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Integrated Optimal Design of a Smart
Microgrid With Storage

Remy Rigo-Mariani, Bruno Sareni, and Xavier Roboam, Member, IEEE

Abstract— In this paper, we investigate a design approach aim-
ing at simultaneously integrating the energy management and the
sizing of a small microgrid with storage. We particularly under-
line the complexity of the resulting optimization problem and how
it can be solved using suitable optimization methods in compli-
ance with relevant models of the microgrid. We specifically show
the reduction of the computational time allowing the microgrid
simulation over long time durations in the optimization process
in order to take seasonal variations into account. The developed
approach allows performing many optimal designs in order to
find the appropriate price context that could favor the installation
of storage devices.

Index Terms— Dynamic programming, efficient global opti-
mization, evolutionary algorithms, Kriging, linear programming,
smart grid, microgrid, sizing, optimal dispatching.

I. INTRODUCTION

W ITH THE development of decentralized power sta-
tions based on renewable energy sources, distribution

networks have strongly evolved to more meshed models [1].
Corresponding architectures can be considered as an associa-
tion of various "microgrids" both consumer and producer that
have to be run independently while granting the global balance
between load and generation. Smarter operations now become
possible with developments of energy storage technologies
and evolving price policies [2]. Those operations would aim
at reducing the electrical bill taking account of consump-
tion and production forecasts as well as the different fares
and possible constraints imposed by the power supplier [3].
This paper deals with a microgrid devoted to a set of indus-
trial buildings and factories. It includes photovoltaic (PV)
production and a storage unit composed of high speed fly-
wheels (FW). The main objective is to develop an original
sizing procedure that integrates the management strategy. As
illustrated in Fig. 1 a traditional sequential approach would
aim at successively optimizing the design and the power dis-
patching. Using an integrated bi-level procedure allows finding
the best compromise between the investment costs and the
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Fig. 1. Coupling between sizing and management loops.

benefits resulting from the optimal use of the system [1].

In such a method the management loop would have to be

simulated over a long period of time for every tested design

point generated by the sizing loop. It could lead to prohibitive

CPU times. To face this problem, we will show how it can

be solved using suitable optimization methods in compliance

with relevant models of the microgrid. After describing the

power flow model of the system in Section II, the Section III

presents several optimization methods in order to simulate the

optimal management of the system. It is based on an offline

scheduling aiming at minimizing the electrical bill for the

day ahead. Note that in real time an on-line procedure adapts

the power flows in order to correct the errors between fore-

casts and actual measurements work [5]. Such control strategy

based on the on-line adaptation of off-line optimal references

has been extensively studied in the literature (e.g., [6]–[8]) and

is not the subject of this work. In particular, a fast optimization

approach based on Mixed Integer Linear Programming (MILP)

and on a linear model of the microgrid is introduced in order

to reduce the CPU time of the power flow dispatching. In

Section IV a second optimization level is presented. It con-

sists in determining the optimal design of the microgrid with

regard to the energy costs computed over a complete year

in order to take seasonal variations into account. Section V

presents the results obtained with different price policies aim-

ing at finding the context that could favor the installation of

a storage unit.

II. MODEL OF THE MICROGRID

A. Power Flow Model of the Microgrid

Among many other possible topologies, the particular

microgrid structure shown in Fig. 2 has been selected by the

leader of the ‘’smart ZAE” project (CofelyIneo- GDF Suez).

All the microgrid components are connected though a common

DC bus. In order to limit the systemic design process complex-

ity, voltages and currents are not represented and only active



Fig. 2. Power flow model of the studied microgrid.

power flows are considered. In the rest of the paper the instan-
taneous values are denoted as pi(t) while the profiles over the
periods of simulation are written in vectors pi. A nomencla-
ture of the main used symbols is given on Table I. Note that
only the relevant variables pi related to the power management
are explained in the text. Due to the grid policy, several con-
straints have to be fulfilled at each time step t. The power Pc(t)
through the consumption meter and Pp(t) through the produc-
tion meter have to remain mono-directional. Pprod_c(t) has to
be positive to avoid illegal use of the storage, flywheels cannot
discharge themselves through the production meter. A partic-
ular attention is paid to the grid power Pgrid(t) which should
comply with requirements possibly set by the power supplier
Pgrid_min(t) and Pgrid_max(t).

