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1. Introduction 
 
A common characteristic of numerical weather prediction (NWP) models is that their forecast 
errors in the nowcasting range (up to +6 hours) are not significantly smaller than those at 
+12 or +24 hours. This is because NWP model integrations are initialized with analysis fields 
that are strongly constrained by the model’s dynamics and physics and therefore may differ 
significantly from observed values at observation locations. Moreover, limited horizontal 
resolution (typically of the order of 10 km) does not allow reproducing all the small-scale 
phenomena that determine atmospheric conditions at a specific location. In the case of 
temperature, a simple persistence forecast can be better in terms of mean absolute error 
(MAE) or root-mean-square error (RMSE) than the NWP forecast for up to several hours 
(Figure 1.1). One may also construct a temperature forecast based on the climatologically 
mean diurnal evolution by simply adding it to the latest observed temperature (red curve in 
Figure 1.1). This simple method can give significantly smaller errors than the NWP model for 
forecast times of up to +6 h. Because of this ‘nowcasting weakness’ of NWP models, which 
is an issue even with today’s high-resolution models such as AROME or WRF, it is 
necessary to complement and improve the NWP forecast by an observation-based analysis 
and forecasting system such as INCA. The INCA system adds value to the classical NWP 
forecast by providing (a) high-resolution analyses, (b) nowcasts, and (c) improved forecasts 
both within and beyond the nowcasting range.   
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Figure 1.1: Mean absolute error of the 2 m temperature forecast during February 2003 at 
the station Vienna-Hohe Warte as a function of lead time. Persistence (blue) and 
persistence+climatology (red) forecasts are significantly better than the NWP model during 
the first hours.    

 
Many existing observation-based forecasting systems have been developed for the 

prediction of precipitation and convective activity (Browning and Collier 1989, Li et al. 1995, 
Hand 1996, Golding 1998, Pierce et al. 2000, Seed 2003). During the World Weather 
Research Program (WWRP) Forecast Demonstration Project of the 2000 Sydney Olympics 
several of these methods were tested and compared (Pierce et al. 2004). In the same 
project, one wind analysis and nowcasting system was tested and evaluated (Crook and 
Sun 2004). However, research has generally focused not so much on forecasting the wind 
field as such but its effect on the initiation and development of deep convection (Wilson and 
Schreiber 1986, Wilson et al. 2004). Similarly, analysis and nowcasting of near-surface 
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temperature (Sun and Crook 2001) and humidity has traditionally been regarded as a means 
for predicting convective developments and not so much as a value in itself. 

 On the other hand there is an increasing demand in public and private sectors for high-
quality very-short-range forecasts of temperature, wind, global radiation (cloudiness), and 
precipitation. Real-time flood-warning systems are implemented on the basis of hydrological 
models that require meteorological input at small scales and short lead times. Transportation 
planning is increasingly based on meteorological forecasting. Weather services face the 
challenge of issuing for the general public improved weather warnings at a high update 
frequency and with more precise geographical specification. 

In order to satisfy all these requirements, an analysis and nowcasting system cannot be 
restricted to stations but needs to be spatially quasi-continuous, i.e. it must operate on a 
high-resolution grid. It should take into account, as far as possible, all available data sources 
(model results, station data, radar and satellite data, radiosoundings, etc) and use them to 
construct physically consistent analyses of atmospheric fields. In a way, it should do 
something similar to what a human forecaster does when (s)he tries to synthesize all 
available information, both from NWP and observations, into a consistent forecast. But 
whereas forecasters can come up with numerical values for only a limited number of 
locations or regions, an algorithmic system can perform the synthesis on an entire grid. Even 
so, the algorithmic system will always have the disadvantage of being less complex, and 
using less data, than the ‘expert system’ represented by the human forecaster who can, for 
example, look up additional model results on the internet that are not available numerically 
at the weather service. Thus, INCA is aiding the forecaster in the synthesis of the daily flood 
of information but certainly neither able nor intended to replace the forecaster. In the case of 
weather warnings in particular the general policy of ZAMG is to issue warnings only after 
they have undergone the forecaster’s decision and controlling process.   

The following description of the INCA system gives an overview of its general 
characteristics, geometry, and data sources (Sections 2-4). The analysis and nowcasting 
components are described in Sections 5 and 6. Source code names as found in the INCA 
export version are given in brackets (blue) in the Section titles [program.c]. Subroutine 
names are given as well [subroutine()], with the description of the relevant equations. 
Settings of logical switches are given in green [LOGSWITCH=1]. It should be emphasized 
that INCA is a relatively young system still under development. While individual components 
and concepts used in INCA have been developed earlier (Haiden 1997, 1998, 2001a) actual 
work on the operational system has started in spring 2004. Rather than wait for several 
years until a sophsticated system has been built, the philosophy was to start with a working 
baseline version to which further improvements and refinements are added in a step-by-step 
process. This approach has the advantage that (a) forecasters and applications using the 
baseline version can provide valuable feedback early on, and (b) the baseline version can 
be used as a benchmark against which the significance of further improvements can be 
measured. 
 
 
2. General characteristics 
 
The INCA analysis and nowcasting system is being developed primarily as a means of 
providing improved numerical forecast products in the nowcasting range (up to +4 h) and 
very short range (up to about +12 h) even though it adds value to NWP forecasts up to +48 
h through the effects of downscaling and bias correction. It should be stressed that the 
analyses generated by the system are not used as initial conditions for NWP model 
integrations. Thus the analysis method is not constrained by specific NWP model dynamics 
or physics. Highly structured fields can be produced both in space and time without causing 
noise-related adverse effects in a subsequent forecast. Nevertheless, the basic approach to 
analysis and nowcasting used in INCA is strongly rooted in physical considerations. The 
computation of the three-dimensional temperature error field for example takes into account 
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a surface-layer contribution to the temperature profile which depends on insolation. This is 
described in Section 5a. 

The methods used for spatial interpolation are simple (distance-weighting in geometrical 
and physical space). The idea behind this choice is, apart from its straightforward 
implementation, that the system should be as transparent as possible and the number of 
‘climatological’ assumptions kept at a minimum. It also makes further developments and 
improvements easier and allows easier interpretation by the forecaster. The meteorological 
fields analyzed with INCA are 

 

• Temperature (3-d) 

• Humidity (3-d) 

• Wind (3-d) 

• Precipitation (2-d) 

• Precipitation type (2-d) 

• Cloudiness (2-d) 

• Global radiation (2-d) 
 

There is limited inter-dependency between fields. For example, in the nowcasting of 
temperature the cloudiness analysis and nowcast is taken into account. The surface cooling 
effect of thunderstorm cells due to evaporation of precipitation is considered in the analysis 
and nowcasting of temperature. However, more of these physically evident interactions will 
be considered in the further development of INCA (thus the ‘I’ for ‘integrated’). The 
temperature, humidity, and wind analysis will be used to assess the initiation and evolution 
of convective cells (Steinheimer and Haiden 2007).  

In addition to the quantities listed above, derived fields are computed. These fields are 
mostly convective parameters such as lifted condensation level (LCL), convective available 
potential energy (CAPE), or equivalent potential temperature. Other derived fields are 
snowfall line and surface temperature needed for precipitation type (snow, rain, snow/rain 
mix, freezing rain), as well as icing potential, which is still in the experimental stage. Using 
snowfall line, forecasts of snowfall accumulation (water equivalent) are generated.  

The high resolution of 1 km is a crucial characteristic of INCA. It enables the system to 
take most station observations at ‘face value’, since at this resolution the actual elevation 
and exposition of a station coincide to a large degree with their counterparts on the 
numerical grid. A wind observation at a mountain pass, for example, will not be 
representative of conditions a few km away because of acceleration of the flow through the 
pass. If this observation is used to create a high-resolution 3-d wind field analysis it is 
important that the analysis system is able to simulate the characteristics of the location. Only 
then can a kinematic or dynamic downscaling procedure make proper use of the local wind 
observation.  

From topographic maps it can be seen that a resolution of 1 km is required to resolve 
major alpine valleys in a way that the modelled valley floor is close to the actual valley floor 
height. It is a sufficient resolution to approximately reproduce slope inclinations on the 
sidewalls of major valleys. Side-valleys, however, are represented in a smoothed way, even 
at 1 km resolution. It will be part of further studies with INCA to determine the potential 
benefit of having even higher resolution. Another reason for using the 1 km grid is that it 
corresponds to the resolution of the radar data used in INCA. If we would use a coarser grid, 
some of the details provided by the radar data regarding the fine structure of convective cells 
would be lost. 

One of the main conceptual differences between INCA and another Austrian analysis 
system VERA (Steinacker et al., 2006) is that INCA analyses use NWP model information 
for interpolation between observations, whereas VERA uses climatological information 
through a fingerprint method. 
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3. Coordinate system [setup_inca_topo.c, inca_proj.f] 
 
In the horizontal, a Lambert conical projection (Bessel ellipsoid) is used, with reference 
latitudes 46° and 49° N, and a central reference point at 47°30’ N, 13°20’ E. The central 
reference point has the Cartesion coordinates x=400 km, y=400 km on the projection grid. 
The coordinate system has been adopted from the Austrian Bundesamt für Eich- und 
Vermessungswesen (BEV). It is also used by hydrological research groups at Austrian 
universities with which ZAMG cooperates in the development on flood warning systems 
(Komma et al. 2007). The current domain of the INCA system consists of an area of 
600×350 km at a resolution of 1 km (601×351 gridpoints). It covers the eastern Alps and 
alpine forelands (Figure 3.1). 
 

 
Figure 3.1: INCA analysis and nowcasting domain. Resolution is 1 km. 

 
In the vertical, a z-system is used where z is the height above the ‘valley floor surface’ 

shown schematically in Figure 3.2. In mountainous or hilly terrain, the valley floors of  
 

 

 
 

Figure 3.2: Schematic depiction of INCA coordinate surfaces. The vertical coordinate is the 
height above the valley floor surface, which forms the base of the topography. Vertical 
resolution is 200 m. 
 
adjacent valleys are generally found at comparable heights. Thus one may define a 
hypothetical surface that is smooth compared to the actual topography and connects major 
valley floors (Haiden 1998). In other words, the topography is conceptually separated into a 
base topography and a relative topography. This separation is, of course, not unique, and 
depends on what is considered a major valley. In practical applications, the valley floor 
surface is computed objectively by identifying for every gridpoint the minimum elevation 
within a given radius, and arithmetically smoothing the resulting field over a circle of the 
same radius. For alpine topography, a radius of 10 km was found appropriate. The resulting 
valley floor surface (Figure 4.4) represents a useful local reference height. Over completely 
flat terrain, topography and valley floor surface coincide. The vertical resolution of INCA is 

currently equidistant at Δz = 200 m. The system has 21 levels (including the surface), thus it 
covers the lowest 4000 m above the local valley floor surface. For the wind analysis, the 
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valley floor surface is set to zero, i.e. a true z-coordinate with horizontal levels is used. The 

vertical increment in the case of wind has been set to Δz = 125 m.         
 
 
4. Data sources 
 
4.1 NWP model output 
 
For the three-dimensional INCA analyses of temperature, humidity, and wind, NWP forecast 
fields provide the first guess on which corrections based on observations are superimposed. 
For this purpose the output of the limited area model ALADIN is used which has been run 
operationally at ZAMG since 1999. The NWP fields are 1-hourly, at a resolution of 9.6 km, 
with 45 levels in the vertical (Wang et al. 2006). However, the INCA analysis and nowcasting 
methods do not depend critically on the horizontal resolution of the NWP fields and could as 
well be based on other NWP models. The Swiss version INCA-CH, for example, uses 
COSMO fields as a first guess. 

