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Abstract

With the rapid adoption of high-throughput omic approaches to analyze biological 
samples such as genomics, transcriptomics, proteomics and metabolomics, each 
analysis can generate tera- to peta-byte sized data files on a daily basis. These data file 
sizes, together with differences in nomenclature among these data types, make the 
integration of these multi-dimensional omics data into biologically meaningful context 
challenging. Variously named as integrated omics, multi-omics, poly-omics, trans-omics, 
pan-omics or shortened to just ‘omics’, the challenges include differences in data 
cleaning, normalization, biomolecule identification, data dimensionality reduction, 
biological contextualization, statistical validation, data storage and handling, sharing and 
data archiving. The ultimate goal is toward the holistic realization of a ‘systems biology’ 
understanding of the biological question. Commonly used approaches are currently 
limited by the 3 i’s – integration, interpretation and insights. Post integration, these 
very large datasets aim to yield unprecedented views of cellular systems at exquisite 
resolution for transformative insights into processes, events and diseases through 
various computational and informatics frameworks. With the continued reduction in 
costs and processing time for sample analyses, and increasing types of omics datasets 
generated such as glycomics, lipidomics, microbiomics and phenomics, an increasing 
number of scientists in this interdisciplinary domain of bioinformatics face these 
challenges. We discuss recent approaches, existing tools and potential caveats in the 
integration of omics datasets for development of standardized analytical pipelines that 
could be adopted by the global omics research community.

Introduction

Access to large-scale omics datasets (genomics, tran-
scriptomics, proteomics, metabolomics, metagenomics, 
phenomics, etc.) has revolutionized biology and led to 
the emergence of systems approaches to advance our 
understanding of biological processes. With decreasing 
time and cost to generate these datasets, omics data 

integration has created both exciting opportunities 
and immense challenges for biologists, computational 
biologists, biostatisticians and biomathematicians. As an  
example of a comprehensive analysis approach, Yugi 
et al. (2016) proposed a trans-omics concept of dynamic 
networks that includes the three most commonly used 
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layers of omics datasets – transcriptomics, proteomics and 
metabolomics and also included newer datasets such as 
phosphoproteomics, protein–protein interactions, DNA–
protein interactions and allosteric regulation, which 
can reveal critical components of dynamic biological 
networks when omics data are successfully integrated. 
Using three case studies in datasets from bacteria and 
rats, they showed the interplay of the omics layers, and 
introduced phenome-wide association, pathway-wide 
association and trans-ome-wide association (Trans-OWAS) 
studies to connect phenotypes with omics networks that 
reflect genetic and environmental factors. These multi-
layered, multifactorial approaches are computationally 
challenging and difficult to display and comprehend 
visually. Additional data from microRNA/gene, protein/
protein, DNA/protein, and protein/RNA interactions 
further increase the complexity. A recent review enlists 
genome-based systems biology tools and applications 
available for network analysis, pathway construction, 
genome alignments, assemblies, tree viewers and 
phylogenies, microarray and RNA-Seq viewers, genome 
browsers, visualization tools for comparative genomics, 
and tools for building visual prototypes (Pavlopoulos et al. 
2015). Similarly, tools, resources, databases and software 
for analysis and visualization of proteomics (Oveland 
et  al. 2015) and metabolomics data (Misra & van der 
Hooft 2016, Misra et al. 2017, Misra 2018) are reviewed on 
a yearly basis. However, none of these recent publications 
provide a comprehensive overview of approaches for 
integrating three or more omics datasets.

Although the need for, and the importance of, 
integration of omics data has been realized for a broad 
range of research areas, including food and nutrition 
science (Kato et  al. 2011), systems microbiology (Fondi 
& Liò 2015), analysis of microbiomes (Muller et  al. 
2014), genotype–phenotype interactions (Ritchie et  al. 
2015), systems biology (Mochida & Shinozaki 2011, 
Fukushima & Kusano 2013), natural product discovery 
(Yang et  al. 2011) and disease biology (Pathak & Dave 
2014), successful implementation of more than two 
omics datasets is very rare. Since Gehlenborg et  al. 
(2010) produced a useful comprehensive compendium 
for visualization of omics data for systems biology using 
data from microarrays, RNA deep sequencing, mass 
spectrometry (MS), nuclear magnetic resonance (NMR) 
and protein interactions, considerable progress has been 
made to develop additional tools and approaches for 
integrated omics analysis. Broad experimental challenges 
in these integrated omics approaches include, but are 
not limited to (i) understanding the statistical behavior 

of readouts from each omics regime independently, (ii) 
recognizing non-obvious relationships that exist between 
omics regimes within their original biological context and 
(iii) capitalizing on time resolution in omics data, such as 
time course studies, to inform directionality (Buescher & 
Driggers 2016). A recent review provided data integration 
strategies for genomics and proteomics datasets (Huang 
et al. 2017), but did not mention and include approaches, 
which allow integration of metabolomics datasets.

Although all individual omics datasets might not 
have the four vs associated with integration of ‘big data’, 
i.e., volume, variety, velocity and veracity, they pose 
similar challenges, especially in studies with large sample 
numbers. In addition, for high-dimensional datasets of 
more than 1000 variables, popularly known as the ‘curse 
of dimensionality’, variances among samples become 
large and sparse and render cluster analysis uninformative 
(Ronan et al. 2016), further posing challenges interpreting 
integrated omic datasets. For clarity, we use ‘integrated 
omics’ to denote multi-omics approaches integrating 
three or more omics datasets and include the major omics 
data types, i.e., genomics, transcriptomics, proteomics 
and metabolomics.

Strengths and challenges of individual omics

Genomics and transcriptomics

Genomics and transcriptomics have been applied to various 
aspects of research and clinical applications ranging from  
the pharmaceutical industry, diagnostics and therapeutics, 
gene therapy applications, pharmacogenomics and disease 
prevention, to developmental biology, evolutionary 
genomics and comparative genomics. Thus, the ability 
to manage and analyze these types of data has become 
necessary for a biomedical scientist’s skill set. The surge 
in advancements of next-generation sequencing (NGS) 
technologies and progress in genomic data analysis 
have led to high-throughput data generation for 
genomes (single nucleotide polymorphisms (SNPs), copy 
number variants (CNVs), loss of heterozygosity variants, 
genomic rearrangements, and rare variants), epigenomes 
(DNA methylation, histone modifications, chromatin 
accessibility, transcription factor (TF) binding) and 
transcriptomes (gene expression, alternative splicing, long 
non-coding RNAs and small RNAs such as microRNAs) 
(Ritchie et  al. 2015). Generally speaking, the nucleic 
acid-based omics approaches for data generation rely on 
five major steps: appropriate sample collection, high-
quality nucleic acid extraction, library preparation, clonal 

Downloaded from Bioscientifica.com at 08/27/2022 01:48:06PM
via free access

https://doi.org/10.1530/JME-18-0055
https://jme.bioscientifica.com


https://doi.org/10.1530/JME-18-0055
https://jme.bioscientifica.com © 2019 Society for Endocrinology

Printed in Great Britain

Published by Bioscientifica Ltd.