The equations between all power flows are generated using
the graph theory and an incidence matrix [10]. As illustrated
in Fig. 2, three degrees of freedom are required to manage the
whole system knowing production and consumption:

� p5(t) = Pst(t): the power flowing from/to the storage unit
(defined as positive for discharge power)

� p6(t) = Pprod-c(t): the power flowing from the PV arrays
to the common DC bus

� p9(t) = 1PPV (t): denotes the possibility to decrease
the PV production (MPPT◦ degradation) in order to
fulfill grid constraints, in particular when the power sup-
plier does not allow (or limits) the injection of the PV
production into the main grid (p9 is normally set to zero).

B. Efficiencies of the Microgrid Components

A first model (qualified as “fine model”) is defined tak-
ing account of power converters efficiencies (typically 98 %)
and storage losses. Flywheel losses are computed versus the
state of charge SOC (in %) and the power Pst using a func-
tion Ploss(SOC) and calculating the efficiency with a fourth
degree polynomial ηFW(Pst) (see (1)). Both Ploss and ηFW

functions are extracted from measurements provided by the
manufacturer (Levisys). Another coefficient KFW (in kWh/h) is
also introduced to estimate the self-discharge of the flywheels
when they are not used (see (2)). Once the overall efficiency

TABLE I
LISTS OF THE MAIN USED SYMBOLS

is computed, the true power PFW associated with the flywheel
is calculated as well as the SOC evolution using the maximum
stored energy EFW (100 kWh in the initial situation), the time
step 1t (typically 1 hour for the off-line optimization) and the
control reference Pst. Due to the bidirectional characteristics of
static converters and especially with the flywheels efficiency,
the overall system is intrinsically nonlinear and suitable meth-
ods have to be used to solve the optimal power dispatching
problem.
{

Pst(t) < 0 → PFW(t) = Ploss(SOC(t)) + Pst(t) × ηFW(−Pst(t))
Pst(t) > 0 → PFW(t) = Ploss(SOC(t)) + Pst(t)/ηFW(Pst(t))

(1)










Pst(t) 6= 0 → SOC(t + 1t) = SOC(t) −
PFW(t) × 1t

EFW
× 100

Pst(t) = 0 → SOC(t + 1t) = SOC(t) −
KFW × 1t

EFW
× 100

(2)

III. POWER FLOW OPTIMIZATION IN THE MICROGRID

A. Optimal Power Dispatching Based on the Fine Model

The power dispatching strategy lies on a classical
approach [9] that aims at minimizing the electrical bill for the
day ahead. Prices of purchased and sold energy are assumed
to be time dependent with instantaneous values respectively
denoted as Cc(t) and Cp(t). The time scheduling period is one
day discretized on a one hour basis within which the vari-
ables are considered to be constant. References of the power
flows associated with the degrees of freedom over this period
are computed in a vector Pref of 72 elements (i.e., the total



number of unknowns in the corresponding optimization prob-
lem is 3x24). An additional constraint is considered ensuring
the same storage level SOC = 50% at the beginning and at the
end of the scheduling period. Once Pref is determined, all the
other power flows are computed from the forecasted values
of consumption and production. Then Pc and Pp are known
to estimate the balance between purchase and sale. Thus, the
energy cost function is calculated as in (3) with the purchase
and sold costs. Note that Ps (in kVA) is the power contracted
with the power supplier and define a limit for a maximum
demand during the billing period. The amount of penalties
resulting from the exceedings of Ps (in kVA) are computed
using a coefficient Cex expressed in e/h (euros by hours of
exceedings).

