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Abstract—On-chip optical interconnection is a promising tech-
nology for wiring future large-scale integrated circuits, as a means
to mitigate the considerable power dissipation of traditional wiring
layers. Here, we fabricate an integrated optical link using a mem-
brane distributed-feedback (DFB) laser and a p-i-n photodiode
(PD) in a butt-jointed built-in coupling geometry. The optical link
is formed on a Si substrate by benzocyclobutene bonding. The inte-
grated DFB laser shows a low-threshold current of 0.48 mA. Light
transmission between the DFB laser and the p-i-n PD is confirmed
with static measurements of the optical link. The optical link has a
3-dB bandwidth of 11.3 GHz at a 2.73 mA DFB laser bias current
and a –3 V p-i-n PD bias voltage. A data transmission experi-
ment of the optical link is performed, using a nonreturn to zero,
pseudorandom-bit-sequence with a word length of 231-1 signals.
With a DFB laser bias current of 2.5 mA, 10 Gbit/s data transmis-
sion with a bit-error-rate of 6 × 10–7 is successfully achieved.

Index Terms—Distributed-feedback laser, lateral current in-
jection, membrane laser, optical interconnection, semiconductor
laser.

I. INTRODUCTION

T
HE wiring layer of large-scale integrated circuits is respon-

sible for a large fraction of the total chip power dissipation

[1]–[3]. To mitigate this problem, new interconnection tech-

nology is required. Novel type on-chip electrical interconnec-

tion technologies such as carbon-nanotubes [4] and high-speed

transmission lines [5]–[7] have been proposed as approaches ca-

pable of achieving energy efficient wiring with small transmis-

sion delays. On-chip optical interconnection—in contrast with
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electrical approaches—has also been recognized as a promising

candidate for future wiring schemes [8]–[10]. As in fiber op-

tic communications, on-chip optical interconnection consists of

light sources, passive waveguides, and detectors. There are two

main approaches to implement on-chip optical links: on-chip

light sources, and external light sources with on-chip modula-

tors. As an external light source approach, on-chip optical links

have been demonstrated on silicon photonic platforms with an

external laser and ring modulators [11]–[14]. Although silicon

ring modulators can operate at high-speed and with low-energy

consumption, they require heater tuning to change their op-

eration wavelength to that of the external laser [14], because

the operation wavelength of the ring modulator is easily af-

fected by temperature changes and fabrication tolerances. Even

though the energy consumption of the ring modulator is it-

self very small (several fJ/bit [15]), that of micro-heaters is

much higher than that, and has been reported to be as high as

192 fJ/bit [14]. An optical link implemented on a III-V/silicon-

on-insulator (III-V/SOI) platform using an electro-absorption

modulator achieved high-speed operation with a 3-dB band-

width of 13 GHz [16]. A twin-guide laser and a uni-carrier trav-

elling photodiode integrated with InP-membrane circuit were

demonstrated [17]. By employing a directly modulated on-chip

light source, a reduction of the laser current results in a reduction

in the total consumed link energy. A key challenge concerning

on-chip light sources is to obtain ultra-low energy consump-

tion semiconductor lasers [18]. Vertical-cavity surface-emitting

lasers (VCSELs) can operate with low-threshold and high-speed

direct modulation [19], [20]. The VCSEL structure is suitable

for vertical fiber coupling (rather than horizontal integration)

and requires a 45° total reflection mirror to make an in-plane

optical link [21]. Ring lasers [22] and microdisk lasers [23],

[24] have been used in III-V/SOI optical links. Even though

these lasers are capable of low-threshold and high-speeds, the

evanescent coupling between the laser and the passive wave-

guide prevents an efficient light coupling. Photonic crystal lasers

exhibited 4.8-µA threshold operation [25], and optical links us-

ing photonic crystal waveguides and p-i-n photodiodes (PDs)

have been demonstrated [26]. Ultra-low energy signal transmis-

sion was reported, but the transmitted signal of this optical link

structure (laser and PD integration) was not evaluated in terms of
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Fig. 1. Schematic of a membrane optical link on a silicon substrate.

bit-error-rate characteristics, because of the small output power

of the photonic crystal laser.

As discussed above, on-chip optical interconnections require

low-power consumption lasers and efficient coupling structures.