R2362 1:B B Misra et al. Approaches and tools in 
integrated omics

Journal of Molecular 
Endocrinology

amplification, and sequencing (e.g., pyrosequencing, 
sequencing-by ligation, or sequencing-by synthesis). The 
specific approach used for each step varies based on the 
intended downstream application. Following sequencing, 
the workflow includes data cleaning, filtering, assembly, 
alignment (de novo or reference-based), variant calling, 
annotation and functional predictions. In addition, pathway 
and/or network analyses are often used to provide biological 
context. Heterogeneous datasets pose challenges because 
quality assurance, quality control, data normalization and 
data reduction methods differ among the various types 
of individual datasets. For example, normalization and 
scale of RNA-Seq data differs from small RNA-Seq data, 
for example, RNA-Seq datasets typically include tens of 
thousands of transcripts, while small RNA-Seq datasets 
typically include less than 2000 small RNAs. With the 
rapid development of single-cell sequencing technologies, 
sequencing technologies that produce longer reads, and 
applications for genomic and transcriptomic analyses, 
additional challenges are emerging such as appropriate 
sequence coverage and statistical analysis of single-cell 
data (Menon 2017). A review of genomics applications 
and tools is provided in Shendure (2017). Best practices 
for DNA-seq pipelines are provided by NIH National 
Cancer Institute. Readers are further directed to Costa-
Silva et  al. (2017) for a comprehensive analysis of 
current transcriptomic analysis tools. Sequencing-based 
technologies, which are the most advanced of the omics 
technologies in terms of availability of laboratory reagents 
for standardized protocols, analytical tools and public 
databases for data sharing, provide unique opportunities 
to obtain high quality from small amounts of tissues 
or individual cells to address a wide range of biological 
questions.

Proteomics

Proteomics is used to quantify proteins in multiple sample 
types using both shotgun and targeted approaches. 
Recent developments in MS have dramatically increased 
sensitivity while decreasing the amount of sample required 
for high-throughput analyses and now allow for the 
detection of minimal differences in protein abundances, 
identification of post-translational modifications and 
other applications from a wide range of samples and 
tissues (Aebersold & Mann 2016). Whether choosing a 
chemically labeled or unlabeled quantitative proteomic 
approach, the six major steps include appropriate sample 
collection, protein extraction, enzymatic digestion of 
proteins into peptides, separation/fractionation using 

liquid chromatography (LC) approaches, followed by 
MS, peptide and protein identification and quantification 
and additional bioinformatics analyses such as pathway 
and network analyses. The field has moved forward 
from 2D-PAGE-based (dye/fluorescence labeling) protein 
spot extraction followed by LC-MS or matrix-assisted 
laser desorption/ionization time-of-flight (MALDI-TOF) 
MS characterization to more system-wide screening 
approaches with quantitative steps that take advantage 
of label-based approaches such as Isotope-Coded Affinity 
Tagging, Stable Isotope Labeling with Amino Acids in 
Cell Culture (SILAC), 18O Stable Isotope Labeling, Isobaric 
Tagging for Relative and Absolute Quantitation (iTRAQ) 
and Tandem Mass Tags (TMT) (Bakalarski & Kirkpatrick 
2016) or are label-free (Bantscheff et  al. 2012, Anand 
et  al. 2017). Both label-free (Proffitt et  al. 2017) and 
label-based efforts such as TMT proteomics from diverse 
biological matrices have yielded favorable results. The 
community has not yet built a consensus in terms of data 
formatting, cleaning and normalization, for example, 
the use of ion intensity vs peptide-to-spectrum matches, 
despite the ongoing efforts through the Proteomics 
Standards Initiative (Deutsch et  al. 2017). Nonetheless, 
proteomics is advancing our understanding in biomedical 
research, including diagnosis, protein-based biomarker 
development and therapeutics.

Metabolomics

Metabolites are often end products of complex biochemical 
cascades that can link the genome, transcriptome and 
proteome to phenotype, providing an important key tool 
for discovery of the genetic basis of metabolic variation. 
Metabolomics can be used to determine relative and 
absolute amounts of sugars, lipids, amino acids, organic 
acids, nucleotides, steroids, drugs and environmental 
constituents from a wide range of sample types including 
primary cells, cell lines, tissues, biofluids, entire organisms 
and diverse geo-climatic environments. Depending on 
the application and instrumentation, metabolomics 
captures small molecule information in solid (i.e., solid-
state NMR), liquid ((liquid chromatography MS (LC-MS), 
capillary electrophoresis MS (CE-MS)) or gas phase (gas 
chromatography MS (GC-MS)) using spectroscopy (i.e., 
NMR) and MS (i.e., LC/GC-MS or tandem MS). Major 
steps for metabolomics analyses include experimental 
design, suitable sample collection strategies, quenching 
of metabolism, optimized metabolite extraction 
and reconstitution from samples, optional chemical 
derivatization, MS (with or without a chromatography 
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interface) or NMR and data analysis, including data 
alignment, filtering, imputation, statistical analysis, 
annotation and pathway/network analysis. Each of these 
steps is highly variable depending upon the platform 
used for sample analysis. In addition, data structure, 
imputation approaches, identification of unknown 
metabolites, normalization, scaling and transformation 
can differ significantly for each data type and instrument. 
Approaches also differ for targeted or untargeted analyses. 
Choosing targeted or untargeted analyses is determined 
by the study question where untargeted analyses are 
typically used as discovery, hypothesis generating data 
and targeted analyses are used to test specific hypotheses. 
For both of these approaches, the combination of LC-MS 
with complementary GC-MS captures the majority of the 
chemical space presented by a biofluid or tissue sample.

Unique challenges to specific omics platforms

Unique challenges emanate from each omics platform 
due to the strengths and limitations of each. These are 
important to understand when developing methods 
and approaches for integrating omics data since the 
complexity and completeness of each data type differs.

Linking genotype to phenotype
High-throughput genomics and transcriptomics datasets 
critically depend on the ease of nucleic acid amplification 
from small amounts of biological material, followed by 
reliable quantification and molecule annotation based on 
sequence identity. Current sample preparation protocols 
provide a means to analyze all DNA and RNA in a 
biological sample, for example, all coding and non-coding 
RNAs. A major limitation is interpretation of genome and 
transcriptome data in the context of biological function, 
i.e., the influence of specific variants on phenotypic 
variation (Lappalainen et  al. 2013). Combining data 
from proteomics and metabolomics with genomics and 
transcriptomics helps to overcome this limitation by 
providing molecular information that links genetic and 
epigenetic variation with phenotypic variation.

Quantification of the proteome
Proteomics data often provide information related to 
biological function, especially those methods quantifying 
isoform variation and post-translational modifications. 
However, proteomics approaches still require significant 
amounts of sample due to the lack of protein amplification 

methods, and face difficulties in isolation of membrane 
proteins, detection of low abundance proteins and 
insoluble proteins. For example, representation of 
nuclear proteins in a proteomic dataset typically requires 
enrichment of nuclei; thus, even untargeted proteomic 
approaches will not include data for all proteins within 
a given biological sample. The reliance on separation of 
complex chemistries (i.e., different charged states and 
post-translational modifications) using chromatography 
adds to variability in protein quantification in top-
down and bottom-up proteomics. In addition, there 
is variability in peptide identification due to variation 
in peptide structure, charge and hydrophobicity, and 
these biochemical properties of peptides and proteins 
affect their ability to be detected and identified by NMR 
or MS. Analysis pipelines for proteomic data must deal 
with absent data (i.e., is the peptide not detected because 
it is not ionized efficiently, or is it truly not present in 
the sample), normalization and absolute vs relative 
quantification (Bantscheff et  al. 2012). In recent years, 
advances in instrument sensitivity, and the development 
of effective isotopic labeling tools for tissue samples have 
significantly improved the accuracy and reproducibility 
of peptide and protein quantification using MS. This now 
allows the effective quantification (using peptide spectral 
match counts, peak intensity or peak area quantification 
or the use of isobaric tags for quantification) of peptides in 
complex mixtures such as tissue lysates.

Quantification of the metabolome
Metabolomics data can link genetic and proteomic 
variation to functional variation and provide novel 
insights into metabolic, regulatory and signaling activities 
in a given cell or tissue. However, similar to proteins, 
metabolites are not amplifiable and only 15–30% of the 
entire mass spectra are identifiable and quantifiable, thus 
limiting the usefulness of the amount of information 
generated. In addition, false positives are a challenge due 
to the use of score-based spectral annotation of molecules. 
Variability in sample handling, platform used, chemical 
heterogeneity of small molecules, different quantification 
methods and lack of standards for data formats and 
analysis pipelines are major challenges (Spicer et  al. 
2017a,b). Large-scale efforts in the metabolomics research 
community are currently ongoing to address these 
challenges including standardization, annotation of 
metabolites, interoperability of protocols and methods 
and statistical considerations.
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Issues shared among the omics platforms

Most omics approaches require knowledge of handling 
large datasets, annotation of biomolecules within a 
dataset, sample size vs number of biomolecules quantified, 
relevance of biomolecules quantified (signal versus noise), 
quality of output and accessibility of data for sharing  
due to data volume and complexity. The included 
Glossary provides definitions of fundamental terms used 
in this review.