At ZAMG, four ALADIN forecast runs per day are performed (00Z, 06Z, 12Z, 18Z). The 
00Z and 12Z runs are integrated to +72 h, the 06Z and 18Z runs to +60 h. Post-processed 
fields are available roughly 4 h after analysis time. ALADIN forecast fields used in INCA are 
geopotential, temperature, relative humidity, u-, v-, w- wind components (3-d fields), 2m 
temperature and relative humidity, u-, v- 10m-wind components, precipitation, total 
cloudiness, low cloudiness, and surface temperature (2-d fields). The three-dimensional 
fields are provided on pressure surfaces with a vertical resolution of 50 hPa up to 600 hPa, 
and a resolution of 100 hPa above. The domain of the ALADIN model is shown in Figure 
4.1. 

 

 
 

Figure 4.1: Model domain and topography of ALADIN-AUSTRIA. Horizontal resolution is 9.6 
km. 

  
4.2 Surface station observations 
 
The single most important data source for the INCA system are surface stations. ZAMG 
operates a network of ~200 automated stations (Teilautomatisches Wetterstationsnetz, 
TAWES) across the country. In the vertical, this network spans most of the topographic 
range in Austria, with highest stations Brunnenkogel (3440 m), and Sonnblick (3105 m). 
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Although the distribution of stations is biased towards valley locations there is a sufficient 
number of mountain stations to construct three-dimensional correction fields to the NWP 
model output, based on observations. The station density versus elevation roughly 
corresponds to the area-height distribution of the topography up to about 1500 m. At higher 
elevations, the station density is lower than it ideally should be according to the area-height 
distribution.     
 

 
 

Figure 4.2: Location of TAWES surface stations. 
 

TAWES stations take measurements in 1 min intervals. The data is sent to ZAMG in 
Vienna in 10-min intervals. For the INCA precipitation analysis, which works on a 15 min 
update frequency, the 1 min precipitation amounts are accumulated. The meteorological 
observations used in INCA are 2m temperature, relative humidity and dewpoint (measured 
independently), 10m wind, precipitation amount, precipitation minutes, and insolation 
minutes.  
There are other surface meteorological stations which are increasingly used by the INCA 
system. The hydrological service of Austria operates a network of  hydrometeorological 
stations, of which ~150 could provide precipitation and temperature data for real-time 
analyses on a 15-min basis. At the time of this writing, the hydrometeorological stations of 
the provinces of Lower Austria, Salzburg, Tyrol, and Carinthia have already been integrated 
into the operational precipitation analysis system. This gives a roughly two-fold increase in 
station density in those areas (Figure 4.3a). For the hourly temperature and humidity 
analysis, SYNOP stations from neighbouring countries, as well as hydrological stations from 
Tyrol, Salzburg, Carinthia, and Lower Austria are available (Figure 4.3b). 
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Figure 4.3a: Stations used operationally in the 15-min INCA precipitation analysis (TAWES 
stations + hydrological stations).  

 
Figure 4.4b: Stations used operationally in the 1-h INCA temperature and humidity analysis 
(TAWES stations + SYNOP stations + hydrological stations).  
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4.3 Radar data 
 
The Austrian radar network is operated by the civil aviation administration (Austrocontrol). It 
consists of four radar stations located at the Vienna airport, near the city of Salzburg, near 
the city of Innsbruck (on Patscherkofel mountain), and in northeastern Carinthia (on  
Zirbitzkogel mountain). ZAMG operationally obtains 2-d radar data synthesized from these 4 
locations, containing column maximum values in 14 intensity categories, at a time resolution 
of 5 minutes. Ground clutter has already been removed from the data. However, due to the 
mountainous character of the country, radar data is of limited use in many areas in western 
Austria, especially during wintertime, when precipitation may originate from rather shallow 
cloud systems.      
 
 
4.4 Satellite data 
 
The Meteosat 2nd Generation (MSG) satellite products used in INCA are ‘Cloud Type’ which 
consists of 17 categories, and the VIS image. Cloud type differentiates between three cloud 
levels (low, medium, high) as well as different degrees of opaqueness. It also diagnoses 
whether clouds are more likely convective or stratiform in character. The VIS image is used 
to downscale the infrared-based (and thus coarser resolution) cloud types during the day.   
 
4.5 Elevation data 
 
The 1-km topography used in INCA (Figure 4.3) was obtained through bilinear interpolation 
from the global 30’’ elevation dataset provided by the US Geological Survey. The resolution 
of 30’’ of the original dataset corresponds to ~930 m  in latitudinal, and ~630 m (at 48°N) in 
longitudinal direction.   
 

 
Figure 4.3: INCA topography. 

 
 
4.6 Derived topographic fields [setup_inca_topo.c] 
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For the extrapolation of 3-d ALADIN forecast fields into valleys, a ‘valley floor surface’ 
(Figure 4.4) is derived from the elevation dataset. It represents the mesoscale average 
height of valley floors and is computed by assigning to every gridpoint the minimum 
elevation found within a radius of 10 km. The resulting field is smoothed with a running 

average 20km×20km window. 
 

 
Figure 4.4: INCA valley floor surface. 

 
 

Another derived topographic field is a nondimensional surface layer index  which 

varies between 0 and 1. It is used in the temperature and humidity analysis and 
characterizes the extent to which the local terrain supports the formation of a distinct surface 
layer. It is computed as follows. First, for every gridpoint the average height of the 

topography within a square window of 7×7 points (6×6 km²) centered around the gridpoint is 
determined, but only for those points within the window that are at a lower elevation than this 
gridpoint. The difference between the gridpoint elevation  and this ‘average height of 

the surrounding lower topography’ 

SFCI

),( jiz
l

jiz ),(  is a measure of how topographically exposed a 

gridpoint is (Fig. 4.5). If it is exposed (such as high on a slope, or on a peak), the formation 
of a distinct surface layer with large values of temperature deficit or surplus will be inhibited 
due to synoptic-, meso-scale, and slope flows. If it is not exposed (such as at the bottom of a 
basin), the development of a surface layer will be much more pronounced. We will find 
stronger surface inversions there at night and a larger near-surface temperature surplus 
during the day. The nondimensional surface layer index is formulated as a linear function of 

the height difference 
l
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where the scaling parameter  is currently set to a value of 150 m. From (4.1) it follows  

that =1 up to 150 m above valley floor, decreasing linearly to =0 at a height of 300 

m above valley floor. Figure 4.6 shows the resulting field of . It is 1 on flat terrain, valley 
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floors, and in basins, and 0 on elevated mountain slopes, ridges and peaks. Figure 4.7 
illustrates the temperature analysis under stable conditions produced by this method. 
 

 
Figure 4.5: The surface layer index  is based on the difference between the local 

elevation (blue square) and the average elevation of lower lying points (horizontal line). 

SFCI

 
 

It is evident that the heuristic method just described can give only a rough 
approximation to actual temperature profiles in mountain valleys if inversions are present. It 

could be improved somewhat by replacing the fixed parameter  by climatological 

values varying from region to region. Even better, however, would be the use of high-
resolution (polar orbiting) satellite observations of surface temperature in the diagnosis of 
inversion tops. This is one of the planned developments in the INCA temperature analysis. 
Of course it would only be available if no middle or high level clouds are present.   

SCALEz

 
 
 

 
Figure 4.6: INCA surface layer index as computed by (4.1). Red indicates values >0.9 
characterizing valley and basin floors, and flat terrain. Dark blue indicates values <0.1 
characterizing mountain slopes, ridges and peaks. 
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Figure 4.7: Example of an INCA 2m temperature analysis under stable conditions. Use of 
the surface layer index allows to reproduce warm slope zones with colder air below, and the 
normal decrease of temperature above. 

 
 

5. The INCA analysis system 
 
5.1 Temperature and humidity [nwp2inca.c, inca_tq.c] 
 
The three-dimensional analysis of temperature and humidity in the INCA system starts with 
the ALADIN forecast as a first guess. This first guess is corrected based on differences 
between observation and forecast at surface station locations. Since the station 
observations are all made in the atmospheric surface layer it is important to take the daytime 
temperature surplus and the nighttime temperature deficit near the surface into account in 
the interpretation of these differences. Thus the ALADIN 2m-temperature forecast is 
conceptually and computationally separated into a ‘3-d’ or model-level part, and a 2-d 
surface-layer contribution 

 

 
ALAALAALA

DTTLT += .  (5.1.1) 
 

Here, 
ALA

T  is the standard ALADIN 2m-temperature output, and  is the temperature at 
the lowest model level. In practice, we work with 3-d ALADIN output on pressure levels, and 

 is obtained by interpolating the 3-d temperature forecast vertically to the height of the 

model topography. The difference 

ALA
TL

ALA
TL

ALA
DT  between the two temperatures is the temperature 

surplus (or deficit) in the surface layer. A partitioning analogous to (5.1.1) is done for specific 
humidity.  

To construct the first guess, ALADIN forecasts of temperature and specific humidity on 
pressure levels are interpolated trilinearly onto the 3-d INCA grid described in Section 3. 
Special care must be taken in alpine valleys because large parts of the valley atmosphere 
below ridge level are not represented in the ALADIN model. This is due to its resolution (9.6 
km) and aggravated by the fact that an envelope orography is used. The temperature first 
guess in those parts of the mountain atmosphere is determined by shifting the boundary-
layer temperature profile down to the valley floor surface (Figure 5.1.1). The temperature 
gradient for this downward extrapolation is determined as follows. Within the lowest layer of 
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depth  in the ALADIN forecast, temperature gradients are determined over 

successively higher height intervals of thickness /2. The most unstable gradient found  
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is subsequently modified according to  

 

 
2/

*
EXT

ALA

EXT
H

DT
f−= γγ   (5.1.3) 

 
in order to account for the increase or decrease in stability indicated by the surface-layer 

contribution 
ALA

DT  [create_vzgrid()]. Here  denotes the height of the ALADIN 

topography, and =5  the number of intervals over which the gradient is computed. We use 

the most unstable gradient in order to avoid erroneous extrapolations in cases of strong 

surface-based or elevated inversions. The parameters  and  were calibrated by 

verification against observations at those valley stations for which a downward extrapolation 
of at least 500 m is necessary (~70 stations). Calibration results, including both nighttime 

and daytime situations, suggest values around =1000 m, and ≈0.1. For specific 

humidity, a similar downward profile shift is performed. The gradient obtained from a 

procedure analogous to (5.1.2)-(5.1.3) is additionally reduced by a factor of  before it is 

used in the downward extrapolation. Calibration results suggest that a value around 

=0.5 gives the smallest errors. 
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Figure 5.1.1: In valley atmospheres not represented in the ALADIN forecast, the PBL 
temperature profile is shifted down to the valley floor surface, along the gradient above the 
PBL. 
 
 
Next, corrections to the first guess are computed based on differences between observed 
temperature and the ALADIN temperature forecast at station locations. Like the forecast in 
(5.1.1) these corrections are conceptually and computationally partitioned into a 3-d model-
level part and a 2-d surface-layer contribution   

 
 DTTLT Δ+Δ=Δ .  (5.1.4) 
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While the partitioning in (5.1.1) was implicitly contained in the ALADIN forecast, the 
partitioning (5.1.4) of corrections must be estimated. The question can be stated as follows: 
If there is a difference between temperature observation and forecast at a surface station 
(Fig. 5.1.2), to what extent does it reflect a forecast error that extends to higher levels, and to 
what extent is it just a forecast error within the surface layer? Here we use the principle of 
‘minimal required correction’. We assume that a forecast error is restricted to the surface 
layer as long as this assumption is physically plausible. Only if the forecast error is too large 
to be explained solely in terms of surface layer differences, then part of it is classified as 3-d 
model-level error.          
 