Membrane distributed-feedback (DFB) lasers—DFB lasers fab-

ricated in thin semiconductor layers—are promising candidates

as light sources for on-chip optical interconnection [27]. A

schematic of an optical link using a membrane DFB laser is

shown in Fig. 1. The edge-emitting structure of the DFB laser

is well suited for in-plane integration, and is widely used as the

light source in photonic integrated circuits [28], [29]. The typical

operating current of DFB lasers is of several tens of milliamperes

due to its large active volume [30], [31]. The membrane struc-

ture has an ability to reduce the operating current of DFB laser

as following reasons. A thin semiconductor layer sandwiched

by dielectric claddings enhances the optical confinement fac-

tor of the active layers [32]. A large refractive-index difference

between the core and cladding layers results in strong grat-

ing index-coupling [33]. These properties make the membrane

DFB laser a candidate for use as a low-power consumption light

source [34]. In our early works, optically pumped operation has

revealed low-threshold and strong index-coupled characteristics

[35]–[37]. By adopting a lateral-current-injection (LCI) struc-

ture [38]–[41], LCI-membrane lasers were operated with both

pulsed [42] and continuous-waves (CWs) [43], [44]. Many inte-

gration schemes are available, such as butt-jointed built-in (BJB)

structures [45], quantum-well intermixing [46], offset quantum

wells [47], and so on. We adopted a BJB structure to integrate

the membrane DFB laser with a passive waveguide section [48];

a low threshold current of 0.23 mA was achieved with the BJB

waveguide [49]. Integration with a distributed-Bragg reflector

enhanced the output efficiency [50]. Recent works showed the

high speed modulation properties of membrane DFB lasers at

low-bias currents [51], [52]. Optical transmission has been per-

formed using monolithically integrated membrane DFB lasers

and p-i-n PDs [53]. However, the dynamic characteristics of the

membrane optical link have not hitherto been investigated.

In this paper, we fabricated an integrated optical link con-

sisting of a membrane DFB laser, a p-i-n PD, and a passive

waveguide. Fabrication procedure of the membrane optical link

is shown in Section II. The static characteristics of the op-

tical link are characterized in Section III. The small-signal

modulation measurements are performed in Section IV. Finally,

a large-signal data transmission through the optical link is pre-

sented in Section V.

II. MEMBRANE OPTICAL LINK FABRICATION PROCEDURE

A membrane optical link was fabricated by three-step

organometallic vapor-phase-epitaxy (OMVPE) regrowth and

benzocyclobutene (BCB) adhesive bonding. The detailed pro-

cess is described in [49]. The initial wafer consisted of a

270-nm-thick core layer including a five-quantum-well (5QW)

active layer, a p++ -GaInAs contact layer, and sacrificial etch

stop layers. The active region had a photoluminescence peak at

a wavelength of 1520 nm. The fabrication was started with the

three-step OMVPE regrowth. First, a passive GaInAsP wave-

guide layer was regrown. The fabrication procedure for BJB

structure of the active and passive sections was described in

[53]. Subsequently, n-InP and p-InP layers were regrown, for

the lateral p-i-n diode structure. A SiO2 cladding layer was

deposited on the regrown InP substrate by a plasma-enhanced

chemical vapor deposition. After BCB adhesive bonding of the

initial wafer onto a silicon substrate, the InP substrate was re-

moved by chemical polishing and selective wet chemical etch-

ing. Au/Zn/Au (25/50/300 nm) was deposited as the p-side elec-

trode by thermal evaporation, and annealed at 350 °C in N2

ambient for one minute. Ti/Au (25/200 nm) was then deposited

on both n-side and p-side electrode regions by electron beam

evaporation. A surface grating pattern was defined by electron

beam lithography. The grating design was uniform first order

grating with period of 295 nm and duty ratio of 0.43. The pat-

tern formed on a SiO2 mask was transferred to an InP cap layer

by wet chemical etching. The etching for 50-nm-depth grating

was performed using chemical etchant of H2O: H2O2 : HCl:

CH3COOH = 92: 1: 2: 20 at 10 °C for 8 s. The etching rate for

an InP was approximately 6 nm/s. Finally, stripe-shaped pho-

toresist for protecting both an active and a passive waveguide

region was formed by photolithography. The unnecessary InP

region was then removed by wet chemical etching, to enhance

the electrical isolation between the devices. Fig. 2(a) shows an

optical microscopy image of the fabricated membrane optical

link and cross-sections at the active and passive regions. The

DFB laser and the p-i-n PD had lengths of 80 and 200 µm,

respectively. The absorption layer of the p-i-n PD was the same

as that of the active region of the DFB laser. These devices were

connected by a 500-µm-long passive waveguide. The coupling

efficiency between the active and passive section was calculated

to be 98% [48]. The propagation loss of the passive waveguide

was measured to be more than 8 dB/cm by the Fabry-Perot res-

onance method using the waveguide with both cleaved facets.