Data handling
Data handling, independent of omics data type, 
must address issues of data filtering and cleaning 
(i.e., comparable to data wrangling in data science), 
imputation, transformation, normalization and scaling. 
Unfortunately, there are no ‘gold standard’ unified 
workflows for any type of omics data (although genomics 
and sequencing approaches often use widely accepted 
standards for sequence alignment, QC and/or variant 
calling), use of one analysis pipeline (or analysis tool, 
that is, search algorithm for proteomics data or statistical 
workflows) will yield different results than another, and 
workflows are constantly evolving as new computational 
tools are being developed and implemented. For these 
reasons, it is essential that every analysis pipeline is well 
documented, including versions of software (i.e., version 
control) used for each step in the pipeline and rationale 
for parameters implemented.

Annotation
Annotation of biomolecules for any omics dataset also 
provides substantial challenges. For example, standard 
model organisms (fly, nematode, mouse, non-human 
primate, human) have well-annotated genomes, 
transcriptomes and proteomes, and the array of tools 
available for interactive annotation such as miRNA/gene 
interactions dramatically outnumber those available 
for non-standard model organisms. Extensive data can 
be lost when working with non-standard organisms 
without the use of comparative approaches. That said, 
non-standard organisms often provide data on molecules 
that are relevant to human biology, but cannot readily be 
identified where healthy tissues are required to generate 
high-quality samples (as these are often challenging to 
collect invasively in humans). For example, use of an 
iterative approach to annotate transcripts for non-standard 
model species, where the species genome is first used 
for annotation and unannotated transcripts are aligned 

against multiple other genomes, significantly improves 
the number of annotated transcripts (Cox et al. 2012). In 
addition, creating peptide reference libraries using species- 
and individual-specific RNA-Seq transcript sequence data, 
significantly improves peptide annotation; a study of the 
baboon liver proteome by Proffitt et al. (2017) identified 
novel unannotated splice variants and 101 unique 
peptides missed by standard reference databases. In case 
of metabolomics data, not only the relative metabolite 
abundance, but also the chemical repertoire of an 
organism is often unknown, and annotation of molecules 
is even more challenging without the knowledge of their 
transcriptomes and proteomes.

Study design and analytic assumptions
To improve inferential robustness and reproducibility, a 
number of overarching study design and statistical concepts 
need to be implemented in large, omic studies. Careful 
study design and subject/sample (experimental unit) 
recruitment consistent with the study design is necessary 
for clear, parsimonious testing of a priori hypotheses 
and enables agnostic studies. Convenience samples can 
be informative but are subject to biases not present, on 
average, in formal randomized studies. With the exception 
of ancestry in genetic association studies, often these 
biases are largely ignored. At best, ad hoc methods (e.g., 
propensity scores analysis) can attempt to reduce the bias 
but are inferior to randomized designs. Understanding 
the degree of independence among the experimental 
units is important to prevent pseudoreplication. Multiple 
measures on the truly independent experimental unit 
(e.g., tissue sample, individual) requires analyses using 
subsampling methods or fixed or random effects repeated-
measures modeling to (1) compute the proper variance 
estimate for tests of hypotheses and interval estimation 
and (2) reduce bias. Unfortunately, random and mixed-
effects models generally require a large number of 
independent experimental units for proper type 1 error 
rate control.

Once a study design is selected that best addresses 
the study question, a set of statistical or machine-
learning approaches specific to that study design and 
question is selected. Each analysis, whether using classical 
statistical or machine-learning methods, has underlying 
assumptions that need to be verified. Too often the large 
number of variables is viewed as making assumption 
validation impossible or not worth the investment. 
Further, compounding this issue is the easy access to 
high-speed computing with programs that use algorithms 
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often not understood by the analyst. Combined with the 
pressure for rapid results, these perceptions, knowledge 
and pressures often result in many false inferences, 
both type 1 and type 2 errors and significantly impact 
reproducibility, scientific progress and the cost of science. 
However, large-scale analyses with pretty graphics should 
not be a permit for poor-quality analyses.

An important step in a proper analysis is to clearly 
understand from the experimental question whether the 
omics variable is a predictor or an outcome. Although 
in some special situations it will not matter, in others 
it will. For example, consider an experiment with two 
groups (disease, disease free) and a continuous omic 
variable meeting the normality assumption (see below). 
It is well known that the standard equal variance t-test 
is asymptotically equivalent to the score test from a 
logistic regression model. However, adjusting for a set 
of covariates (e.g., age, gender, BMI) and computing 
the analysis of covariance instead of the t-test is not 
equivalent to the logistic model. Thus, aligning the 
analytic approach to match the outcome is important 
so that the proper variance is estimated for the test and 
interval estimates.

As an example, a classical statistical approach to 
the analysis of omic data from independent subjects 
(e.g. >1000 metabolites) is a linear model (e.g., analysis 
of variance, linear regression). Regardless of whether 
the omic variable is the predictor or the outcome, the 
methods assume that the residuals from the linear 
model are independent and approximate a normal 
distribution with a mean of zero and a constant variance. 
A transformation of the outcome variable (triglycerides, 
metabolite) is often required to meet these assumptions. 
Although it may seem daunting to identify an appropriate 
transformation for hundreds or thousands of variables, it 
is easy to implement the Box-Cox power transformation 
(Box & Cox 1964) (e.g., natural logarithm, square root, 
inverse) algorithm to quickly identify an appropriate 
distribution. For variables not easily assigned to these 
transformations, alternative models may need to be 
applied (e.g., tweetie or tobit model if the distribution 
has a large number of zeros and then remainder follows 
a normal or log-normal distribution). If the omics 
data are predictors in a model, the concern shifts from 
conditional normality of the omic variable to assuring 
that a few outliers do not overly influence inferences 
from the modeling. Such modest care in analyses can 
greatly accelerate true discoveries, while reducing false 
discoveries, thereby increasing reproducibility and 
lowering the ultimate cost of science.

Statistical power
Major statistical challenges for all omics data include 
the number of samples in a study versus the number of 
molecules quantified in each sample (leading to false 
positives and true negatives), analysis of time series data and 
treatment of data for targeted and untargeted (unbiased) 
approaches, i.e. discerning true biological signal from 
noise. Sample numbers per group may also vary for these 
different technologies with the ability to highly multiplex 
samples for genomics and transcriptomics, to moderately 
multiplex samples for proteomics, with a lack of 
multiplexing workflows for metabolomics. An additional 
challenge for integrating different omics datasets is the 
large variation in the number of observations per sample 
where a genome typically includes millions of variants, 
a transcriptome typically includes tens of thousands of 
quantified molecules, a small transcriptome includes less 
than 2000 molecules and proteomes and metabolomes 
include thousands of quantified molecules. Detection 
of differences in abundance of molecules also varies 
significantly where a transcriptome may show differences 
in a range of 105 and a metabolome may only show 
differences in a range of 103.