 
Figure 5.1.2: A difference between observed temperature and the first guess may be 
restricted to the surface layer (left dotted curve) but it may also extend higher up (right 
dotted curve). 
 

Following this principle, the 3-d part of the temperature correction at the k-th station is 
computed from  
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if . The parameter  is a near-surface temperature surplus (or deficit) 

scale which is by default set to 1 K but may have larger values depending on insolation and 
wind speed (Appendix A). It represents the minimum amount of correction that is assigned to 
the surface layer, in cases where such a correction is required.      

ALA

k

OBS

k TLT < SCALEDT

The following example illustrates how the partitioning of the error using (5.1.5a) works. 

Let us assume that a temperature of 15 °C is observed at a station, and that the 

observed insolation and wind speed at the station are such that the near-surface 

temperature surplus is 2 K. Let us further assume the ALADIN model-level 

forecast is 13.5 °C and the 2m-temperature forecast is 16 °C, which means 

the model predicts a surface layer temperature surplus of 2.5 K. Inserting the 

values into (5.1.5a) gives  

=OBS

kT

=SCALEDT

=ALA

kTL =ALA

kT

=ALA

kDT

 

 ( )[ ] 00.25.13,5.25.13max0.15,0max =++−=Δ kTL .   

 
Thus we would conclude in this case that there is no correction required to the 3-d level 
temperature of ALADIN, and that there is just 1.5 K overheating in the surface layer which, if 
added to the model level temperature of 13.5 °C, gives the observed 15 °C. If the observed 

temperature would be 17 °C instead of  15 °C, then (5.1.5b) would give a 3-d level =OBS

kT
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temperature correction of ALADIN of  +1 K. Added to the model level temperature of  13.5 
°C, this would give a corrected model level temperature of 14.5 °C, which together with the 
surface temperature surplus of 2.5 K gives the observed 17°C. To summarize, we attribute 
errors as long as it is physically plausible to the surface layer (2-d), and only if this cannot 
account for the whole error, we attribute the remaining part to the model-level (3-d) 
temperature. 

Since the beginning of 2007, the surface layer index  as described in Section 4.6 

and illustrated in Figure 4.5 is used, and the correction equations (5.1.3a,b) are used in the 
form 

SFCI
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if  [create_t3d_diffs()]. It reduces the amount of correction attributed to the 

surface layer at slope, ridge, and peak locations.  

ALA

k

OBS

k TLT <

The 3-d corrections  obtained from (5.1.5c,d) are then spatially interpolated (Fig. 

5.1.3). In the horizontal, geometrical distance weighting is used, while in the vertical the 
distance weighting is performed in potential temperature space. The three-dimensional 
squared ‘distance’ between INCA gridpoint (i,j,m) and the k-th station is given by 

kTLΔ

 

   (5.1.6) 
22222 )()()( ALA

ijm

ALA

kjkikijmk cyyxxr θθ −+−+−=
 

 
Figure 5.1.3: Schematic depiction of the strength of influence of a station observation. The 
ratio of the horizontal to vertical distance of influence is determined by station distance and 
static stability (Eq.(5.1.6)).  
 
 
where the parameter c has the dimension of an inverse temperature gradient. Based on 
cross-validation its optimum value for both temperature and humidity was found to be close 

to 3⋅104 m/K. This means that a distance of 1 K in potential temperature space is equivalent 
to a horizontal distance of 30 km.  

The interpolated three-dimensional temperature difference field at gridpoint i,j,m is 
obtained from  
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[interpolate_t3d_diffs()], where the number of nearest stations used in the interpolation is n = 
8. Note that ‘nearest’ in this context means smallest distance in the sense of (5.1.6). Cross-
validation has shown this number to give the smallest analysis errors. The temperature 
difference field is then added to the ALADIN 3-d level temperature forecast, giving  

 

 .  (5.1.8) ),,(),,(),,( mjiTLmjiTLmjiTL
ALAINCA Δ+=

 
The potential temperature weighting has the important effect that model errors as indicated 
by station observations are not unphysically interpolated or extrapolated across stable 
layers.  

As a next step, the remaining differences, i.e. those attributed to the surface layer, are 
determined from 

 

 ,   (5.1.9) 
INCA
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kk TLTDT −=Δ
 
 [create_t2m_diffs()] and interpolated horizontally, using a modified inverse distance 
weighting which takes into account the difference between inversion factors at grid point (i,j) 
and at the location of the k-th station 
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where  
 

 ,  (5.1.11) 
222 )()( jkikijk yyxxr −+−=

 

 kSFCSFCijk IjiIf ,),(1 −−=   (5.1.12) 

 
[interpolate_t2m_diffs()]. The use of (5.1.12) ensures that corrections derived at a certain 
type of location (e.g. valley floor) are not interpolated to different types of location (e.g. 
slope). The final 2m temperature analysis is obtained by adding the surface-layer correction 
(5.1.10) to the corrected model-level field (5.1.8) at the topography height z 

 

   (5.1.13) ),())(,,(),( jiDTzmjiTLjiT
INCAINCA Δ+=

 
[vzgrid_fields_ana()]. The whole procedure reproduces observed values at the station 
locations to within 0.1-0.3 K.  In cases where stations are only a few km apart and observe 
significantly different temperatures, the difference will be larger but still <1 K. 

A procedure analogous to the one described for temperature is performed for specific 
humidity. Examples of INCA 2m temperature and humidity fields are shown in Figures 5.1.4 
and 5.1.5. Cross-validation results averaged over stable and unstable conditions indicate 
that the analysis MAE is typically 1-1.5 K in lowland and hilly areas, as well as at exposed 
mountain locations, and 1.5-2 K in mountain valleys. Under well-mixed conditions the MAE 
drops below 1 K, both in lowland and mountain areas, reaching values near 0.5 K in areas of 
good station coverage. Largest errors occur in deep mountain valleys under stable 
conditions. Insufficient knowledge of the height of cold air pools and associated inversions 
leads to large uncertainty in the temperature, depending on whether a station is still within 
the cold air or already in warm air, e.g. due to Foehn effects.   
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Figure 5.1.4: Example of an INCA temperature analysis during a Foehn situation 
(21.11.2007, 08Z). Note the asymmetry between northern and southern alpine valleys. Also, 
the eastern valleys on the north side still have cold air pools in them while the Inn and Rhine 
valleys are already warmer. Highest temperatures are found on the slopes above the cold air 
pools.   
    

 
 
Figure 5.1.5: Example of an INCA humidity analysis (29.10.2005, 13Z). Shown is 2m 
relative humidity. Typical for autumn, there is a large contrast between cool, humid air in 
valleys and very dry air above. Note the difference between the Rhine valley  in the extreme 
west, where relative humidity is still high, and the Inn valley, which is already much drier.     
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The INCA analysis system is designed to take into account the effect of lakes on 2m 
temperature [LAKEMODE=1]. This is described in Appendix B. 

Another effect on temperature which is considered [PRECMODE=1] is the evaporative 
cooling due to precipitation, which becomes most significant in the case of isolated 
convective cells on hot days. The amount of cooling is computed as a function of 
precipitation rate and boundary-layer humidity as described in Section 5.4 [inca_rr.c]. It is 

given to the temperature analysis as a two-dimensional field ),( jiDTPRECΔ . In the 

temperature analysis, this cooling is subtracted from the first guess. In the stepwise process 

(5.1.5)-(5.1.13) this has to be taken into account in several ways. First,  in (5.1.5c,d) is 

replaced by 
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kTL
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where  is the value of kPRECDT ,Δ ),( jiDTPRECΔ at the location of the k-th station, and 

 is a reduction factor for that location. It becomes relevant in cases where the 

first guess with cooling effect is further from the observation than the original first guess. If 

 1 K, then  regardless of whether the cooling effect brings the first 

guess closer to observations. If, however, 
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Thus, the cooling effect gets reduced if it is not supported by observational evidence. The 
determination of surface layer differences (5.1.9) assumes the form 
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and the final combination step (5.1.13) is modified to 
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where the gridded  is obtained by interpolating the values at the stations using 

inverse squared distance weighting  
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[interpolate_fdt2mp()] with  as defined in (5.1.11). 
2

ijkr
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Figure 5.1.5: Example of an INCA 15-min precipitation analysis (top) and its effect on the 
temperature analysis (bottom). In northern and southeastern Austria the cooling due to 
convective cells can be seen in the spatial pattern of the temperature analysis.
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5.2 Wind [nwp2inca.c, inca_uv.c] 
 
Like the INCA analysis of temperature and humidity, the INCA wind field analysis is three-
dimensional, and based on ALADIN fields as a first guess. The ALADIN wind forecast, 
interpolated to the INCA grid, is used as a background field on which observation increments 
are superimposed and interpolated. As in the case of temperature and humidity, a distinction 
is made between the 3-dimensional model-level value of wind speed and the 2-dimensional 
10m wind speed of the model. The latter is computed in the NWP model by interpolation, 
using boundary-layer physics, between the lowest model level and the surface. This 10m 
wind, however, is the one on the topography of the NWP model, which is not what we want. 
As in the case of temperature, we interpolate the model-level wind tri-linearly to the 
topographic height in INCA. The observed wind at a station is of course the 10m wind. So if 
we determine differences between model-level wind and observations we must estimate the 

factor which translates a model-level wind into a 10m wind. Based on the ratio between 

10m wind and model level wind in the ALADIN output it was found that on 

average , which is the value that is used operationally at low levels and in valleys. 

Higher above the valley floors, where the terrain is more exposed, this factor is assumed to 

increase to 0.9. The parameterization of  has the form 
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where =0.75, =0.9, =300 m,  is the topography, and  is the valley 

floor surface. 

VALF10

MTNF10 SCALEz Hz
Vz

After multiplying the observed wind by , differences of the u- and v-components 

between model and observations are computed [create_uv3d_diffs()] and interpolated 
[interpolate_uv3d_diffs()] according to the method illustrated for temperature by Eqs.(5.1.1)-

(5.1.3). At this point the resulting 3-dimensional wind field 

1

10

−
f

),,( wvuv =
r

 is not mass-

consistent. First, because the inverse squared distance interpolation of observation 
corrections does not produce a mass-consistent field, and second, because the ALADIN 
wind forecast does not fit to the high-resolution INCA topography. An iterative relaxation 
algorithm [reduce_div()] is applied to obtain a mass-consistent field that satisfies 
 

 0)( =⋅∇ v
rρ ,  (5.2.2) 

 
and the kinematic boundary condition 
 

 0=× nv
rr

  at  Hzz =  (5.2.3) 

 

(no flow through the terrain), where n
r

 is the normal vector of the slope element. In (5.2.2) 

only the vertical variation of density  
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Figure 5.2.1: ALADIN wind forecast at z=1000m in an area at the eastern alpine rim, 
downscaled to 1 km before (upper panel) and after the relaxation procedure (lower panel). 
Note the channeling and acceleration of the flow around some of the mountain flanks and 
through passes, which is required for mass-consistency.  
 

)(zρρ =  is considered. During the relaxation procedure, wind vectors at station locations 

are kept at their observed values. Figure 5.2.1 shows an example of the wind-field before 
and after the relaxation procedure. It should be noted that the current downscaling 
procedure in INCA is purely kinematic. It cannot introduce dynamical flow effects such as 
mountain waves or foehn into the analysis if these phenomena are not already present in the 
NWP model field or in the observations. 