C(Pref) =

24h
∑

t=0

Pc(t) × Cc(t) − Pp(t) × Cp(t) + δ(t) × Cex

with

{

δ(t) = 0 if Pc(t) < Ps

δ(t) = 1 if Pc(t) > Ps
(3)

Due to the nonlinear relations in the fine microgrid model,
only nonlinear optimization methods under constraints can be
used for solving the power flow dispatching problem. We
remind that those methods have to take account of possible
constraints on the main grid in addition to the energy cost
minimization. For solving such problem several approaches
have been proposed in earlier works [5] and [11]:

� Classical nonlinear programming methods and espe-
cially the trust region algorithm (TR) [12]

� Stochastic optimization methods like particle swarm
optimization (PSO) [13] or evolutionary approaches,
especially the clearing algorithm (CL) [14] with a nich-
ing mechanism

� Dynamic Programming (DP) [15] which consists in
a step by step minimization with regard to the stor-
age state of charge (SOC) levels on the overall range
(i.e., 0%-100%) with a given accuracy 1SOC. In partic-
ular, a self-adaptive version has been developed in [11]
with the aim of improving the compromise in terms of
solution accuracy and computational cost.

B. Fast Power Dispatching Based on a Coarse Linear Model

In order to reduce the computational time required for the
power flow dispatching in the microgrid, a fast optimization
procedure has been proposed in [16] and [17]. The justifica-
tion of these huge simplifications is provided at the end of this
section in the context of the systemic design process of the
whole microgrid (see Fig. 4). This simplified procedure uses
MILP techniques on a coarse linear model of the microgrid.
In this model, converter efficiencies as well as the nonlinear
losses in the flywheel storage are neglected. This leads to the
following simplifications:















p2(t) = p3(t)
p4(t) = p5(t)
p7(t) = p8(t)

p10(t) = p11(t)

(4)

SOC(t + 1t) = SOC(t) −
Pst(t) × 1t

EFW
× 100 (5)

Taking the exceeding of subscribed power into account is
strongly nonlinear. An additional integer variable δ is included
in the decision variable vector [17]. The values of δ is 0 or 1
depending on either the grid power exceeds the subscribed
power or not (3). It becomes possible to solve the optimal
problem expressed according to (6) using Mixed Integer Linear
Programming (MILP).

P∗
ref =

[

P∗
st P∗

prod−c 1P∗
PV δ

∗
]

P∗
ref = arg min(CL.Pref) with A.P∗

ref ≤ B (6)

The previous cost function C(Pref) is developed for the
coarse model in (7) according to the decision variables Pp

and Ps are linearly dependent with the degrees of freedom.
The constant terms with Pprod and Pload are removed to obtain
the vector CL used in the MILP optimization (8) with J the
line vector with 24 coefficient equal to 1.

C(Pref) =

24h
∑

t=0









−Pst(t) × Cc(t) + Pprod−c (t)
×

(

Cp(t) − Cc(t)
)

+ 1PPV(t). × Cp(t)
+ δ(t) × Cex + Pload(t) × Cc(t)
− Pprod(t).Cp(t)









(7)

CL.Pref = C(Pref) − Pload × CT
p + Pprod × CT

s

with CL =
[

−CT
c (CT

p − CT
c ) CT

c Cex × J
]

(8)

The constraint matrix A and vector B are built by con-
catenating matrices used to express each grid requirement or
storage specified limits (see [16], [17] for more details). Such
problem can easily be solved using a standard MILP algo-
rithm with the GLPK solver [18]. However, one drawback of
this approach resides in the fact that the optimal solution found
with the MILP does not obviously comply with the require-
ments of the fine microgrid model. A theoric discharge down
to −15 % has been observed for a tested day [17]. In the
same way, the cost function returned by the coarse model is
not correct. Therefore, the control references (Pref_LP) relative
to the degrees of freedom obtained with the MILP in associ-
ation with the coarse model should be adapted in order to
comply with the fine microgrid model. This can be performed
using a step by step correction which aims at minimizing the
cost while aligning the SOC computed from the fine model
with the one resulting from the MILP optimization (denoted
as SOCLP). At each time step t, the correction procedure is
formulated as in (9) to find the instantaneous optimal refer-
ences P∗

ref(t) and where the ct
nl constraint vector includes all

the constraints mentioned in Section 2.1. in addition to SOC
and power limits.