Data archiving and sharing
Additional issues for many omics datasets are the lack of a 
standardized nomenclature, data formatting and eventual 
public access to datasets. This has largely been addressed 
for genomic, transcriptomic, and proteomic data where 
datasets can be, and are expected to be, deposited in 
public databases upon manuscript publication. However, 
standardization of data and development of a central 
public database for other types of omics data is yet to 
be implemented and will require the definition of data 
standards that will allow re-analysis of deposited data, 
similar to the MIAME (minimum information about a 
microarray experiment) standards first developed for 
microarray data (Brazma et  al. 2001). This was followed 
by minimum information about a genome sequence 
(MIGS) (Field et  al. 2008), minimum information about 
a proteomics experiment (MIAPE) in proteomics (Taylor 
et  al. 2007), metabolomics standards initiative (MSI) in 
metabolomics (Fiehn et  al. 2007, Sumner et  al. 2007), 
minimum information about a single amplified genome 
(MISAG) in genomics and minimum information about 
a metagenome-assembled genome (MIMAG) of bacteria 
and archaea in metagenomics (Bowers et  al. 2017). In 
summary, abiding by these recommended practices of 
minimum information (i.e., MIXX) will lead to scalable 
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and interoperable protocols for generation of reproducible 
datasets for comparing standalone omics data sets across 
multiple biological samples, analytical platforms and 
research laboratories worldwide.

Tools available for integration of  
multi-omics data

Analyzing thousands of measurements in each omics 
experiment is a computationally complex process, where 
extraction of meaningful correlations and true interactions 
is not trivial. This is further complicated by the fact that 
biological systems often yield non-linear interactions 
and joint effects of multiple factors, making it difficult to 
discern true biological signals from random noise – noise 
can come from biological systems, unrelated analytical 
platforms and diverse data-specific analysis workflows. For 
instance, cell-type, tissue-type and organ-type specificities 
of gene, protein or metabolite abundances show inter-
individual variability, for which biological levels of 
organization can pose challenges for extraction of useful 
data within and among these high-dimensional datasets. 
Increasing number of studies incorporate a diverse array 
of relatively newer omics approaches such as fluxomics, 
ionomics, microbiomics and glycomics with biomedical 
datasets for identification and prediction of health status 
or outcomes from interventions. Before omics scale 
data integration, data normalization is imperative given 
that data come from different technologies. Figure  1 
summarizes a generalized integrated omics workflow. 
Data integration often requires statistical and even 
machine-learning tools (Min et  al. 2016) for a multi-
omics view (Libbrecht & Noble 2015). Machine-learning 
approaches are useful for combined analyses of integrated 
omics datasets and clinical data to facilitate dimension 
reduction, clustering, association with clinical measures 
and prediction of disease (Li et al. 2016).

Simplistic, descriptive and exploratory approaches 
such as multivariate analysis tools like principal 
component analysis (PCA) can often be used to reduce data 
dimensionality, while canonical correlation analysis (CCA) 
can be used to investigate the overall correlation between 
two sets of variables. Other omics integrative frameworks 
involve sparse CCA (Parkhomenko et al. 2009), multiple 
factor analysis (De Tayrac et  al. 2009) and multivariate 
partial least square regression analysis (Palermo et  al. 
2009). In a recent review, Wanichthanarak et  al. (2015) 
identified several available tools and packages for the 
integration of genomic, proteomic and metabolomic 
datasets using pathway enrichment, biological network or 

empirical correlation analysis. Nonetheless, while most of 
these tools require standard R-statistical programming or 
Python or Galaxy, implementation has been defined as 
‘difficult’ by the authors. Thus, the need for more user 
friendly tools remains.

For instance, the integrated omics analyses for 
understanding different types of cancers at the molecular 
level pose additional challenges due to very high 
heterogeneity of samples. Pavel et al. (2016) used a fuzzy 
logic modeling framework (Xu et  al. 2008) to integrate 
multiple types of omics data with expert curated biological 
rules for identification of cancer drivers and to infer patient-
specific gene activity. To deal with sample heterogeneity, 
Wang and Gu (2016) have proposed three clustering 
categories, direct integrative clustering, clustering of 
clusters and regulatory integrative clustering. Nibbe et al. 
(2010) demonstrated that integration of complementary 
data sources (transcriptomic and proteomic data) using 
a ‘proteomics-first’ approach can enhance discovery 
of candidate sub-networks in cancer. This approach, 
which identifies proteomic targets with significant fold-
changes between tumor and control tissues, can be used 
to ‘seed’ novel networks that reveal protein–protein 
interaction (PPI) sub-networks functionally associated 
with phenotype. This approach has led to the discovery 
of protein–protein interaction-based changes in human 
colorectal cancer tissues (Nibbe et al. 2010). Ideally, network 
generation approaches will not rely predominantly on 
known function(s) of a molecule since many genes and 
proteins have been shown to have different activities and 
functions in different biological systems, and the system 
being investigated may include key molecules with novel 
functions and/or novel molecules. Even though weighted 
gene coexpression network analysis (WGCNA) has 
been heavily used for unbiased integration of genomic 
and transcriptomic data with quantitative trait data to 
identify coordinated modules of genes and gene variants 
associated with variation in phenotypic variation, it 
remains to be seen whether this algorithm is useful for 
integration of other omics datasets from diverse analytical 
platforms (e.g., proteomics, metabolomics, etc.) or more 
heterogeneous data such as various types of clinical data.

Currently available tools for integration of omics 
data include web-based tools requiring no computational 
experience as well as more versatile tools for those with 
computational experience. User friendly, web-based tools 
requiring no computational experience include Paintomics, 
3Omics and Galaxy (P, M). However, the application of user 
friendly tools should not be done without an understanding 
of the underlying methods. Blind application of easy use tools 
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often adversely affects progress in the field and ultimately 
makes science cost more (e.g., unnecessary additional studies 
to debunk entrenched falsehoods). For more advanced 
users with expertise in programming and interfacing with 
computational tools, tools such as IntegrOmics, SteinerNet, 
Omics Integrator, MixOmics are available. These tools 
allow customization of various parameters and settings 
allowing more control of data analyses. Those interested in 
integration of datasets driven from metabolomics can opt  
for online tools such as XCMSOnline, which allows multi-
omics integration of metabolomics data with genomics  
and proteomics as well (Table 1).

Recent examples of integration in real 
world datasets

A majority of the current literature uses terms such as 
multi-omics and integrated omics to denote research 
efforts where only two omics datasets were integrated 
(e.g. transcriptomics and proteomics, or proteomics and 
metabolomics, etc.), and multiple cases where the omics 
datasets integrated were only at the level of the genome 
(e.g., ChipSeq and methylomics). As part of this review, 
we highlight recent examples of successful multi-omics 
integration which include at least three different omics 

Figure 1
A typical integrated omics workflow showing input datasets, output datasets and results. Using individual omics datasets that are closer to genotype 
(genomics and transcriptomics), and those closer to phenotype (proteomics and metabolomics), plus a host of other omics platforms, datasets are 
integrated using statistical or advanced machine learning approaches. Results may be simple pathways or complex networks and may include both 
known and novel molecules. In addition, results may predict health or disease states, provide insights for effective therapeutic interventions, or reveal 
spatio-temporal regulation of systems such as cell-, tissue- or organ-type specificity.
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platforms and allow the discovery of novel biological 
factors and/or processes through this approach.

Complex diseases

Williams et  al. (2016) integrated sequential window 
acquisition of all theoretical mass spectra (SWATH MS) 
generated proteomics data with metabolomics and 
genomics datasets for a systems level assessment of liver 
mitochondrial function. This study included 386 mice from 
the BXD recombinant inbred strain and used three omics 
datasets – transcriptome (25,136 transcripts), proteome 
(2622 proteins) and metabolome (981 metabolites). 
They validated interactions of key molecules nominated 
from this approach and showed that sequence variants 
in the Cox7a2l gene alter the encoded protein’s activity, 
leading to downstream differences in mitochondrial super 
complex formation. This study demonstrates the utility of 
omics integration for identification of functional variants 
underlying complex diseases.