The coordinate system used in the wind module of INCA is a true z-system with 
horizontal coordinate surfaces intersecting the terrain. There are 32 levels at a constant 
spacing of 125 m. The irregular shape of grid volumes intersecting the terrain (‘shaved 
elements’, Figure 5.2.2) is taken into account [insert_topo()] in the computation of 
divergence, which is part of the relaxation procedure (Steppeler et al., 2002).   
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Figure 5.2.2: Coordinate system used in the INCA wind module, showing shaved elements 
generated by the intersection of z-surfaces with terrain (bold line).  

 
The standard output of the INCA wind analysis that is visualized for the forecaster is 10 m 
wind, as in the example shown in Figure 5.2.3. It is computed from the relaxed wind field, 

applying the  factor [vzgrid_fields()]. The example shows highest wind speeds in the 

lowlands east of the Alps, as well as on mountain ridges and peaks. The zoom shows 
channelling of the flow in valleys and around mountain flanks. 

10f

Over lakes, near-surface wind speeds are generally higher than over the surrounding 
land, due to reduced roughness length over water as compared to grass, trees, etc. In the 
INCA system this is taken into account using boundary-layer similarity theory as follows. It 
was described above that the ratio between ALADIN 10 m wind and model level wind was 

found to be  at low elevations. Using the logarithmic wind profile, and a reference 

roughness length =0.1 m, typical of grassland, or farmland, with interspersed trees 

(Stull, 1988), this value of  implies an effective model level height of 
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where  = 10 m. Using the 10 m wind  generated by INCA without lake effects, friction 

velocity  is computed from the logarithmic wind profile 
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where k = 0.4 is von Karman’s constant. The modified value of  over the lake is then 

given by 
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Figure 5.2.3: Example of a 10 m wind analysis provided by the INCA wind module. Colors 
give wind speed, wind vectors indicate direction and speed. Top: analysis for the entire 
INCA domain, bottom: zoom on the Lake Neusiedl area. Over the lake, analysed 10 m wind 
speeds are typically 10-20% higher due to the smaller roughness length over water 
computed with (5.2.2)-(5.2.5). 
   
where the dependence of roughness length over water on wind speed is taken into account 
using Charnock’s formula  
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with the nondimensional coefficient cα =0.016 as suggested by Chamberlain (1983). 

A future development in the INCA wind analysis will be to generate a flow-field which is 
not just kinematically but also dynamically consistent. For the simulation of  thermally driven 
slope winds at high resolution it is crucial to include nonhydrostatic pressure perturbations 
(Haiden, 2003). With regard to katabatic flows it was shown by Haiden and Whiteman (2005) 
that significant mass-fluxes can be generated even on very gentle slopes with inclinations of 
the order of 1%.   
 

 
5.3 Cloudiness 
 

The cloudiness analysis in INCA is actually an analysis of insolation fraction based on 

station observations, using MSG cloud type data for spatial interpolation. The approach is 
similar to the INCA precipitation analysis in the sense that no NWP model output is used in 
the analysis, and that remote sensing data is calibrated using station observations. Also, a 
certain spatial shift (5 km) between station location and satellite pixel is allowed in order to 
take into account uncertainties in timing and satellite imagery navigation as well as the 
slanted path of the sunbeam. The essential idea in the case of cloudiness is to perform 
spatial interpolations of station observations separately for each set of stations that is 
located beneath a certain cloud type. Thus the relationship between cloud type and 
insolation fraction on a given day does not get ‘smeared out’ in areas where different cloud 
types are bordering each other. On the resulting field some weak smoothing is applied, 
consistent with the amount of spatial shift between station and satellite pixel described 
above. Figure 5.3.1 shows how the cloud type information improves the spatial structure of 
the insolation fraction field compared to the typical bulls-eye structure obtained from station 
interpolation alone. During nighttime, when no station observations of equivalent ‘starlight’ 
fraction are available, the field is simply the cloud types themselves, scaled according to a 
one-year validation period. Thus, the cloud types are transformed into ‘starlight’ fraction on a 
monthly basis with linear temporal dependency in order to avoid discontinuities at month-
end. 

PS
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Figure 5.3.1: Insolation fraction from station interpolation (upper left), MSG cloud types 
(upper right), and combined INCA insolation fraction analysis (bottom). [During the work on 

the project the parameter was used for this field, meaning ‘sunshine’ percent. At night 

the equivalent field would have to be called ‘starlight’ percent, or fraction.]   
PS

 
 
5.4 Precipitation [inca_rr.c, rr_elev.c] 
 
The precipitation analysis is a combination of station data interpolation including elevation 
effects, and radar data. It is designed to combine the strengths of both observation types, 
the accuracy of the point measurements and the spatial structure of the radar field. The 
radar can detect precipitating cells that do not hit a station. Station interpolation can provide 
a precipitation analysis in areas not accessible to the radar beam. Naturally, the combination 
method has to deal with the weaknesses of both types of observation as well, namely the 
potentially unrepresentative locations, and low density, of stations, and the fundamental 
quantitative uncertainty of precipitation estimated by radar.  
 
(i) Interpolation of station data 
 
The 1-min precipitation amounts measured at TAWES stations are aggregated to 15-min 

amounts. The irregular point values are interpolated onto the regular 1×1 km INCA grid 
using distance weighting. A common method of interpolation of point precipitation 
measurements onto a regular grid is based on weights that are the n-th power of inverse 
distance. It can be written 
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where 
 

 
22 )()( jkikijk yyxxr −+−=  (5.4.2) 

 

is the distance between station k and grid point (i, j), and  is the precipitation at station 

location k. Eqs. (5.4.1) and (5.4.2) produce a gridded precipitation field that reproduces 
(within the limits of grid resolution) the observed precipitation values at the station locations, 
and exhibits reasonably smooth behaviour in between. In regions that are far from any 
station, the field asymptotically approaches the station mean. 

kP

Often the exponent n=2 (inverse-distance-squared, IDS) is used for interpolation, which 
tends to generate precipitation bulls-eyes, in particular if the summation at each grid point is 
taken over all stations. This undesirable tendency may be alleviated by either performing the 
summation over a fixed number of nearest stations only (as in INCA), or by limiting the 
summation to stations within a certain radius. Alternatively, the exponent may be increased 
from 2 to a higher value, for instance to an inverse-distance-to-the-4th-power. Each of these 
modifications reduces the influence of distant stations and generates a precipitation field 
which is more locally determined, and more similar to what a human analysis made by hand 
would produce. Cross-validation studies during the initial development of INCA have shown 
that an exponent of 2 or even smaller produces the best analyses in the case of widespread 
rainfall, whereas significantly higher values (>5) are best suited for isolated convective 
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events. Since the latter type of event is anyway captured by the radar data, the value 2 
which is more suitable for widespread precipitation is used operationally. To reduce the 
occurrence of precipitation bulls-eyes, only the nearest 8 stations are taken into account in 
the interpolation. Furtermore, a modification to the classical IDS method has been 
introduced. It takes into account the inhomogeneous azimuthal distribution of stations 
around the gridpoint in question and reduces the relative weight of stations located ‘behind’ 
(i.e. at a similar azimuth to) nearer stations. 

 
 (ii) Climatological scaling of radar data 
 
The radar data, which is available at 5 minute intervals on a polar-stereographic projection, 
is aggregated to 15-min precipitation amounts, and bilinearly interpolated onto the INCA 

grid. Let us denote this field by . Since the radar field is strongly range-dependent 

and contains biases due to topographic shielding it must be scaled before use in the 
precipitation analysis. In a first step, a ’climatological’ scaling is performed. A climatological 
scaling factor  is calculated for each month. A gridded field of the scaling factor is 

obtained through interpolation of the scaling factors calculated at every station k as the ratio 
between monthly totals of raingauge and radar precipitation 

),( jiPRADAR

),( jiRFC

 
Figure 5.4.1: Climatological radar scaling factor derived as the ratio between raingauge and 
radar accumulated precipitation based on the convective season (May-August) 2005. It can 
be seen that large areas in Vorarlberg, Tyrol, and Salzburg exhibit very poor radar coverage 
(values of 10 and higher), whereas Upper and Lower Austria are satisfactorily covered, with 
values mostly between 1 and 3. 
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The resulting field (Figure 5.4.1) is spatially smoothed using a 10×10 km running average. 
Operationally, a 3-month temporal average of scaling factors centred at the actual month is 
used. This climatological scaling only partially corrects the reduced radar return in the case 
of snowfall as compared to rain. 

In order to compensate for some of the artefacts in the radar field caused by 
topographic shielding of the radar beam, the interpolated scaling factor is replaced by a local 
scaling factor in regions where the radar beam is strongly shielded (indicated by beamlike 
structures with high local scaling factors). The local scaling factor is the ratio of the monthly 
accumulated precipitation gained from the interpolated station observations to the 
accumulated radar precipitation at the respective gridpoint: 
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Multiplication of the resulting scaling factor field  or  (whichever is 

higher) with the radar field yields the climatologically adjusted radar field 
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Below, whenever RFC occurs in an equation, it is the maximum of  and  that is 

actually used. 

RFC lRFC

There are two kinds of problems with this scaling procedure. The first are regions where 
the radar field is very weak or nonexistent because the radar beam is shielded by 
mountains. In these regions simple scaling would yield arbitrarily high scaling factors 
resulting in questionable precipitation values. This undesirable effect is prevented by limiting 

the scaling factor to a maximum value  (currently set to 2). The second problem is 

that high precipitation rates, typically found within convective cells, are more visible and thus 
less underestimated by radar. To prevent over-scaling of such cells the scaling factor is 

reduced for radar values higher than  (currently set to 1 mm / 15 min) in the form 
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[climscale_RR()]. Thus the scaling factor asymptotically decreases towards 1 for high 
precipitation amounts. 
 
(iii) Re-scaling of radar data using the latest observations 
 

In a next step the climatologically scaled radar field is re-scaled on the basis of a 
comparison at analysis time of station observations and radar values at the stations. In this 
comparison, a spatial shift of a maximum of 4 km in either direction between the station and 
the corresponding radar pixel is allowed to take into account effects due to the finite settling 
time of hydrometeors, effects of wind-drift, etc. The algorithm identifies the radar pixel that 
fits best to the station observation, and uses that value for subsequent calculations. An 
optimum spatial shift vector is computed for each station location and interpolated to each 
grid point with a distance-weighting algorithm. Using this shift-vector field, the radar 
precipitation field is shifted at each grid point in a slightly different direction and amount 
[shift_RR()]. 

The actual re-scaling [rescale_RR()] has the form 
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It is nonlinear because the weights  and the scaling factor  depend on 

. The weights have the form 
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where   is the geometric distance given by (5.4.2). Compared to inverse distance 

weighting, (5.4.8) contains two additional terms. The additional term in the denominator  
increases the distance if the climatological scaling factor at a station and at the point in 
question are different. The coefficient has the value c=10 km, which means that a difference 
in scaling factors of 1 has the effect of a distance increase by 10 km. This term is important 
especially in mountain areas, where the RFC field can vary considerably over short 
distances due to topographic shading. The term in the numerator reduces the weight if the 
radar precipitation value at a station is smaller than the one at the point in question.     
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The scaling factor  in (5.4.7) is given by ijkRFA
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where the parameter
+

RFA is a function of the climatological scaling at the gridpoint in 
question 
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with =1, =3, =5. In summary, the scaling defined by (5.4.7)-(5.4.10) 

for a gridpoint (i,j) is a weighted average of the ratio between station and radar precipitation 
at the nearest stations, where the weight decreases with increasing distance, with increasing 
difference in climatological scaling, and with decreasing precipitation at the station (relative 
to the precipitation at the gridpoint).  