The propagation loss for a 500-µm-long waveguide was at least

0.4 dB. The output of the DFB laser on the opposite side to the

p-i-n PD was cleaved, for measuring the lasing characteristics.

Fig. 2(b) shows a scanning electron microscopy image of the

DFB laser region. As shown, the surface grating pattern was

successfully formed on the InP cap layer. The electrical isola-

tion between the DFB laser and the p-i-n PD is important to

ensure independent device driving and to suppress crosstalk in
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Fig. 2. (a) Optical microscopy image and cross sections of the optical link fabricated using a membrane DFB laser and a p-i-n PD. (b) Scanning electron
microscopy image of a joint region of the DFB laser and the passive waveguide.

Fig. 3. Electrical isolation measurement. (a) Schematic of the measuring
configuration. (b) Current–voltage characteristics.

the integrated structure. The electrical isolation resistance Riso

between the p-side electrodes of the DFB laser and the p-i-n PD

was measured, as shown in Fig. 3(a). Given that the n-electrodes

will be set to common ground during the optical transmission

measurement, the isolation resistance between the n-side elec-

trodes becomes not a serious problem. Fig. 3(b) shows the ob-

tained current–voltage characteristics. The isolation resistance

Riso was measured to be of approximately 479 kΩ; at the device

operating voltage, the leakage current was therefore expected to

be under 10 µA, which implies that sufficient electrical isolation

was obtained in the fabricated structure.

III. STATIC CHARACTERISTICS

Prior to evaluating the fabricated optical link, the static

characteristics of the integrated membrane DFB laser were

measured. The DFB laser was characterized by measuring the

light output from the cleaved facet formed on the side opposite

to the p-i-n PD. The light output was detected by a commer-

cial p-i-n PD. Fig. 4(a) shows the light output versus current

and the applied voltage versus current characteristics. The ob-

tained threshold current Ith was 0.48 mA, and the corresponding

threshold current density Jth was 667 A/cm2 for the 5QW active

layer. The external differential quantum efficiency ηd was 2.5%

(facet output). It should be noted that even though the output

efficiency from the facet was small, the facet output was not

used in the optical transmission measurement to be shown later.

Fig. 4(b) shows the lasing spectrum measured at a bias current of

2.5 mA; in these measurements, the lasing wavelength was

1525 nm and the sub-mode suppression-ratio was 34 dB. The

stopband width— which can be defined as the wavelength range

with very low intensity level—was 43 nm, corresponding to an

index-coupling coefficient of 2000 cm−1. Same values of stop-

band width were observed for the different devices on a same

chip. The slight difference of Bragg wavelength was observed

between the devices, which was attributed to the variation of

stripe width or non-uniformity of regrowth thickness. Fig. 4(c)

shows input power versus lasing wavelength characteristics. The

slope ∆λ/∆Pin was 0.226 nm/mW.

The optical link was then statically characterized, by measur-

ing the optical transmission properties between the DFB laser

and the p-i-n PD. The light output of the DFB laser into the

passive waveguide section was detected by the integrated p-i-n

PD. The obtained photocurrent of the p-i-n PD, IPD , is shown in

Fig. 5 as a function of the current injected into the DFB laser,

ILD ; the light output from the cleaved facet (the same curve

shown in Fig. 4(a)) is also shown, for comparison. The thresh-

old current of the DFB laser observed from the photocurrent

characteristic was 0.48 mA, which was the same value measured

with the external p-i-n PD. The slope of ILD–IPD characteristics

was 68.4 µA/mA. ηd for the p-i-n PD side output can be calcu-

lated by assuming the internal quantum efficiency of p-i-n PD of

100% and incorporating the propagation loss of 500-µm-long

waveguide of 0.4 dB. The ηd of the DFB laser was calculated

to be 7.5% from the slope of the photocurrent by assuming the

p-i-n PD responsivity of 1.25 A/W. The higher wall-plug effi-
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Fig. 4. Lasing characteristics of a membrane DFB laser integrated in an
optical link. (a) Light output versus current. (b) Lasing spectrum at a 2.5 mA
bias current. (c) Input power versus lasing wavelength characteristics.