Zierer et  al. (2016) integrated epigenomics, 
transcriptomics, glycomics and metabolomics, with 
disease traits from 510 participants of the TwinsUK 
cohort to find molecular pathways underlying age-
related diseases. Using network analysis where the mixed 
graphical model was inferred using the Graphical Random 

Forest (GRaFo) method, they identified seven modules 
representative of distinct aspects of aging. Their findings 
demonstrate interconnectivity in age-related diseases and 
that use of integrated omics can reveal novel molecular 
networks relevant to complex phenotypes.

Krishnan et  al. (2018) used adipose and liver tissue 
gene expression analysis by microarray, bioenergetics 
measurements in cell lines and mitochondria followed 
by GWAS and eQTL analyses to integrate various omics 
datasets via an advanced multiscale embedded gene 
coexpression network analysis (Song & Zhang 2015) that 
was preferred over WGCNA analyses for identification of 
networks. Clearly, the authors concluded that network 
modeling from a large dataset and in vitro approaches 
helped predict key driver genes regulating non-alcoholic 
fatty liver disease.

Recently, using a BXD mouse cohort as sources 
for multi-omics analysis (including (expression-based) 
phenome-wide association, transcriptome-/proteome-wide  
association and (reverse-) mediation analysis), Li et  al. 
(2017) demonstrated the feasibility for identification of 
gene–gene, gene–phenotype links that are translatable 
to cross populations and species in their multi-omics 
framework.

Immunity and infection

The integrative personal omics profile (iPOP) is a pioneering 
study that combined genomics, transcriptomics, 
proteomics, metabolomics and autoantibody profiles 
from a single individual over a 14-month period. In this 
approach, pathways enriched for differentially expressed 
molecules were computed at each time point, while taking 
into account pathway structure and longitudinal design 
(Stanberry et al. 2013). Similar endeavors in organ-specific 
multi-omic integrated tools include kidney and urinary 
pathway knowledge base for kidney diseases where 
as an example of the utility of this integrated database 
to facilitate rapid hypothesis generation, the authors 
identified calreticulin as a protein central to human 
interstitial fibrosis and tubular atrophy in chronic kidney 
transplant rejection and validated the importance of this 
protein in vitro and in vivo (Klein et  al. 2012). Another 
study characterized response of ferrets to pandemic 
H1N1 influenza viral infection using an integrated omics 
approach with lipidomic, metabolomic and proteomic 
datasets and discovered that pro-inflammatory lipid 
precursors impact virus pathogenesis (Tisoncik-Go et  al. 
2016). These studies highlight the power of integrated 
omics approaches to identify novel molecules that 
influence immune function and infection.

Cancer

Liu et  al. (2013) used both an integrated and a non-
integrated approach to analyze the NCI-60 cancer cell 
line panel to identify potential molecular mechanisms 
dysregulated in cancer. They performed joint analysis of 
the small transcriptome (miRNAs), transcriptome and 
proteome using factor analysis with linear discriminant 
analysis (LDA) and demonstrated that the integrated 
approach provides a more complete picture of miRNA/
gene interactions in the Wnt signaling pathway, which 
is a surrogate marker of melanoma progression. Liu 
et  al. (2016) generated and integrated data on genomic 
CNVs, genomic methylation, transcriptome and small 
transcriptome datasets to characterize subtypes of 
hepatocellular carcinoma. Using 256 hepatocellular 
carcinoma samples, they identified five hepatocellular 
carcinoma subgroups with distinct molecular signatures, 
and each with a distinct survival rate. Other studies 
have used this approach obtaining high quality and 
comprehensive omics measurements, followed by 
integrated omics analysis to describe molecular variation 
in other cancer types (Jiang et al. 2016, Kamoun et al. 2016). 
Further, MiRbooking algorithms provide vital insights 
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into integration of miRNA–mRNA in hybridization 
competition that occurs in a given cellular condition (Weill 
et al. 2015). An integrated omics approach in cancer may 
provide information for improved diagnosis of carcinoma 
subtype pathogenesis. Recently, Muqaku et  al. (2017), 
using both label-free and targeted proteomics, lipidomics 
and metabolomics efforts followed by data integration 
in human serum samples from patients with metastatic 
melanoma, proposed a model on reprogramming of organ 
functions induced by metastatic melanoma through 
formation of platelet activating factors from long-chain 
polyunsaturated phosphatidylcholines under oxidative 
conditions.

Host microbiome interactions

Heintz-Buschart et al. (2016) used a multi-omics approach 
integrating metagenomic, metatranscriptomic and meta-
proteomic data from the gastrointestinal microbiome to 
identify intra- and inter-individual variation in subjects 
with type 1 diabetes mellitus (T1DM). The study revealed 
several microbial populations contributing to functional 
differences among T1DM individuals. Thaiss et al. (2016) 
used integrated omics of the transcriptome, methylome, 
metagenome and metabolome with imaging data to 
quantify the global programming of the host circadian 
transcriptional, epigenetic and metabolite oscillations by 
intestinal microbiota. They found that the gut microbiome 
and host circadian activities are tightly linked and showed 
that disruption of microbiome rhythmicity abrogates 
normal host genome, epigenome and transcriptional 
oscillations in both intestine and liver, influencing host 
diurnal fluctuations. These integrated omics studies are 
beginning to reveal the complex interactions between the 
host and the gut microbiome, and the resulting impact on 
host metabolism.

Quinn et al. (2016) implemented an integrated omics 
pipeline for human and environmental omic samples, 
16S rRNA gene sequencing, inferred gene function 
profiles and LC-MS/MS metabolomics, in less than 48 h 
using Qiita, Phylogenetic Investigation of Communities 
by Reconstruction of Unobserved States (PICRUSt) and 
Global Natural Product Social Molecular Networking 
(GNPS) pipelines. This study demonstrated feasibility for 
using an omics approach to assess human health status in 
a time frame that matches traditional clinically relevant 
culture-based approaches. Additional studies of this type 
may provide more feasible and accurate methods for 
microbe identification in the clinic and eliminate the 
need for culturing microbes.

Statistical approaches for current challenges

The 1930s graph theory and 1950s holistic general system 
theory form the basis of diverse mathematical tools for 
network analysis across various scientific disciplines 
including integration of omics datasets. Graph theory 
defines a graph as a set of nodes with each pair joined by an 
edge, and each edge associated with two nodes that form 
an unordered pair. Holistic general system theory defines 
a system as an entity with interrelated and interdependent 
parts, and changing any one part affects other parts and 
affects the entire system in predictable patterns. This 
theory has, since then formed the corner stone of large-
scale high-throughput and high-dimensional data set 
oriented omics studies.

Number of samples vs number of molecules

Optimal statistical analyses are central to the compu-
tational framework for omics data integration. Each 
omics layer, and the underlying analytical methodology, 
harbors different levels of noise (Arakawa & Tomita 2013). 
Sampling directly impacts the appropriate statistical tools 
employed and must be defined prior to sampling for a 
given study. Bayesian network-based analyses have been 
used to robustly integrate multiple high-dimensional 
datasets, even with small sample sizes (Mukherjee & Speed 
2008, Wang et al. 2015). The Least Absolute Shrinkage and 
Selection Operator (LASSO) (Tibshirani 2011) and the Elastic 
Net (ENET) (Zou & Hastie 2005) approaches are penalized 
regression methods that, after appropriate standardization, 
can model more than one type of omics data, which all 
must deal with multi-collinearity issues and mitigate the 
‘n << p’ problem, i.e., the number of independent samples 
(n) is much smaller than the number of measurements per 
sample (p). Statistical solutions include the orthogonal 
partial least squares (O2PLS), multivariate regression 
methods, regularized generalized CCA (RGCCA), principal 
component analysis extensions (STATIS, dual-STATIS, 
DISTATIS, ANISOSTATIS etc.), multiblock redundancy 
analysis (mbRA) and multiblock continuum redundancy 
(MCR) (Rajasundaram & Selbig 2016).