MINRFA MAXRFA PRFC

 
(iv) Final combination 
 

The two precipitation fields  and  are finally combined to a field 

 that gives a better estimate of the precipitation distribution than each individual 

field. The combination is obtained through a weighting relationship  

),( jiPSTAT ),(**
jiPRADAR

),( jiPINCA

 

 [ ]),(),(),(),( ****
jiPjiPvjiPjiP RADSTATRADARSTATINCA −+= , (5.4.11) 

 
[create_RM()] where the weight v is given by 
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The auxiliary field  is created by interpolating onto the grid, analogous to the 

station observations, the scaled radar values at the station locations. At the station locations 

= , so that v=0, and the station observations are reproduced there 

within the limits of resolution. Between the stations, the weight of the radar information 
becomes larger the better the radar captures the precipitation climatologically, i.e. the 

smaller the RFC values are. The threshold value , above which the weight of the radar 

begins to decrease, is 3. The value of , at which the radar weight has decreased to 

one-half, is 5. 
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),(**
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Figure 5.4.2: Example of a 15-min INCA precipitation analysis based on the combination of 
station and radar data. Upper left panel: pure station interpolation, upper right panel: 
uncorrected radar field, bottom left panel: corrected radar field, bottom right panel: final 
INCA precipitation analysis. 
 
Figure 5.4.2 shows an example of the stepwise procedure and final analysis from the 2002 
flood event in Austria. Note the large difference between unscaled radar and station 
interpolation (top panels), and the importance of the final combination (lower right panel) as 
a means to smoothly connect areas seen by radar with those only covered by stations. If the 
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final combination step is not made, ‘edges’ would remain in the analysis (lower left panel, 
SW corner). 
 
 
(v) Elevation dependence 
 
A new feature introduced in 2008 was a parameterization of elevation effects on 
precipitation. They were found to be crucial for a realistic estimation of the spatial  
distribution of precipitation in mountainous terrain. Through feedback from hydrological 
simulations using INCA precipitation analyses it was possible to constrain and optimize the 
parameterization.     

In the study of elevation effects on precipitation it is necessary to define the spatial scale 
at which the relationship is supposed to be valid. In the Alpine area no systematic increase 
of precipitation with elevation exists on the 50-100 km scale. Precipitation increases from the 
Alpine foreland towards the northern and southern upslope areas and generally decreases 
towards the interior Alpine areas, in spite of higher terrain there (Frei and Schär 1998). 
These areas experience precipitation shielding due to mountain-range blocking and upslope 
effects. This is a familiar pattern that can be found in many other areas such as the Pacific 
coastal mountains of the U.S. and Canada, or the mountains of Norway and Sweden. 
However, superimposed on this larger scale are patterns due to individual mountain ridges 
and valleys (5-10 km scale). It is the variation on this horizontal scale we attempt to 
parameterize. It also appears to be the optimal scale for the application of elevation-
precipitation relationships (Daly et al. 1994, Sharples et al. 2005). Moreover, the average 
distance between real-time rain gauge stations in the Austrian Alps is ~20 km which means 

they already capture most of the meso-β scale precipitation variations. This is another 

reason why our study focuses on the local (5-10 km) meso-γ scale increase of precipitation 
from a valley floor to the surrounding ridges and peaks.  
 
Table 5.4.1: Topographic characteristics of station pairs used in the analysis. The last 
column gives the direction of the valley station relative to the mountain station. 
 

# Station z(m) Δz(m) Δx(m) Dir 

Hahnenkamm 1790
1

Kitzbühel 744
1046 3800 NNE

Loferer Alm 1623
2

Lofer 625
998 4200 ESE

Schmittenhöhe 1973
3

Zell am See 766
1207 4400 E 

Feuerkogel 1618
4

Gmunden 427
1191 4300 E 

Rax 1547
5

Reichenau 486
1061 4900 ESE

 

 
Table 5.4.1 lists the station pairs used for the derivation of the parameterization. The 

horizontal distance between mountain and valley stations is about 4 km, the vertical distance 

is about 1 km. On the meso-β scale, station pairs 2 and 4 are located in the primary northern 
Alpine upslope precipitation belt, whereas station pairs 1, 3, and 5 are experiencing already 
some downstream sheltering. Pairs 1-4 are located well north of the main Alpine crest, pair 5 
is situated at the eastern end of the Alpine chain. For this study we used 12-h precipitation 
observations (06-18 UTC, 18-06 UTC) from the 11-yr period 1995-2005. The observations 
were corrected for wind effects following the method of Skoda and Filipovic (2007) which 
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estimates a correction factor as a function of precipitation intensity, wind speed, and wet-
bulb temperature (for the distinction between snow and rain). 

The parameterization derived from these station pairs gives the mountain precipitation as 
a function of valley precipitation, normalized to a height difference of 1000 m. It has the form 
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[g_oro_fun()] where b  has been expressed in terms of  and 
 
(Haiden and Pistotnik 

2008, 2009). The parameter  is the ratio between mountain and valley precipitation in the 

limit of weak valley precipitation. The parameter  is a measure of how strongly the ratio 

between mountain and valley precipitation decreases with increasing valley precipitation. For 
small values of valley precipitation, (5.4.13) reduces to the simple linear relationship 

a cP

a

b

 

 valmtn aPP = . (5.4.14) 

 

As  increases, but remains below the critical value , the ratio  decreases, and 

mountain precipitation as given by (5.4.13) becomes a parabolic function of valley 

precipitation. Above the critical value, the relationship between  and  is additive. For 

a given value of the parameter , an optimum value of b  is computed from a given ratio of 

long-term (inter-annual) precipitation totals at the mountain and valley stations 

valP cP valmtn PP /

valP mtnP
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)(
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by minimizing the mountain precipitation root-mean-square error (RMSE) when predicted by 

valley precipitation. Note that the numbers given below all refer to values of A , ,  

normalized to an elevation difference of 1000 m between mountain and valley station.  

a b

The different behaviour of orographic precipitation enhancement in the limit of small and 
high precipitation rates implied by (5.4.13) is consistent with the physics of the seeder-feeder 
process (Smith 1979, Cotton and Anthes 1989). If the non-orographic (seeding) precipitation 
is weak (Fig. 5.4.3a), orographic enhancement is limited by conversion. Only a small fraction 
of the condensate produced in the orographic cloud is washed out. Increasing the seeding 
therefore leads to a roughly proportional increase of precipitation at the ground. If the 
seeding rate is high (Fig. 5.4.3b), washout of condensate is very efficient, and orographic 
enhancement becomes limited by condensation. An increase in the intensity of seeding does 
not lead to a proportional increase of precipitation at the ground. The orographic effect is 
basically additive in such a case. As shown analytically by Haiden (1995), the critical 
seeding rate, above which the process becomes limited by condensation rather than 
accretion efficiency, increases with wind speed. 
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Figure 5.4.3: If the non-orographic (seeding) precipitation is weak (a), orographic 
enhancement is limited by conversion. If seeding is strong (b), orographic enhancement is 
limited by condensation. 
 

It was found that the coefficient , which represents the precipitation enhancement for 

small precipitation amounts, could be set to the location-independent value of 2.2 without 
significantly increasing the RMSE. We applied (5.4.13) with =2.2 to the 11-yr dataset, 

varying the coefficient b , thereby obtaining different inter-annual ratios 

a

a

A . The relationship 

between A  and b  is quite similar for all 5 station pairs, confirming the viability of the general 

approach. The similarity appears to be a result of the broadly similar precipitation climate at 
the selected locations. The relationship can be analytically fitted by 
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where = 16.0 mm and =18.6 mm (12-h totals).  1 2

The actual implementation of the elevation parameterization works as follows. In a first 

step, a ‘station topography’  is created. It is the topography represented by the 

stations and is computed by interpolating the INCA elevation at the station locations 
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where  is given by (5.4.2). Similarly, a ‘valley precipitation’ field is computed 
2
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where the summation extends only over those stations which are located not more than 

=300 m above the valley floor surface. The field  represents the reference 

precipitation at valley floor level, on which the elevation dependence is based. In the 
following, we drop the (i,j) arguments for better legibility, where it is understood that each 
dependent variable is a gridded field depending on (i,j). 

VALzΔ VALP

The relationship (5.4.13) between mountain and valley precipitation, which was 
normalized to a height difference of 1000 m, implies a certain relative precipitation gradient 
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Using (5.4.13), (5.4.16), and (5.4.19), the precipitation increment due to the elevation effect 
on the INCA grid is computed from 
 

 VALSTHELEVELEV PzzGP )ˆ( −=Δ , (5.4.20) 

 

where the modified topography height , defined by  Hẑ
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has been introduced to reduce the elevation gradient at higher elevations. For Austria, 

parameters values have been set to =2800 m, and MAXZ ZΔ =500 m.   

Finally, the increments due to radar field and elevation dependence need to be 
combined. Eq. (5.4.11) can be written 
 

 RADARSTATINCA PPP Δ+= , (5.4.22) 

where 

 ( )****

RADSTATRADARRADAR PPvP −≡Δ . (5.4.23) 

 
To avoid double counting of elevation effects already captured by the radar field, the 
combination is additive only if the increments have different sign 
 

 
       

 if        ELEVRADAR PPP Δ+Δ=Δ 0<Δ⋅Δ ELEVRADAR PP , (5.4.24a) 

 
and if they have the same sign, then just the larger value is used 
 

 ( )ELEVRADAR PPP ΔΔ=Δ ,max
     

 if      0≥Δ⋅Δ ELEVRADAR PP . (5.4.24b) 
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Eq. (5.4.22) is replaced by 
 

 PPP STATINCA Δ+= , (5.4.25) 

 
where PΔ  now contains both radar and elevation increments [oro_effect()]. 
 

 
Figure 5.4.3: Example of a 15-min INCA precipitation analysis based on the combination of 
station and radar data, with elevation dependence included. Upper left panel: pure station 
interpolation, upper right panel: radar field, bottom left panel: station interpolation with 
elevation effect, bottom right panel: final INCA precipitation analysis. 
 
 
5.5 Precipitation type 
 
The ALADIN model provides forecasts of liquid and solid precipitation at the height of the 
model topography. This information is however of limited use in orographically structured 
terrain, where the model topography may differ greatly from the actual topography. For the 
city of Innsbruck, for example, which is located at about 600 m above msl, the current 
ALADIN-AUSTRIA model topography has a height of 1500 m, giving a difference in 
elevation of 900 m. In several alpine valleys these differences reach values of up to 1500 m. 
Using a semi-envelope or mean orography instead of the full envelope reduces these 
differences but does not eliminate the problem of predicting the actual snowfall line in terrain 
that is only partially resolved by a model. This is an issue in flood forecasting, where the 
amount of precipitation stored as snow on the ground (thus not immediately contributing to 
runoff) needs to be estimated. It is also crucial in road weather forecasts for the planning of 
road maintenance measures like plowing and salting. 
 Furthermore, for such applications the distinction between rain and snow may not be 
sufficient. In cases where the atmosphere is well-mixed, and the temperature continuously 
decreases with height, the boundary between snowfall and rainfall will be relatively narrow. 
However, in more stable cases, or when the snowfall line works its way downwards due to 
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latent heat effects, there may be a broader height range with temperatures close to 0°C and 
associated snow/rain mix (‘Schneeregen’). If rain falls into a near-surface layer of cold air, or 
on a surface with sub-freezing temperature, freezing rain will occur. This precipitation type is 
the most critical of all since it has enormous effects on transportation and may cause 
widespread structural damage in severe cases (Rauber et al., 1994).                