Fig. 5. Photocurrent of the integrated p-i-n PD and light output power of the
laser (measured by an external PD) as functions of the laser injection current.

ciency of the laser can be expected by adopting reduced doping

concentration of p-InP cladding to reduce the absorption loss.

To compensate increased resistivity of p-InP, the distance be-

tween the p-side electrode and active stripe region should be as

short as possible. Given that the maximum value of IPD was

158 µA at ILD = 3.5 mA, the output power of the DFB laser

Fig. 6. Current–voltage characteristics of the integrated p-i-n PD, for various
injection currents in the DFB laser.

Fig. 7. Setup used to measure the small-signal response of the optical link.
The left side image shows the block diagram of the measurement setup. The
right side image shows an optical microscopy image of the device under test.

into the integrated waveguide was estimated to be above 126 µW

(158 µA ÷ 1.25 A/W), approximately three times higher than

that from the cleaved facet (43 µW). This asymmetry in the out-

put ratio was attributed to the facet phase of the grating. Fig. 6

shows the current–voltage characteristics of the integrated p-i-n

PD for various laser bias currents, from 0 to 2.5 mA. To avoid

a leakage current between the DFB laser and the p-i-n PD, only

the curve at a laser current of 0 mA was obtained with opened

electrode pads at the DFB laser. As shown, the p-i-n PD dark

current was 0.2 µA at a bias voltage of −1 V. The dark current

normalized by the absorption area was 1 × 10−1 A/cm2. This

unremarkable dark current density was due either to surface

leakage or leakage at the waveguide region. The absorption of

p-i-n PD did not reach the saturation region, as can be seen from

the fact that the p-i-n PD current in reverse bias conditions was

almost independent of the bias voltage.

IV. SMALL-SIGNAL MODULATION CHARACTERISTICS

The small-signal frequency response S21 of the full-optical

link was measured with a vector network analyzer (VNA; An-

ritsu 37397C). The setup for small-signal measurement is de-

picted in Fig. 7. Ports 1 and 2 of the VNA were connected to bias-

tees. A DC source was supplied to each bias-tee. A DC-coupled

modulation signal was applied to the DFB laser via a 100-

µm-pitch ground-signal (GS) RF probe (Cascade Microtech

ACP40). The modulated optical signals were then transmitted

via the optical link. The p-i-n PD electrical output was received

by a signal-ground probe. The RF component of the detected

signal was separated by a bias-tee, and input to Port 2 of the

VNA. The measured device chip was put on a heat sink, whose
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Fig. 8. Small-signal response of the fabricated optical link. (a) Bias current
dependence measured at a −3 V PD bias voltage. (b) Bias voltage dependence
measured at a 2.5 mA DFB laser bias current.

temperature was controlled at 20 °C. In advance of measuring

the device, a calibration up to the RF probe tips was performed

with an impedance standard substrate (Cascade Microtech,

103-726, GS/SG, up to 67 GHz, pitch: 100 µm–250 µm).

Therefore, the contribution of measurement system was ex-

cluded from the results.

Fig. 8(a) shows the small-signal frequency response (40 MHz

to 20 GHz) of the optical link for various bias currents, with a

fixed p-i-n PD bias voltage of −3 V. A clear relaxation oscil-

lation behavior was observed. In addition, the peak frequency

increased with the increase in the DFB laser bias current. There-

fore, these responses are not electrical crosstalk between probes,

but indeed the transmitted optical signal. The 3-dB bandwidth

of the optical link was 11.3 GHz at a DFB laser bias current

of 2.73 mA. There were bias-current independent peaks near

the 16 and 19 GHz frequencies. Although these peaks were

due to the electrical signal being transmitted between the RF

probes, we believe that the peaks had little effect on the modu-

lation measurement, because the response magnitude was small

compared with that of the optical signal. Fig. 8(b) shows the

small-signal response for various p-i-n PD bias voltages, for a

fixed DFB laser current of 2.5 mA. Increasing the bias volt-

age enhanced the 3-dB bandwidth, because the electrical field

assisted in charge carrier extraction. The maximum bandwidth

was obtained at a bias voltage of −3 V. We also determined

the modulation efficiency—which is the slope of the relaxation

oscillation frequency as a function of the square root of the

bias current above threshold—from the small-signal frequency

response of the optical link. Fig. 9 shows the 3 dB bandwidth

f3dB and the relaxation oscillation frequency fr as functions of

the square root of the bias current above threshold. Because the

measurements were performed using on-chip p-i-n PD, f3dB

Fig. 9. Relaxation oscillation frequency fr and 3-dB bandwidth f3dB as a
function of the square root of the bias current above threshold.