Dimension reduction

Multi-omics-derived datasets are high-dimensional in 
nature, and their handling can be computationally 
intensive. Dimension reduction is one strategy to reduce 
the computational burden while also addressing multiple 
testing concerns. Tools for dimension reduction that deal 
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with data heterogeneity are essential, but currently limited. 
Popular data dimensionality reduction approaches lack 
value ratio calculations, low variance and high correlation 
filters and random forest, PCA, and backward or forward 
feature elimination approaches. PCA is currently the most 
widely used dimension reduction approach for omics 
studies, as discussed by Meng et  al. (2016). Essentially, 
dimension reduction techniques for integrative analysis 
include multiple coinertia analysis (MCIA), generalized 
CCA (gCCA), regularized generalized CCA (rGCCA), 
sparse generalized CCA (sGCCA), structuration des 
tableaux á trois indices de la statistique (STATIS) X-statis 
family of methods (STATIS), higher order generalizations 
of SVD and PCA (CANDECOMP/PARAFAC/Tucker3) and 
partial triadic analysis, and CIA (statico), all of which are 
available as R-packages at CRAN. These methods extract 
linear relationships that best explain correlated structures 
across datasets and variability both within and between 
observations. In addition, they may reveal issues such 
as batch effects or outliers in a given dataset. For a more 
detailed view on the predictive modeling and analytics 
approaches, the readers are advised to consult a recent 
review by Kim and Tagkopoulos (2018).

Data integration

Most methods implemented for data integration have relied 
on PCA, correlation or Bayesian or non-Bayesian network-
based methods. All approaches estimate instability, 
model over-fitting and local convergence. Large standard 
errors compromise the predictive advantage provided 
by multiple measures. Also, it is difficult to reliably 
estimate many parameters and correctly infer associations 
from multiple hypotheses tested simultaneously. As a 
result, analysis of both single and integrated omics data 
is prone to high rates of false positives due to chance 
events. Thus, multiple testing must be addressed in the 
analytical pipeline to control for both type I error rate (e.g. 
Bonferroni corrections, Westfall and Young permutation) 
and false-positive rate (e.g. Benjamini–Hochberg).

Bersanelli et al. (2016) provided a detailed review of 
current integration tools and underlying mathematics. 
They defined four classes of integrative methods for 
reduction of multi-omics data: network-free non-Bayesian 
(NF-NBY), network-free Bayesian (NF-BY), network-based 
non-Bayesian (NB-NBY) and network-based Bayesian (NB-
BY) methods. Based on current knowledge and tools, they 
conclude that for network-based applications, Bayesian 
network approaches are a useful compromise between 
network analysis and probability theory, where the 

Bayesian framework addresses noise, and errors from noise 
can be taken into account at the beginning of analyses. 
Huang et al. (2017) provides a review on currently available 
computational resources and algorithms for genomic data 
– i.e., genomics, transcriptomics, miRNAomics, ChIP-
sequencing and gene arrays. These genomic tools are 
less than ideal for all types of omics datasets. However, 
the methods summarized here are critical for future 
development of more robust and less error-prone tools for 
integration of diverse omic datasets.

Table  1 summarizes current tools, software and 
approaches including the computational platform in 
which they can be implemented, their user friendliness, 
functionalities, current availability status and links and 
associated cited literature.

Current challenges and looking to future

We highlight five essential areas in the integrated omics 
workflow which are (i) experimental challenges, (ii)  
individual omics datasets, (iii) integration issues, (iv) 
data issues and (v) biological knowledge. Figure  2 
summarizes the current challenges posed by integrated 
omics approaches.

Experimental challenges

Challenges in sample preparation
Numerous reviews have underscored the challenges 
for efficient sample preparation from diverse samples 
for individual omics studies, ranging from plants, 
animals and microbes for genomics (van Dijk et  al. 
2014), transcriptomics (Chomczynski & Sacchi 2006), 
proteomics (Wiśniewski et al. 2009, Erickson et al. 2017) 
and metabolomics (Villas‐Bôas et  al. 2005, Bruce et  al. 
2009, Kim & Verpoorte 2010). More focused efforts 
are also available such as sample preparation for fecal 
metabolomics (Deda et  al. 2017), lipidomics (Teo et  al. 
2015), single-cell genomics (Vitak et al. 2017, Zahn et al. 
2017) among others. However, with multi-omics, the 
sample amount becomes one of the major bottlenecks, 
further challenged by unified extraction strategies 
amenable for simultaneous extraction of nucleic acids, 
proteins and metabolites from a given matrix without 
significant loss. Thus, single tube extraction methods 
were proposed to allow for multi-phasic extraction of 
the three types of biomolecules as well (Valledor et  al. 
2014). Not only academic efforts, but commercial kits 
are currently being made available to address sample 
preparation for integrated omics analysis. For instance, 
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metabolite, protein and lipid extraction (MPLEx) protocol 
was proposed to be a robust method that is potentially 
applicable to a diverse set of sample types, including cell 
cultures, microbial communities and tissues (Nakayasu 
et al. 2016). Recently, a simultaneous metabolite, protein, 
lipid extraction (SIMPLEX) procedure was proposed as a 
novel strategy for the quantitative investigation of lipids, 
metabolites and proteins that allowed quantification of 
360 lipids, 75 metabolites, and 3327 proteins from only 
106 cells (Coman et al. 2016). Some of these methods have 
been optimized to yield data from samples to multi-omics 
under 48 h (Quinn et  al. 2016). However, the unified 
sample preparation workflows are in their infancy with 
current methods typically providing unequal sample 
quality, such as combined extractions of DNA, RNA and 
proteins; significant work is required to achieve universal 
applications for diverse biological matrices.

Optimizing, documenting and sharing workflows
The success of an integrated omics workflow depends on 
a robust experimental design and execution. This includes 
the sample handling workflow with optimized sample 
collection and preparation protocols that allow analysis 
of a given material in a single step for generating multiple 
omics datasets. This increases comparability of multiple 
omics datasets and limits batch effects and technical 
variation issues that often plague high-dimensional data 
generation workflows.

It is essential to define and document all steps in 
the data handling workflow, including generation of 
individual omics datasets and integration of omics 
datasets. Handling, storage and analysis of multi-omics 
data is computationally intensive, and each step in an 
analytical pipeline generates new output files. A critical 
aspect of every pipeline is determining which output files 
to save and share. These decisions, which take into account 
the time and effort required to generate output files for 
each step in the workflow, impact the types and amount 
of data that must be processed and stored. In turn, data 
analytical pipeline implementation requires decisions on 
use of cloud infrastructures or local hardware/software for 
data storage and processing.

To this end, The Konstanz Information Miner 
(KNIME)-based modular environment workflow incor-
porates steps from data preprocessing to statistical analysis 
and visualization of omics scale data (Berthold et  al. 
2009). BioMart, Taverna and the BII Infrastructure are 
other workflow management systems, which help in the 

omics data integration and streamlining of the process. 
BioMart (http://www.biomart.org) is a query-oriented 
database management system developed jointly by the 
Ontario Institute for Cancer Research and the European 
Bioinformatics Institute. The Taverna workbench (http://
taverna.sourceforge.net) is a free software tool for  
designing and executing workflows, created by the 
myGrid project (http://www.mygrid.org.uk/tools/taverna). 
Toward workflow sharing, myExperiment (https://www.
myexperiment.org/home) is another growing collaborative 
environment where scientists can safely publish their 
workflows and in silico experiments, share them with 
groups and view workflows constructed by others (Goble 
et  al. 2010). Journals publishing metabolomics studies 
may soon require inclusion of the workflow with the 
submitted manuscript (Sarpe & Schriemer 2017), which 
would significantly improve quality, reproducibility and 
utility of datasets.

