ring FSR. By using

smaller rings and optical rectification, we can perhaps generate radiation in the

difficult to reach terahertz regime [192].

We described the surprising second harmonic generation in the Si3N4 ring

resonators. The generation of a χ(2)

eff
in integrated materials opens up a whole

new array of nonlinear optical phenomena. It would be exciting to explore

some additional χ(2) processes in Si3N4 such as difference frequency generation

to down convert two C-band pump sources. Even more useful could be the

Pockels effect which might arise from the induced χ(2) by applying DC fields

across silicon nitride waveguides. It may be necessary to perform a more accu-

rate measurement of χ(2)

eff
than given here which could be done by performing

SHG in a long waveguide to more accurately gauge the power and losses in the

waveguides at both pump and harmonic wavelengths. Additionally, genera-

tion of the fundamental mode at the harmonic wavelength could be achievable

by using a quasi-phase-matching scheme as opposed to the high-order mode

phase-matching employed here.

Overall, the work presented in this dissertation represents a step forward

for the integrated nonlinear photonics community. The exploitation of a new
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material system, Si3N4, has enabled the demonstration of a new array of func-

tionalities previously unavailable to silicon photonics. It is my hope that this

work leads to the development of numerous exciting technologies based on this

platform from practical network applications to fundamental physical experi-

mentation.
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