One of the derived fields from ALADIN-AUSTRIA we operationally compute outside the 
model is the snowfall line. The distinction between rain and snow is based on wet-bulb 

temperature  rather than temperature T  because ventilation effects keep the temperature 

of falling precipitation close to . It is well known that snowfall may occur at several 

degrees above 0°C if the atmosphere is sufficiently dry. Steinacker (1983) has shown 

empirically that the threshold value of  for the rain/snow distinction is close to 

+1.5°C. This is the value we use in the computation of ALADIN snowfall line.  

wT

wT

wT

=critwT )(

The ALADIN forecast of  temperature T  and specific humidity  on pressure levels is 

interpolated to the INCA grid and extrapolated into valleys as described in Section 5.1. Next, 

starting from the top,  is computed at each level, marching downward. When the first 

 is found, the height of the snowfall line is computed from linear interpolation 

between this level and the one above. Since there is no closed analytical expression for 

 the computation is iterative, using a bisection algorithm. In cases where the 

snowfall line is below the lowest terrain elevations, it is set to a default value.   

q

wT

critww TT )(>

),,( pqTfTw =

The determination of precipitation type is also based on the wet-bulb temperature. 
According to the observational study of Steinacker (1983) a snow/rain mix is most likely to 

occur in the range  0°C +2°C. Below 0°C precipitation predominantly falls as pure 

snow, and above +2°C it is most likely pure rain. [Thus the snowfall line as described above 
actually represents a specific height within the finite-thickness melting layer.] Because of the 
potentially complicated vertical temperature and humidity structure in the lower atmosphere, 

it is not sufficient to just rely on near-surface values. For example, even if 

≤≤ wT

<wT 0°C, 

theoretically allowing pure snowfall, there may be a warm layer aloft where the precipitation 
has already completely melted and it actually rains. The algorithm which determines 
precipitation type therefore uses both near-surface information (2m temperature, 2m wet-
bulb temperature, ground temperature) and upper-air information (snowfall line as 
determined above). 

1) +2°C. If this is the case, the relation between snowfall line   and surface 

elevation  is considered. If 

<wT sz

z melts zzz Δ−<− 5.1 , snowfall is diagnosed, if 

, snow/rain mix, and if meltsmelt zzzz Δ<−<Δ− 5.05.1 melts zzz Δ≥− 5.0  rainfall.  

2) +2°C. Rainfall is diagnosed. ≥wT

The value of  which represents the half-width of the melting layer, is currently set to 

a constant value of 100 m but will soon be replaced by the actual melting layer half-width 

computed from the thresholds 0°C and 

meltz)(Δ

=wT =wT +2°C. 

In cases where the above diagnosis gives rainfall, an additional test for freezing rain is 
performed. Freezing rain is assumed to occur if either the air temperature or the ground 
temperature is below 0°C. In the latter case, however, the air temperature must not exceed a 
critical value which is currently set to +2°C. In order to clarify whether this additional ‘safety 
precaution’ is really necessary, future freezing rain events will have to be analyzed. The 
analysis of ground temperature in INCA is based on surface observations of +5cm air 
temperature, –10cm soil temperature, and 2m air temperature. In its current version it is only 
used for the determination of freezing rain potential. Outside the nowcasting range, the 
ALADIN forecast of ground surface temperature is used (adapted to actual terrain height).    
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The computations described above have been operationally implemented in INCA which 
performs a precipitation analysis every 15 minutes. Since temperature, humidity, and ground 
temperature are updated only every 1 hour, a linear interpolation in time is used to provide 
an update on precipitation type every 15 minutes. The example in Figure 2 shows an 
analysis where all four precipitation types are present. 
 

 

 
 

Figure 5.5.1: Example of an INCA analysis of temperature (upper left), precipitation (upper 
right), and resulting precipitation type (bottom). Snowfall indicated blue, snow/rain mix is light 
blue, rain is green, freezing rain is red. In this case freezing rain is diagnosed in some cold 
air pools which are present in inner-alpine basins. The temperature analysis is based on 
ALADIN as a first guess. 
 
 
The current algorithm gives satisfactory results with regard to the distinction between snow, 
snow/rain mix, and rain, and there are indications that it gives useful guidance on the 
occurrence of  freezing rain. However, since its full operational implementation no major 
freezing rain event occurred in Austria, so this still needs to be verified.  
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Figure 5.5.2: Example of an INCA snowfall analysis (in cm) generated from consecutive 15-
min analyses accumulated over 8 hours. Shown is a zoom over northeastern Austria. 
 

At gridpoints located above the local snowfall line, the accumulation of snow is 
estimated by simply assuming 1 mm precipitation = 1 cm of snow. An example is shown in 
Figure 5.5.2. The increase of snow depth, for a given water equivalent, with decreasing 
temperature is not taken into account. This is because the settling of the snowpack under its 
own weight is not modelled either, and the two effects partially compensate. An algorithm 
taking into account both effects will probably be implemented in 2007.        
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6. The INCA forecasting system 
 
At the time of this writing the INCA forecasting system consists of separate modules for 
temperature/humidity, wind, cloudiness, and precipitation, using different methods of 
extrapolation in time. It is planned to replace these modules in the future by a unified 
nowcasting method based on the concept of error motion vectors (Section 7).   
 
6.1 Temperature and humidity 
 
The currently used method of predicting temperature in the nowcasting range has been 
adopted from a single-point application and treats each gridpoint independently. It makes 
certain assumptions about the persistence of the NWP forecast error, depending on 
stratification and cloudiness. 

Much of the temperature error in the NWP forecast is due to errors in the cloudiness 
forecast and associated errors in the surface energy budget. If the model underestimates 
cloudiness, the predicted diurnal temperature evolution will likely be overestimating the 

actual one, and vice versa. It is assumed that the factor  of the diurnal amplitude 

reduction can be approximately related to the error  of cloud fraction through a linear 

relationship of the form    

Tf

ERRC

 

 ERRNT Ccf +=1  (6.1.1) 

 

where the coefficient  is typically found to be in the range 0.5-0.7. The temperature 

nowcast for time t
Nc

i is then computed from the recursive relationship  
 

 [ ])()()()( 11 −− −+= iALADINiALADINTiINCAiINCA tTtTftTtT  (6.1.2) 

 

where is the temperature at the analysis time, determined  by the method 

described in Section 5a. Thus the temperature forecast consists of the observed 
temperature plus the temperature change predicted by the NWP forecast, multiplied by a 
factor which depends on the cloudiness forecast error of the NWP model. If there is no 
cloudiness forecast error, the predicted temperature change is equal to the one predicted by 
the NWP model. 

)( 0tTINCA

The temperature computed by (6.1.1)-(6.1.2) does not generally converge towards the 
ALADIN forecast at large lead times. Therefore the forecast is replaced by a weighted mean 
between the temperature given by (6.1.2) and the ALADIN temperature forecast for times 

Cit τ>  in the form of a negative-exponential asymptotic approach.  
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The time scale Cτ  depends on static stability, specifically on the presence and strength of 

inversions. If no inversion is present, Cτ =3 hours, if a strong inversion exists, it can reach 

values of up to 12 hours. This dependency accounts for observed variations in persistence 
of temperature forecast errors under different synoptic conditions. During wintertime, a 
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typical situation with a high Cτ  value is anticyclonic weather with a lifted inversion below 

which low stratus persists for several days. The scaling parameter Dτ   is set to the constant 

value of 6 hours. Figure 6.1.1 illustrates the amount of forecast improvement obtained from 
the scheme. 
 
 
 

 
Figure 6.1.1: Mean absolute error of ALADIN and INCA temperature forecasts at lead times 
of +00 to +12 hours over a 2-week period in winter, for all TAWES stations. The 
improvement due the nowcasting scheme is most significant during the first 6 hours. The 
smaller error of the INCA forecast  at larger lead times is mainly due to the more 
sophisticated downward temperature extrapolation in deep valleys.  
 
 
6.2 Wind 
 
As in the case of temperature and humidity, the wind forecast in INCA takes into account 
only the local NWP error, and merges into the NWP forecast according to a prescribed 
weighting function which decreases linearly from 1 to 0 in the interval between +0 and +6 
hours. Thus the INCA forecast of the three-dimensional wind vector can be written 
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where the weight function is given by 
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with 6=vτ  hours. The reduced roughness over lakes is taken into account in the forecast 

using Eqs. (5.2.2)-(5.2.5), i.e. analogous to the method used in the analysis (Section 5.2). 
 
6.3 Cloudiness 
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 INCA nowcasts of cloudiness, or rather, insolation fraction SP, are based on cloud 
motion vectors derived from consecutive visible (during daytime) and infrared (during 
nighttime) satellite images. During sunrise and sunset, a time-weighted combination of both 
vector fields is used. The extrapolation is performed for a forecast range of up to +6 hours 
using a 15 min timestep. Special care must be taken at the boundaries of the INCA domain, 
where information is advected from outside. This is done by extrapolation of Cloud Types 
that are generated with IR cloud motion vectors. The advected cloud type is then 
transformed to the corresponding cloudiness parameter by spatial and temporal adjustment 
using the information of the recent time step. Applying some weak filtering finally reduces 
inhomogeneities at the transition zone of extrapolated insolation fraction and extrapolated 
cloud types that are post-converted into insolation fraction. The nowcasting procedure of 
cloudiness is finalized by a consistency check with the nowcasting field of precipitation. 
 The NWP model (ALADIN) forecast of low, medium, and high cloudiness is converted to 

an insolation fraction forecast  using the empirical relationship ALADINSP

 

 )(1 highhmedmlowlALADIN CcCcCcSP ++−=        (6.3.1) 

 

with coefficients 35.0,65.0,0.1 === hml ccc . The resulting insolation fraction field  

is interpolated onto the INCA grid and combined with the extrapolated field . In 

order to perform forecasts with a range of 48 hours, an insolation fraction field , 

taken from ECMWF, which is created in the same way as , is used for the combined 

field . Avoiding inhomogeneities, a time-weighted, smooth transition is 

performed. Analogous to precipitation, a smooth transition from the extrapolation forecast to 
the NWP forecast is constructed through a prescribed weighting function. The current 
operational weighting function gives full weight to the extrapolation forecast over the first 2 
hours, decreases linearly to zero at 6 hours, and remains at zero beyond 6 hours. Thus the 
INCA forecast of insolation fraction can be written 
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where the weight function is given by 
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with 21 =cτ  hours, 62 =cτ  hours. 

 
Figure 6.3.1 shows the analysis of insolation fraction SP for 20060117 0930Z. The 
corresponding motion vectors (Figure 6.3.2) are obtained from consecutive visible satellite 
images. They are averaged over one hour in order to reduce random fluctuations generated 
by pseudocorrelations. Extrapolation of the SP analysis up to +120min produces the SP 
nowcast shown in Figure 6.3.3. For comparison, the verifying SP analysis field at 20060117 
1130Z is displayed in Figure 6.3.4. 
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Figure 6.3.1: Operational SP analysis at 20060117, 0930Z. 

 
 
 
Figure 6.3.2: Mean motion vector field for extrapolation of SP analysis field at 20060117, 
0930Z. 
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Figure 6.3.3: SP nowcasting field from 20060117 0930Z + 120min, extrapolated using the 
vector field shown in Figure 6.3.2. 
 
 

 
 
Figure 6.3.4: Verifying SP analysis field at 20060117 1130Z. 
 