Data processing
The decision to integrate ‘raw’ datasets to yield a merged 
dataset for further processing, or to first process each 
independent omics dataset and then merge significant 
results for further interpretation, has a significant impact 
on the final results obtained. Analysis tools chosen 
for integrative efforts also have a significant impact on 
outcomes. While several single-omics scale imputation 
methods are known (e.g. KNN impute imputation using 
k-nearest neighbors, BPCA, singular value decomposition 
(SVDimpute), local least squares and iterated local least 
squares (iLLS)), missing data imputation is challenging for 
multi-omics datasets. Iterative processes for imputation in 
a data-dependent manner are also needed. To improve 
imputation accuracy, a recent novel multi-omics 
imputation approach that integrates multiple correlated 
omics datasets by combining estimates of missing values 
from individual omics datasets, and concomitantly 
imputing multiple missing omics data points by an 
iterative algorithm was put forward (Lin et al. 2016).

Time course studies
Sampling time courses are important for understanding 
integrated network dynamics. However, this poses 
additional issues as response times differ for transcriptomic, 
proteomic and metabolomic changes. No tools exist 
to compensate for these differences even if assuming a 
steady state of -omes within a cell at a given time.
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Individual omics datasets – normalization, 
transformation of different omics data types

As stated previously, each omics platform has unique 
limitations. Normalization, transformation and scaling  
approaches in the three major omics fields, i.e., 
transcriptomics, proteomics and metabolomics, are very 
different due to differences in the information included 
in a dataset. For example, a zero value in a RNA-Seq-based 
transcriptome dataset is treated as non-expression for 
that transcript, whereas a zero value in a proteomic or 
metabolomic dataset may represent either non-expression 
or simply missing data (e.g. for technical reasons, owing 
to the complexity of MS-based analyses). Consequently, 
imputation of missing values must be addressed differently 
for the different types of datasets.

Integration issues – data scaling, false positives 
and unknowns

Tools for scaling datasets and addressing false positives 
from three or more independent platforms for integration 

and subsequent analysis have not yet been developed. 
Integration is challenging for a wide array of reasons. 
Platforms for genomics and transcriptomics vs MS-based 
proteomics and metabolomics platforms operate in 
different numerical scales, different dynamic ranges of 
detection and quantification and different time scales, 
for example, the variation in turnover rates of transcripts, 
proteins and metabolites. In addition, integration of data 
from multiple sources increases difficulty accounting for 
false positives in the combined datasets. The decision 
to address false positives in individual omics datasets 
dramatically impacts results. For instance, until recently, 
FDR estimation methods have not been available for 
metabolomics datasets due to variability in spectral 
matching scoring and non-consensus in the MS databases 
(Scheubert et al. 2017), whereas FDR statistical methods 
have been available for genomics and transcriptomics for 
more than a decade. Additional issues include stringency 
of correction where stringent approaches typically rely 
on data structure and statistical models compared with 
less stringent approaches that include biologically guided 

Figure 2
Five challenges associated with integrated omics which encompass (A) experimental challenges, (B) individual omics datasets, (C) integration issues, (D) 
data issues and (E) biological knowledge.
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integration using tools such as pathway or ontology 
enrichment analyses (Khatri et al. 2012).

Currently, there is no consensus for adopting a 
single workflow for data integration. Some investigators 
have used the WGCNA approach (Langfelder & Horvath 
2008) adopted from transcriptomics/microarray analyses 
for integrated omics workflows. While this has been 
useful, it does not provide a means to address unique 
data structures of different omics datasets in biomedical 
research (Smith et  al. 2007) To this end, recently, an 
R-package, MultiDataSet was proposed for encapsulating 
multiple data sets with application to -omics data 
integration, keeping in mind the different data structure 
(list of matrices) generated from individual omics datasets 
(Hernandez-Ferrer et al. 2017).

A key strength of unbiased omics approaches is the 
ability to identify novel molecules that impact biological 
function. A major limitation of omics analyses is the ability 
to annotate unknowns. Results from omics workflows 
are very generic and some filter out unknowns early in 
the analytical pipeline. While some workflows confer 
annotation and functional assignment of unknowns 
based on coexpression, structural and chemical similarities 
or abundance, or all of these, this has not been effective 
mapping the majority of unknowns. Moreover, there is 
a lack of harmonization, standardization and consensus 
among the data analysis communities affiliated with 
individual omics platforms for annotation of unknowns, 
for instance in case of metabolomics (Spicer et  al. 
2017a,b). Whereas the genomics and transcriptomics 
domains have circumvented these issues with vendor-
neutral data formats, the MS-based -omics efforts suffer 
from these challenges. It is noteworthy that such ‘gold 
standard’ data sets are being generated and shared for 
the entire proteomics research community. For example, 
MS1-based label-free proteomics quadrupole Orbitrap 
mass spectrometer data for Escherichia coli digest spiked 
into a HeLa digest in four different concentrations is made 
available, deposited to ProteomeXchange with identifier 
PXD001385 at PRoteomics IDEntifications database 
(PRIDE DB) (Shalit et al. 2015). A Sigma UPS1 48 protein 
mix (all equimolar proteins) spiked into a yeast digest 
background at different concentrations using a Orbitrap 
Velos platform running High-Low (FT for MS1 and CID 
ion trap MS/MS scans) is made available as PXD001819 
at PRIDE DB (Ramus et al. 2016). Similarly, a state-of-the-
art data-independent acquisition carried out via SWATH 
MS Gold Standard data set was made available (Röst et al. 
2014) to the proteomics research community. Examples 
of such efforts in lipidomics include harmonization and 

interoperability of metabolomics standards (Bowden 
et al. 2017) and data sharing, the description, storage and 
exchange of NMR-based metabolomics efforts (Schober 
et al. 2018). In the absence of robust statistical treatment 
and measures, investigators are liable to employ 
‘p-hacking’ (investigators select data or statistical analyses 
until non-significant results become significant). Omics 
efforts are highly susceptible to such practices owing to the 
lack of clearly defined ‘gold standard’ analytical pipelines 
(Chiu 2017), reiterating the need for appropriate use of 
statistical tools and publication of analytical pipelines 
with manuscripts.

Data issues – data archiving and sharing

There is a growing urgency for reproducible research using 
integrated omics, similar to all disciplines in science. Data 
archiving is very important for reproducibility of singular 
omics and integrated omics data, including adherence to 
Findability, Accessibility, Interoperability and Reusability 
(FAIR) principles (Wilkinson et  al. 2016). Part of the 
solution is a requirement for open sharing of scripts and 
codes for these analyses (e.g. R, Python, MATLAB, Java) 
using platforms such as GitHub (https://www.github.com) 
where developers can share code, review code, manage 
projects and build software in collaboration with other 
developers. For instance, cBioPortal for Cancer Genomics 
(http://cbioportal.org) provides a web resource for 
exploring, visualizing and analyzing multi-dimensional 
cancer genomics and clinical data (Gao et al. 2013). The 
Cancer Genome Atlas (TCGA, https://tcgadata.nci.nih.
gov/tcga/) has been generating multimodal genomics, 
epigenomics and proteomics data for thousands of tumor 
samples from >20 types of cancers (Tomczak et al. 2015). 
The Gene Expression Omnibus (GEO) repository at the 
National Center for Biotechnology Information (NCBI) 
archives and freely distributes high‐throughput molecular 
abundance data, predominantly gene expression data 
(Barrett & Edgar 2006). The most current omics-driven 
data are archived at OmicsDI (www.omicsdi.org) that 
houses 149,702 datasets, covering 3926 diseases, 2773 
tissues from 6428 species (Perez-Riverol et al. 2018).