P∗
ref =

⌊

P∗
st(t) P∗

prod−c(t) 1P∗
PV(t)

⌋

P∗
ref = arg min(C(Pref(t)))

ct
nl

(

P∗
ref(t)

)

≤ 0 and SOC(t + 1t) = SOCLP(t + 1t) (9)

This local minimization problem variables is solved using
the TR method with a starting point equal to Pref_LP(t). The
convergence is ensured in all cases in a very short CPU



Fig. 3. Typical test day with forecasted consumption and production.

time due to its small dimensionality (only three decision vari-
ables have to be determined, the Pst(t) decision variable being
directly coupled with the SOC trajectory).

C. Results on a Single Test Day

These methods have been evaluated on a particular day
whose characteristics are given in Fig. 3. The consumption
profile Ploads extracted from data provided by the microgrid
owner while the production Pprod estimation is based on solar
radiation forecasts computed with a model of PV arrays [19].
Energy prices result from one of the fares proposed by the
French main power supplier [20] increased by 30%. Thus, the
purchase cost Cc has night and daily values with 10 ce/kWh
from 10 p.m. to 6 a.m. and 17 ce/kWh otherwise. Cp is set to
10 ce/kWh which corresponds to the sale price for such PV
plants. In a situation with no storage device, all the production
is sold while all loads are supplied through the consump-
tion meter. In that case, this leads to an overall cost equal
to 28.5 e (Fig. 3) for the considered day. Grid constraints are
established to limit the consumption during the peak hours
(Pgrid_max= 0 kW from 7 p.m. to 9 p.m.). The initial con-
figuration of the microgrid with 156 kW subscribed power is
composed of a PV generator with a peak power of 175 kW
and a 100 kW/100 kWh flywheel storage.

Table II displays the energy cost obtained with all dis-
patching methods on the initial microgrid configuration and
on the particular test day. Results show that the solution with
minimum daily cost is obtained from the standard DP with
an accurate discretization of the SOC level (1SOC = 1%).
However, the corresponding CPU time of 2 h is quite expen-
sive. The self-adaptive DP developed in [11] leads to a better
compromise in terms of accuracy/computational cost by con-
verging close to the optimal solution while significantly
reducing the CPU time. In spite of this reduction, the com-
putational cost of this method remains relatively important if
we need to assess the energy cost over a complete year in
order to take seasonal features into account. In that case, the
CPU time related to the 365 successive dispatching steps will
reach 10 min × 365 ≈ 3 days. In the context of the micro-
grid design where a second optimization loop is added for
sizing the microgrid components, the CPU time will become
prohibitive. Indeed, if 1000 microgrid simulations over one
year are required for obtaining the optimal microgrid sizing,

TABLE II
COMPARISON OF POWER FLOW DISPATCHING STRATEGIES

Fig. 4. Simulation over a year – a) Optimal daily cost – b) Error between
MILP and self-adaptive DP results.

the CPU time will increase to 1000 ×3 days ≈ 8 years!!!.
Consequently, the use of nonlinear optimization methods with
the “fine” microgrid model is not suitable in the context of
a design approach integrating the microgrid sizing over long
periods of time. The developed approach based on the MILP
and the references correction allows us to reduce the CPU over
a single day to only two seconds. All the methods have been
used in [17] to assess the annual cost of the components.