 
6.4 Precipitation 
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The INCA precipitation forecast consists of two components: (1) an observation-based 
extrapolation, and (2) an NWP model forecast. The extrapolation method is based on motion 
vectors determined from previous analyses. The model forecasts are output fields of the 
limited area model ALADIN and the global ECMWF model. 

For observation-based extrapolation a number of different motion vectors were tested: 

• Cloud motion vectors (CMVs), 

• Radar motion vectors (RMVs), 

• Water vapor motion vectors (WMVs), 

• INCA motion vectors (IMVs), 
 

 

 
 
Figure 6.4.1: Example of a +1:30 h INCA precipitation nowcast using motion vectors. Upper 
left: analysis, upper right: nowcast, bottom: verifying analysis at +1:30 h. 
 
The different sets of vectors have various advantages and disadvantages. The WMVs, for 
example, have the most complete areal coverage but indicate the motion at mid-
tropospheric levels rather than at lower levels. RMVs are derived most directly from 
precipitation echo movement but are missing in many mountainous areas even if stations 
report precipitation there. The IMVs are derived from consecutive INCA precipitation 
analyses (Section 5d) and  
therefore provide the best consistency with the field they are applied to. Spurious 
correlations which would imply unrealistically large motion speeds are filtered 
meteorologically by comparison with ALADIN wind fields at 500 und 700 hPa. The filtering is 
done using the condition  
 

 Δ+≤−+ 2ALAALAKORRKORR VVVV
rrrr

, (6.4.1) 
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where KORRV
r

 is the motion vector derived by correlation analysis, ALAV
r

 is the ALADIN 500 or 

700 hPa wind (whichever is closer to KORRV
r

), and Δ  is a prescribed wind speed scale which 

determines the amount of deviation permitted between KORRV
r

 and ALAV
r

. Operationally,  

 

 
 

ALAV
r

KORRV
r

Δ

Figure 6.4.2: Meteorological filtering of motion vectors according to (6.4.1). The blue vector 
is the ALADIN 500 or 700 hPa wind. Black arrows show examples of motion vectors derived 
by the correlation algorithm. Motion vectors outside the elliptic area are rejected.  
 

the value ms5=Δ -1 is used. Eq. (6.4.1) defines an elliptic area as shown in Figure 6.4.2. It 

can be seen that precipitation patterns are allowed to move in the general direction of the 
model wind at any speed which is lower than the model wind (e.g. quasi-stationary upslope 
rain), at a speed which is somewhat larger than the model wind, and even slightly upstream. 
IMVs filtered according to (6.4.1) are used operationally to generate an extrapolation 

forecast of precipitation . EXTRAP

Verification of both point and areal forecasts of precipitation from INCA shows that on 
average extrapolation methods produce forecasts that are superior to NWP forecasts for ~2 
hours. In order to obtain a continuous sequence of forecast fields a smooth transition from 

the extrapolation forecast EXTRAP  to the NWP forecast is constructed through a prescribed 

weighting function. The currently operational weighting function gives full weight to the 
extrapolation forecast during the first 2 hours, decreases linearly to zero at 6 hours, and 
remains zero after that (Eqs.(6.4.3),(6.4.4)). In the future this prescribed weighting function 
will be replaced by a more general function based on error motion vectors (EMVs, cf. 
Section 7).  

P

P

NWP models exhibit certain quasi-systematic errors in their precipitation forecasts, 
particularly in areas with pronounced topography. In the case of ALADIN and ECMWF the 
error characteristics are quite different which implies that the combination of both model 
outputs has some potential for reducing these errors. The issue has been investigated by 
using several years of archived areal precipitation forecasts and observations for 26 
catchment-type areas in Austria and parts of Bavaria. In the study, emphasis was put on 
moderate and strong precipitation events (>5 mm /24 h and >10 mm /24 h in the areal mean, 
respectively). For each one of the 26 defined areas a linear relationship of the form 
 

 ECMECMALAALAOPT PwPwP +=  (6.4.2) 
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is determined, where the sum of the weights ECMALA ww +  is not a priori constrained to equal 

1. Optimal weights were found from the condition of minimal modified mean absolute error 
MAE*=MAE+0.5*|BIAS|. The optimal weights found for each area were spatially interpolated 
onto the INCA grid. The NWP model forecasts are also interpolated to this grid by bilinear 

interpolation. Thus a combined field mputed at each gridpoint operationally 

(Figure 6.4.3).  
 

OPTP  can be co

 
Figure 6.4.3: Example of an ‚OPT’ precipitation forecast obtained from a spatially varying 
weighting of ALADIN and ECMWF forecasts. The OPT forecast gives improved amounts 

nd more realistic spatial patterns than each model taken individually.  

he INCA forecast of precipitation can be written in the form 

, (6.4.3) 

here the weight function is given by 

a
 
 
T
 

)()1()()( iOPTiEXTRAPiINCA tPgtPgtP −+= 
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 and 6 hours, depending on the 
type of precipitation event, topographic characteristics etc.  

 

 
Figure 6.4.4 shows a verification of areal precipitation forecasts over a 40-day period. On 
average, the forecast by the extrapolation method is better than the NWP forecasts during 
the first ~2 hours. This timescale generally varies between 1
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Figure 6.4.4: Mean absolute error of the INCA precipitation forecast (15-min amounts) as a 
function of lead time, for various small to medium-sized catchments in Lower Austria, over a 
40-day period. The beneficial effect of the extrapolation forecast can be seen during the first 

2 hours. 

.5 Precipitation type 

ounts is generated. Figure 6.5.1 shows an example of an 
INCA forecast of snowfall amount  

 

~
 
 
6
 
The method used to analyze snowfall line and precipitation type (see Section 5.5) is also 
applied to predicted temperature and humidity fields. Combined with predicted precipitation 
amounts, a nowcast of snowfall am
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Figure 6.5.1: Example of an INCA nowcast of snowfall accumulation over the next 2 hours. 
Top: whole domain, bottom: zoom on Salzkammergut, near the centre of the domain. 
 
 
7. INCA convective analysis fields 
 
In order to improve the convective precipitation forecast beyond the currently used pure 
translational extrapolation, the evolution of convective cells (initiation, intensification, 
weakening, dissipation) must be assessed. In INCA, this evolution assessment will be based 
on convective analysis fields that are derived from the temperature, humidity, and wind 
analyses and nowcasts. The basic concept is to determine convective conditions in the area 
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into which a convective cell is predicted to move, and give an estimate of the cell’s intensity 
change based on these conditions. The diagnostic fields that are currently computed 
operationally are 
 

• Lifted condensation level (LCL) 

• Level of free convection (LFC) 

• Convective available potential energy (CAPE) 

• Convective Inhibition (CIN) 

• Showalter index (SWI) 

• Lifted index (LI) 

• Trigger temperature (TTRIG) 

• Trigger temperature deficit (DTTRIG=TTRIG-T) 

• Equivalent potential temperature (THETA_E) 

• Boundary layer flow convergence (CONV) 

• Boundary layer humidity convergence (CONH) 
 
(see examples in Figure 7.1). Initiation of new convective cells is related to fields like trigger 
temperature deficit and flow convergence. The evolution of existing cells depends on the 
presence of CAPE vs CIN in relation to the strength of the existing cell (as a measure of 
outflow strength). The ultimate goal is to design an algorithm which gives the probable 
evolution tendency of a cell or cluster of cells as a function of a subset of the fields above. 
This tendency would be superimposed on the pure translation already implemented in INCA. 
First results of a study along these lines can be found in Haiden and Steinheimer (2007). 
 

  
 
Figure 7.1: Example of INCA convective parameter analyses: LCL (left) and Showalter 
Index (right). 
 
 
There exist several convective nowcast systems that can serve as a guideline for future 
developments in INCA. During the 2000 Sydney Olympics Forecast Demonstration Project 
(FDP) the following five systems were applied and evaluated: 

1) TITAN (BMRC, Melbourne, Australien) 
2) S-PROG (BMRC, Melbourne, Australien) 
3) NIMROD (MetOffice, Exeter, Großbritannien)      
4) GANDOLF (MetOffice, Exeter, Großbritannien) 
5) ANC (NCAR, Boulder, CO, USA) 

These systems use different methods of determining precipitation movement such as area 
tracking, individual cell tracking, and NWP model winds. Two of the systems (GANDOLF, 
ANC) have convective evolution and initiation capability (Wilson et al., 2004). 

In the GANDOLF system, convective entities are classified into stages of development. 
Based on a conceptual model of storm evolution, future states are nowcast. New cells 
(‘daughter’ cells) can be initiated close to existing cells if the boundary layer convergence 
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predicted by the NWP model is sufficiently strong. The ANC predicts cell initiation and 
evolution based on the interaction of existing storms and cumulus clouds with boundary 
layer convergence lines observed by radar, and NWP wind field characteristics. The major 
findings with regard to convective cell prediction in the Sydney FDP can be summarized as 
follows (Wilson et al., 2004). 1) Predictive skill above pure translation occurs when boundary 
layer convergence lines can be identified and used to nowcast cell evolution. 2) For 
nowcasts beyond 60 min, boundary characteristics are more important for storm initiation 
than early detection of cumulus clouds.    
 

 

south north

west east 

 

 
Figure 7.2: INCA potential temperature distribution within latitudinal and longitudinal vertical 
cross-sections across the Linz basin (Upper Austria) during a winter smog field campaign in 
February 2005. Black line shows INCA topography, white area indicates INCA valley floor 
surface. Mixing height is shown by white x’s (Baumann-Stanzer, 2005). 

 
For the development of a cell initiation and evolution module in INCA these results give a 
clear guideline and indicate the importance of a good wind field analysis. In Austria’s alpine 
terrain, boundary layer convergence lines are to a large degree related to topography, which 
adds a deterministic component to cell initiation (Haiden, 2001a). With the current version of 
the INCA wind field analysis, the ability to correctly detect these convergence lines critically 
depends on the skill of the ALADIN model in predicting them, and on the surface station 
network to represent them. Case studies are carried out to determine to what extent this is in 
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fact the case. However, none of the systems used for the Sydney FDP used convective 
analysis fields such as CAPE or CIN, so it remains to be investigated what additional benefit 
can be gained from their use. 

Another application of INCA analysis fields with regard to convection is the assessment 
of boundary layer mixing heights for air pollution modelling. Figure 7.2 shows the INCA 
potential temperature distribution within latitudinal and longitudinal vertical cross-sections 
across the Linz basin (Upper Austria) during a winter smog field campaign in February 2005. 
Mixing heights were computed according to a Richardson number criterion.   
 
 
8. Other derived fields 
 
8.1 Icing potential 
 
As part of Austria’s contribution to COST727, an experimental numerical product for the 
analysis and forecast of icing potential is being developed. The icing potential indicates the 
rate of icing to be expected on structures due to contact freezing of supercooled cloud 
droplets. It is most likely at temperatures between 0°C and –20°C, and increases with cloud 
water content and wind speed. A first version of the computation of icing potential in INCA is 
based on the relationship 
 

 )()()(100 321 hfufTfIP ⋅= , (8.1) 

 
where the functions for temperature T, wind speed u, and relative humidity h are given by 
 

 , (8.2) 
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Since there is currently no analysis of liquid water content in INCA, relative humidity is used 
as a substitute to identify terrain which is likely inside a cloud, and temperature is used to 
qualitatively capture the decreasing amount of cloud liquid water in colder clouds. The rate 
of icing  is assumed to increase linearly with wind speed up to a maximum wind speed 
above which the breaking off of ice is assumed to become a limiting factor. The parameters 

are currently set to the following values:  = 0°C, = -3°C, = -20°C, = 10 K, 

= 25 m/s, = 95%, = 100%. Figure 8.1 shows an example of icing potential as 

analyzed by INCA, as well as the three input fields. 