Thus, although public databases for archiving 
individual omics datasets exist (Table 1), no such archive 
exists for integrated omics datasets. Data sharing, 
especially for large multi-omics studies, can facilitate 
availability of resources for further exploratory, training 
and post-publication analyses. To this end, sharing of large  
datasets using tools like DRYAD (http://datadryad.org;  
White et  al. 2008) and Fig Share (https://figshare.com;  
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Thelwall & Kousha 2016) are very useful for the research 
community. Cloud computing technologies may facilitate 
dataset sharing where a large number of users can easily 
access and process data from a given dataset and share 
workflows. Some investigators have begun these efforts 
for omics datasets (Pavlovich 2017, Warth et al. 2017). In 
addition to routine data sharing, there is also a need for 
sharing of ‘gold standard’ datasets from different model 
systems such as E. coli, yeast, Arabidopsis, nematode, 
mouse, non-human primate models, humans, and so 
forth to clearly define strengths and limitations of each of 
type of dataset and to provide guidelines on appropriate 
analyses. In summary, NCBI, SRA, GEO, TCGA in genomics, 
PRIDE DB, PeptideAtlas repository for proteomics, and 
MetaboLights, MetabolomicsWorkbench and GNPS for 
metabolomics have taken center stage for data archiving, 
although standard databases that allow for submission and 
retrieval of three or more integrated omic datatypes from a 
single repository or single interface are lacking.

Hurdles in implementing multi-omics approaches in 
the clinic for diagnostic/prognostic purposes

Multifactorial and polygenic diseases such as cancer, 
cardiovascular diseases, neurodegenerative diseases, cardio-
metabolic diseases, autoimmune disorders and psychiatric 
disorders are caused by variation in multiple genes, proteins 
and metabolites and often influenced by environmental 
factors such as life-style and diet. The promise of the 
Human Genome Project was that by identifying all genetic 
variants in an individual, it would be possible to identify 
variants that caused complex diseases and provide targets 
for therapeutic interventions. Based on this premise, 
the majority of studies focused on identifying biological 
variation that influences complex disease risk have 
investigated genetic and epigenetic variation. In addition, 
these studies typically measure variation in only one 
omic dataset, e.g. DNA sequence variants, variation in 
transcript abundance, etc. Despite these research efforts, 
the promise is largely still unfulfilled. We now know this is 
in large part due to contributions to health and disease by 
additional biological variation such as post-translational 
modifications of proteins and metabolite abundance. 
Thus, there is the need for not only quantification of 
different types of biological variants, but integration of 
these data in ways that inform our understanding health 
and disease which will translate to clinical practice.

There are examples of single metabolite tests (e.g. 
glucose, creatinine, bilirubin, lactate and ammonia) 
routinely performed in the clinic, such as in newborn 

screening that has established worldwide (Kayton 2007). 
However, capturing an extensive number of biomolecules 
for clinical application still presents multiple hurdles 
ranging from standardized sample collection to current 
costs per sample. As mentioned previously, sample 
processing is different for different omic analyses. It is 
not practical for clinicians to rapidly process samples 
creating multiple aliquots for different types of analyses. 
In addition, if limited amounts of patient samples are 
available, it may not be feasible to perform multiple 
omic analyses using a single sample. Translation of 
integrated omics approaches to the clinic will require 
streamlining processes for sample collection and storage, 
reducing technical variation, improving reproducibility, 
standardizing analytical methods, reducing costs and 
reducing time for sample analyses (Kopczynski et  al. 
2017, Wilson et  al. 2017). Given that genetic testing is 
now beginning to be routinely used in the clinic, as well 
as many examples of small molecule assays, it is only a 
matter of time before these challenges are addressed 
for newer and more comprehensive omics platforms to 
contribute essential clinical data that will provide insights 
in prognosis and diagnosis of diseases.

Biological knowledge – data interpretation

The largest hurdle for any omics dataset remains ‘making 
sense of the data’, which is the 5th ‘V’ of big data – 
value. One major objective of multi-dimensional omics 
approaches is biomarker discovery – no matter from which 
omics layer the key molecules are derived, sensitivity 
and specificity of molecular biomarkers are essential for 
usefulness in biomedical research and clinical translation 
of findings. Interpretation and curation of complex 
multi-layered networks is challenging, computationally 
and time intensive, and requires detailed knowledge of 
the biological system being studied. Studies using an 
integrated omics approach without applying biological 
knowledge of the system frequently end with nomination 
of key molecules and networks for hypothesis testing 
that are not biologically relevant. Because validation 
of key molecules, inclusion of validation cohorts and 
networks (e.g. genes, proteins and/or metabolites) is time 
consuming and often challenging, biologically informed 
nomination of candidates is essential.

Conclusions

Currently, no single approach exists for processing, 
analyzing and interpreting all data from different -omes. 
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The need for multimodal data amalgamation strategies 
and development of reproducible, high throughput, user 
friendly and effective frameworks must be addressed for 
this field to advance. Each standard model organism and 
non-standard model organism poses different challenges 
due to the uniqueness of metabolite abundance, gene 
expression bias, epigenetic regulation and cell-type 
specificity of a given omics dataset. Additionally, with 
rapid advancement of technologies for genomics, 
transcriptomics, proteomics and metabolomics, the 
community needs to embrace challenges posed from 
these complex datasets to standardize sample quality, 
sample analysis pipelines, data analysis pipelines and data 
formats for public data availability. Furthermore, as tools 
evolve, they must become user friendly, interoperable 
and effective for computationally intensive analyses. 
Integrated omics is not just a collage of tools, but a 
cohesive paradigm for insightful biological interpretation 
of multi-omics datasets that will potentially reveal novel 
insights into basic biology, as well as health and disease.

Glossary

Concepts and key terms in this treatise encountered 
during implementation of integrated omics workflows.

Omics platform terms

Multi-/integrated-/pan-/poly-/trans-/omics: 
Driven by high-dimensional data generated from >2 –omics 
technology platforms (usually from multiple types, i.e., 
genomics, transcriptomics, proteomics, metabolomics) 
for addressing a biological questions in a seamless manner 
using bioinformatics and computational workflows and 
resources. Steps include-sample preparation, -omics data 
acquisition, raw data preprocessing, filtering and quality 
control measures, accounting for confounders and 
analytical challenges: all of it at individual –omics level, 
followed by their integration.

Systems biology: Uses mathematical modeling for 
analysis of experimental data to predict the behavior of 
biological systems, mostly using high-throughput omics 
technology to quantify the cell functionality using mRNA, 
proteins and metabolites (but not limited to these) as an 
in silico output using computational models.

NGS: Next generation, massively parallel or deep 
sequencing encompass modern sequencing efforts that are 
high throughput, low cost and accurate and are conducted 

via a single experiment reading millions of nucleotides, as 
compared to classical Sanger sequencing methods.

Copy number variation: Structural variation in 
the genome where specific regions of DNA are duplicated, 
with varying number of repeats.

iTRAQ/TMT tags: Are isobaric peptide labeling 
methods used in quantitative proteomics using tandem 
MS for determination of protein abundance in multiple 
samples in a single experiment.

Untargeted (label free) proteomics/

metabolomics: Unbiased and comprehensive analysis 
of all measurable analytes (proteins and metabolites) in a 
given sample including unknowns.

SWATH MS: Is a data-independent acquisition method 
that complements traditional proteomics experiments 
by allowing a complete recording of all fragment ions 
detectable in peptide precursors in a given sample.

Statistical terms

Bayesian: Developed by Thomas Bayes, this statistical 
logic is applied in decision making and inferential 
statistics, which deals with probability inference to predict 
future events based on the knowledge of previous events.

Multivariate: Statistical analysis of data collected 
on more than one variable that needs to be analyzed 
simultaneously where dependence is taken into account.

Dimensionality reduction: Commonly used in 
big data, machine learning and statistical approaches, it 
allows for reducing the number of dimensions (i.e., the 
number of random variables under consideration) by 
providing a set of principal variables.

Principal component analysis: Statistical 
procedure that summarizes high-dimensional data 
i.e., constituted of tens of thousands of features where 
variables are correlated into a lower-dimensional set of 
uncorrelated variables known as principle components.

WGCNA: To allow screening for genes or modules 
that are biologically significant, WGCNA defines a  
gene significance measure, and thus, enables study 
of biological networks based on pairwise correlations 
between the variables.

R: Is an open source software environment for 
statistical computing and graphics that runs on wide 
variety of operating systems.
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