Fig. 10. Measurement setup for evaluation of large-signal transmission
through the optical link.

represents bandwidth of the optical link. Modulation efficien-

cies of 10.8 GHz/mA1/2 and 7.6 GHz/mA1/2 were obtained for

f3dB and fr , respectively; the latter was smaller than that ob-

tained in our previous work (11 GHz/mA1/2) [52]. However,

the active volume of the DFB laser in this work was 2.16 µm3,

which was larger than the previous one (0.9 µm3). Given that the

modulation efficiency is proportional to the square root of the

active volume, the value of 7.6 GHz/mA1/2 for an active volume

of 2.16 µm3 is in good agreement with the previous result.

V. LARGE-SIGNAL DATA-TRANSMISSION

Data transmission via the membrane optical link was per-

formed by large-signal direct modulation of the DFB laser.

Fig. 10 shows an experimental setup for data-transmission mea-

surements. The electrical modulating signals were generated by

a pulse-pattern generator (Anritsu MP1800A, MU181020B, and

MU182021A). Electrical signals were sent to the DFB laser via

a bias-tee and a GS probe. The optical signal from the DFB

laser was transmitted through the passive waveguide, and de-

tected by the p-i-n PD. The electrical output signal of the p-i-n

PD was amplified by a 38 GHz electrical amplifier with a 26-dB

gain (SHF806E). The signals were recorded with a sampling

oscilloscope (Agilent 86109B) or analyzed with an error de-

tector (Anritsu MP1800A, MU181040B, and MU182041A). In

this measurement setup, AC components of the p-i-n PD output
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Fig. 11. 10 Gbit/s eye diagrams transmitted through the optical-link for var-
ious p-i-n PD bias voltages (0 to −3V). The DFB laser was biased at 2.5 mA,
and driven by an NRZ, PRBS (231-1 signals) electrical modulating signal with
a voltage swing of 0.75 Vpp .

Fig. 12. (a) Bit-error-rate characteristics and energy consumption in the laser
of NRZ signal transmission through the membrane optical link; 2.5 mA laser
bias current, and −3 V p-i-n PD bias voltage. (b) Eye diagrams for various data
rates.

signals were separated from the signals at a bias-tee. Therefore,

an extinction ratio of transmitted signal was not obtained.

The input electrical signal to the DFB laser was a non-

return-to-zero (NRZ) pseudorandom binary sequence (PRBS)

of 231-1 signals, with a voltage swing of 0.75 Vpp . Fig. 11

shows transmitted 10 Gbit/s eye diagrams at a 2.5 mA DFB

laser bias current, recorded for various p-i-n PD bias volt-

ages. As the bias voltage of the p-i-n PD increased, larger eye

openings were observed, which is consistent with the results

of the small-signal measurements. Fig. 12(a) shows the mea-

sured bit-error-rate (BER) versus the data-rate and the energy

consumption in the laser at each data-rate. All plots were ob-

tained in the same operating conditions (except for the data-rate).

A BER in the order of 10−7 was obtained up to a data rate of 10

Gbit/s. A energy consumption of the laser at 10 Gbit/s was 0.825

pJ/bit. Above 10 Gbit/s, the BER rapidly degraded. The eye di-

agrams corresponding to the measured BER plots are shown in

Fig. 12(b); as shown, the eye diagrams for 12 and 14 Gbit/s are

more closed, because of signal distortion.

VI. CONCLUSION

We described a monolithically integrated membrane optical

link fabricated on a Si substrate, which employs a membrane

DFB laser and a p-i-n PD. The integrated DFB laser showed

a threshold current of 0.48 mA, with a sub-mode suppression

ratio of 34 dB at a bias current of 2.5 mA. The integrated p-i-n

PD detection of the transmitted light output of the DFB laser

was confirmed from static measurements of the optical link.

The dynamic characteristics of the membrane optical link were

obtained for both small-signal and large-signal modulations. For

a DFB laser bias current of 2.73 mA and a p-i-n PD bias voltage

of −3 V, the obtained 3-dB bandwidth of the optical link was

11.3 GHz. Data-transmission with NRZ PRBS of 231-1 signals

was performed. 10 Gbit/s transmission with a BER of 6 × 10−7

was achieved at a DFB laser bias current of 2.5 mA. The obtained

results show that optical links using a membrane DFB laser are

attractive candidates for on-chip optical interconnections.
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