0T 1OPTT 2OPTT SCALET

MAXu
MINh MAXh
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Figure 8.1: Example of an INCA analysis of icing potential (lower right). Also shown are the 
input fields: temperature (upper left), relative humidity (upper right), and wind speed (lower 
left). The icing potential indicates mountains where high wind speed combines with sufficient 
relative humidity at temperatures below zero.  
 
 
8.2 Wind chill 
 
In order to assess the physiological effect of a given combination of temperature and wind 
on the human body, especially at subzero temperatures, the wind chill is computed based on 
an updated relationship used by NOAA/NWS. In its original form it is given by 
 

 , (8.5) )75.354275.0(6215.074.35),( 16.0 −++= TVTVTTwc

 

where temperature T and wind chill  are in degrees Fahrenheit, and wind speed V in 

mph. Converted to standard units, one obtains 

wcT

 

 , (8.5’) )10.258753.0(1187.163.55),( 16.0 −++= TVTVTTwc

 

where temperature T and wind chill  are in degrees Celsius, and wind speed V in m/s. 

Eq.  (8.5) is an improved relationship compared to earlier versions and translates 10 m wind 
to the wind at human face level. It is based on a human face model and incorporates heat 
transfer theory. It does not take into account effects of the sun. 

wcT

In INCA, (8.5’) is applied at every gridpoint using 2 m temperature and 10 m wind. Since 
the formula can be applied only at wind speeds larger or equal 3 mph, we interpolate linearly 

between T and at smaller speeds, so that in the limiting case of zero wind the value 

= T is reproduced. Updated analyses and forecasts of wind chill are provided every hour.   

)3,(TTwc

wcT
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8.3 Wind gusts 
 
Based on the INCA mean wind analysis, a 24-h wind gust analysis has been implemented in 
order to provide daily maps of maximum wind speed during the latest 06Z-06Z period. The 
method employs the assumption of a gust factor that relates the mean wind speed to gust 
speeds and it uses gust speed observations from TAWES and SYNOP stations. 

In a first step, the hourly INCA analyses of mean wind speed  are combined into a 

maximum mean wind speed analysis over the 24-h period by assigning to each gridpoint the 
maximum value found within the period. Here i, j are the grid indices in x and y direction, and 

n is the time index. A 1

ijnV

st-guess gust analysis  is created by multiplying this field with a 

constant gust factor (currently set to =1.8).  
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Next, gust speeds are read from the observation database. These gust observations  

are spatially interpolated, where in the horizontal, geometrical distance weighting is used, 
and in the vertical the distance weighting is performed in gust speed space. Thus, the weight 
of a gust observation for a given grid point becomes smaller the more the 1

OBS

kG

st-guess wind 
speed at that point differs from the 1st-guess wind speed at the station. The squared 
‘distance’ between INCA gridpoint (i,j) and the k-th station is given by 

 

 ,  (8.7) 
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where the parameter  has the dimension of an inverse wind shear and is currently set to 

2⋅10

Gc
4 s. This means that a distance of 1 m s-1 in gust space is equivalent to a horizontal 

distance of 20 km. In the actual implementation, the slightly modified version  
 

 { }2002222 ][)()(,max kijGjkikijk GGcyyxxyxr −+−+−Δ⋅Δ=   (8.7’) 

 
is used in order to avoid infinity in cases where a station by chance exactly coincides with a 

grid point. In INCA, the grid spacing is =Δ=Δ yx 1 km. The use of (8.7’) also expresses the 

fact that differences of the distances between a grid point and two different stations which 
are smaller than 1 km are not considered significant. The resulting gust field is obtained from 
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where the k-summation is extended over the 8 nearest stations. Note that ‘nearest’ in this 
context means smallest distance in the sense of (8.7’). 

As a precaution against possible underestimations of gust speed as a result of the 
nonlinear interpolation given by (8.7’) and (8.8), the original 1st-guess gust field, scaled down 

using the minimum gust factor =1.2, is used as a lower threshold. Thus the final INCA 

gust analysis is given by 

GNF
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The parameter settings in the current INCA gust analysis have been chosen based on 
educated physical guesses and some case-study type experiments. They could (and should) 
be optimized. It should also be tested whether a height-dependent gust factor instead of a 
constant value increases the skill of the analysis. Generally, the skill of the analysis should 
be quantified using cross-validation. 
 
8.4 Visibility 
 
Another INCA analysis field which is still in the experimental stage, is visibility. It is assumed 
to vary linearly with the dewpoint deficit. Visibility (in m) is estimated using the heuristic 
relationship  
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where =10 m is a the minimum visibility allowed, SP is the INCA insolation fraction 

(see Section 5.3), =1.6 K is a dewpoint deficit scale, and  is the modified dewpoint 

deficit given by 
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where =0.4 K. It was found that dewpoint deficits below this value have no predictive 

power with regard to visibility. Eq. (8.11) takes into account the difference in behavior of the 
visibility/humidity relationship between low and higher elevations under conditions close to 
saturation.  The weighting factor w depends on the height above valley floor according to 

mindTΔ
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where =500 m. At the height of the valley floor, w=1. At a height of 1500 m above 

valley floor 0.05. Using (8.11)-(8.12), the transition from higher visibility values at drier 

conditions to minimum visibility at saturation is more abrupt at higher elevations. This is an  
attempt to account for the reduced aerosol content at higher elevations.   

1VISH

≈w

As can be seen from (8.10), the quantity  is the visibility under overcast conditions 

(SP=0) when the dewpoint deficit is 2 K. It is not a constant but a function of absolute height 
given by  

0VIS

 

 [ ])/exp(,1max 2000 VISHzVISVIS = , (8.13) 

 

where =5000 m, and the visibility scaling height =2500 m. Thus,  is close to 

5 km at low elevations, and increases to ~17 km at an elevation of 3000 m. The current 
INCA visibility algorithm does not take into account the reduction of visibility due to 

00VIS 2VISH 0VIS
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precipitation. The various constants and scaling parameters have been chosen based on a 
limited set of observations. They have not yet been rigorously calibrated.  
 

  
9. Summary and outlook 
 
The first version of the INCA system became operational in 2005. In the years 2006-2008, 
several major extensions and modifications were made to the system, such as the additional 
field precipitation type, the use of a surface layer index in the temperature and humidity 
analysis, or the elevation dependence of precipitation. Based on station observations and 
remote sensing data it now provides three-dimensional hourly analyses and nowcasts of 
temperature, humidity, and wind, two-dimensional hourly analyses and nowcasts of global 
radiation, and two-dimensional 15-min analyses and nowcasts of precipitation, precipitation 
type, and cloudiness. It also provides hourly analyses of convective analysis fields such as 
LCL, CAPE, CIN, or moisture convergence. INCA fields are used operationally as input for 
flood forecasting systems in Austria, for various web portals used by customers of ZAMG 
(e.g. in the energy sector), and as a tool for the forecaster. The next steps of development 
will be 

- Improved wind analysis, taking into account topographic anistropy.  
- Improved wind nowcasting by moving from statistical extrapolation to dynamic trend 

extrapolation based on analysed pressure trends. 
- Improved nowcasting of precipitation. The fixed weights for the merge of the nowcast 

with the ALADIN forecast should be replaced by adaptive weights responding to the 
most recent (last hours) forecast error of the ALADIN model. 

- Implementation of an estimation of icing potential on structures (COST 727). 
- Continuous automatic verification. 
- Improved INCA portability by standardizing interfaces to observations. 
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Appendix A: Parameterization of the surface layer temperature surplus (deficit) scale 

[read_statdata()] 
 
For the partitioning of the temperature observation correction into a surface layer part and a 
‘deep’ contribution (Section 5.1), a temperature scale is computed which represents the 
maximum likely surface layer temperature surplus (deficit) under given meteorological 
conditions. The most important factors are insolation and wind speed. Ideally, a full surface 
layer parameterization based on boundary-layer physics should be used. However, this 
would be meaningful only if we also take into account local surface roughness and 
microtopographical characteristics at each station location in great detail. In order to avoid 
this complexity, we use a generalized, simplified approach which qualitatively takes into 
account the annual and diurnal variation of insolation and observed cloudiness and wind 
speed. 

During daytime,   is parameterized as SCALEDT
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Where =1 K, c=0.006 K/(W/m²), and the insolation and wind functions are given by  0
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Here, s is the observed sunshine duration (seconds with direct insolation in the last 10 
minutes), varying between 0 s with overcast, or at night, and 600 s under cloud-free daytime 

conditions. The parameter =3 m/s. If the observed wind speed V exceeds this value, the 

wind function decreases, asymptotically going to zero for high wind speeds. Wind speeds 

smaller than  are considered part of the convective circulations in the PBL on days with 

insolation and therefore not assumed to lead to a reduction of the surface layer temperature 
surplus. 

0V
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The annual and diurnal variation of the surface sensible heat flux is parameterized as 
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where =100 W/m², =500 W/m², l is the seasonally varying length of the day in 

hours, m is the month, and t is the local time in hours. 

MIN

SFCH MAX

SFCH

The estimation of a physically plausible temperature deficit in the surface layer at night 
is much more difficult than the temperature surplus during the day. In suitable topographic 
settings (basin-type location) and with weak synoptic flow, inversions of 5 K and more can 
easily form within the lowest few dekameters. The maximum possible temperature deficit in 
a given night depends on atmospheric conditions, soil properties, and microtopographic 
characteristics such as the sky-view factor in a way that cannot be easily parameterized. 
Currently, the maximum surface layer temperature deficit at night is simply set to the 

constant value =5 K. N

SCALEDT
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Appendix B: Parameterization of lake effects on temperature [modify_T_over_lake()] 
 

The parameterization of 2m temperature over lakes [LAKEMODE=1] is a weighted 

average of the hypothetical 2m temperature without the presence of the lake, and the 

water surface temperature 
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where the weight w=0.3. If the water temperature is below 0 °C, ice cover is assumed. If at 
the same time the air temperature is below 0 °C as well, w is set to zero. In this case lake 
effects are assumed to vanish. Lake ice is not explicitly modeled, but taken into account by 
allowing the lake temperature to drop below zero. A lake temperature of -4 °C, for example, 
is equivalent to a certain amount of ice, and when the air temperature increases, a certain 
amount of energy is needed to get the lake temperature above 0 °C again (i.e. to melt the 
ice). 

The time evolution of lake temperature is based on a simple force-restore model. The 
lake is regarded as a slow-responding heat reservoir, changes of which are forced by the 
difference between air and lake temperature    
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where the temperature towards which the lake temperature is asymptotically relaxed, is 
given by a weighted mean of air temperature and air dewpoint (each averaged over the area 
of the lake) 
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with a=0.85. If relative humidity is high, the asymptotic lake temperature is close to the air 
temperature. If relative humidity is low, the asymptotic lake temperature is lower than the air 
temperature. This crudely accounts for evaporative cooling of the lake surface. The timestep 

= 1 h, the time-scale tΔ LAKEτ  is 12 h in the case of heating, and 72 h in the case of cooling. 

This accounts for the fact that if there is heating, the uppermost water layer is heated rather 
quickly, whereas cooling at the lake surface is communicated to greater depths by 
buoyancy-driven vertical overturning, leading to a larger response time. 

The lake effect model is applied operationally to Lake Neusiedl in eastern Austria. It was 
found that despite its simplicity the prognostic lake temperature is usually quite close 
(typically to within 1 K) to the observed lake temperature. When available, the observed lake 
temperature is used to update the modeled lake temperature. 
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