D. Simulation Over a Year

The previous analysis has been carried out for a single
day. The reliability of the MILP approach compared to the
self-adaptive DP is now controlled over a whole year. The
management loop is simulated with 365 successive optimiza-
tions performed with the two methods. The input data take
account of the solar radiation cycles with a geophysical model
and consider the consumption variations that are computed
using measurements on site. Fig. 4a shows the optimal daily
costs returned by the self-adaptive DP algorithm. Greater elec-
trical bills (up to 700 e) are observed during the winter months
when the consumption is higher while the production remains
low. Strong variations are also noticeable between the business
hours and the week-end (industrial building considered). Some
days correspond to negative optimal costs meaning that the
sold production is favored in the energy balance with a great
solar radiation. The error between the costs returned by the
two optimization procedures is very low (Fig. 4b) and some
negative values shows that in some cases the MILP algorithm



Fig. 5. Design approach of the microgrid with a bi-level optimization.

is better than the adaptive DP. The final electrical bill (with-
out considering the investment costs) for such a representative
year shows an error of 5 % depending on the used algorithm.
But the management loop is simulating in only 12 min using
the linear approach compared to more than 3 days with the
adaptive DP.

IV. OPTIMAL DESIGN OF THE MICROGRID COMPONENTS

A. Bi Level Optimization

The reduced CPU time allows studying a global design
approach integrating two optimization levels: energy man-
agement and sizing with regard to the microgrid environ-
ment (yearly load profiles, solar irradiation cycles) [21]. This
approach is illustrated in Fig. 5 with the Total Cost of
Ownership TCO as the sum of the operating cost Cop (returned
by the management loop) and cost of the installation Cinst.
In particular, we investigate the analysis and the optimization
of the microgrid with regard to three design variables: the
rated power PPV of the PV generator, the maximum stored
energy EFW in the flywheels and also the subscribed power
Ps to the main supplier. As in the previous section the man-
agement is daily based and the storage and the storage returns
to its initial SOC level at the end of each day with an arbi-
trary value of 50 %. Note that a sensitivity analysis performed
in [17] showed that changing that SOC value as well as the
scheduling period (daily-based, weekly-based and monthly-
based) does not have a significant effect on the final optimal
yearly electrical bill.

B. Optimal Design Algorithm

The CPU time devoted to the power flow dispatching has
been strongly reduced with the MILP strategy but it approxi-
mately requires 2 s × 365 ≈12 min for simulating a microgrid
configuration on a complete year (with the references correc-
tion). This computational cost can be still viewed as expensive
in the context of the second optimization level devoted to the
microgrid sizing. In such case, the use of optimization meth-
ods based on the cost function interpolation is recommended
in order to reduce the number of cost function calls. In addi-
tion, the interpolation of the objective function also returns
a response surface that can be used to identify the interesting
areas (i.e., with the lower annual cost here).

Fig. 6. Kriging interpolation.

1) Kriging Interpolation: The cost function interpolation is
performed using the Kriging method [22] mainly used in geo-
physical applications such as the analysis of precipitation or
the space localization of an ore. The Kriging is a method of
interpolation for which the interpolated values are modeled by
a Gaussian process. The values at the unknown points of the
space are determined with the values of the known “experi-
ments” (Fig. 6). The unknown values are expressed as a linear
combination of the evaluated points (experiments):

Yinterp(X0) =

n
∑

i=1

λi × Y(Xi) (10)

The Kriging equations [23] aim at finding the appropriate
values of the coefficients λi. The procedure needs a “var-
iogram” model to compute the variance of the function
depending on the distance d between the points γ (d(X0, Xi):

V+
· λ = B

with V+ =













γ (d(X1, X1)) . . γ (d(X1, Xn)) 1
. . .

. . .

γ (d(Xn, X1)) γ (d(Xn, Xn)) 1
1 . . 1 0













(11)

λ =













λ1
.

.

λn

µ













and B =













γ (d(X0, X1))

.

.

γ (d(X0, X1))

1













σ 2(X0) = λ
T·B (12)

The procedure also returns an estimation of the error for
the interpolated points (12) that allows defining a confidence
interval around the interpolated function. The accuracy of the
interpolation is also closely linked to the considered exper-
imental points and to the computation of the variance with
a predefined model (typically a Gaussian variation) but it is
not discussed in this paper.

2) Efficient Global Optimization (EGO): The Efficient
Global Optimization (EGO) algorithm [24] is used to optimize
the size of the microgrid components. The algorithm esti-
mates the cost function in unexplored points by interpolating it
with the Kriging method. EGO investigates the search space
by iteratively maximizing the Expecting Improvement (EI).
This criterion expresses a compromise between the unex-
plored regions of the search space and the areas where the
cost function appears to be the most interesting (i.e., with the



Fig. 7. Operation of the EGO on an arbitrary 1D function.

lowest values). Equation (13) shows the expression of the EI
with Ymin the lowest known value of the function, ϕ the proba-
bility density function of the standard normal distribution, and
8 its cumulative probability density.

EI(X) =

(

Ymin − Yinterp(X)
)

× 8

(

Ymin − Yinterp(X)

σ (X)

)

+ σ(X) × ϕ

(

Ymin − Yinterp(X)

σ (X)

) (13)

Starting from randomly chosen initial test points, the
method maximizes the EI at each iteration in order to find
the next point that has to be evaluated. The algorithm runs
until a stoping criteria is met (e.g., fixed number of iterations,
no improvement on the objective function or minimum pre-
scribed value of the EI). Fig. 7 shows the operation of the
EGO for an arbitrary 1D function. The two first iterations aim
at exploiting the interesting area and the optimal point X = 9.5
is found at the second step. The last iteration encourages the
exploration of the search space by evaluating a point in the
less known area. Finally the procedure stops beyond a minimal
value of the EI (10-3) meaning that no relevant improvement
of the objective function should be expected.

V. SIZING RESULTS AND RETURN ON INVESTMENT

In this section the EGO is used for the optimization of the
microgrid TCO. The algorithm uses 10 randomly chosen start-
ing points with a Latin Hypercube Sampling (LHS) [25]. EI
is maximised using alternatively a TR method with several
starting points (typically 300 points) or by regularly sampling
the search space with given steps (typically 25 kWh for EFW ,
25 kW for PPV , and 5 kVA for Ps). Those optimizations
require on average 40 runs of the management loop before
returning a solution. A standard genetic algorithm has been

TABLE III
OPTIMAL POINTS COMPARED TO THE INITIAL CASE

tested instead of the EGO and the returned results were not
as accurate even after more than 200 evaluations of the objec-
tive function. Note that only the best point is “corrected” to
comply with the requirements of the finer model. It leads to
a significant reduction of the CPU time down to approximately
30 min for a single optimal sizing. In each case studies a par-
ticular attention is attached to the time of return on investment
computed as follow with a lifetime of 20 years expected for
the components with C0 the cost for an initial situation with
neither generation nor storage.

TRI =
Cinst × 20

C0 − Cop
(14)

A. Basic Price Context

The investment costs of PV generators and flywheels
over the lifetime are respectively set to 2000 e/kW and
1500 e/kWh [26]. The optimal sizing is firstly performed
with a basic price context corresponding to fares for indus-
trial consumers [19]. In particular the purchase cost is very
low with different values during the winter (W) from October
to March and the summer (S). Ps is associated to a subscrip-
tion fee of 30.7 e/kVA and taxes are equivalent to 20 % of
the overall bill. With no subsidized sale for the PV production
(i.e., Cp = 0 ce/kWh) the optimal sizing of the microgrid
with three variables corresponds to EFW and PPV both equal
to zero (Table III). Comparing to the initial case, the bene-
fit are provided by the adaptation of the subscribed power.
Ps is significantly increases (from 156 kVA to 220 kVA) in
order to find the best compromise between the subscription
fees and the penalties paid for the excess during the year.
With a sale cost equal to 10 ce/kWh the optimal size for
the storage remains zero while PPV is close to its upper
bound. The price context with a cheap purchased energy
does not allow justifying the installation of a storage unit
with the electrical bill not lowered enough to compensate the
investment.

In a second time the optimal sizing is rerun with two vari-
ables EFW and PPV while PS is set to 156 kVA. The plotted
results show that the objective function (i.e., the TCO) is
flat close to the optimal area with less than 1 % variation
with PPV values from 360 kWc to 500 kWc for the case
Cs = 10 ce/kWh (Fig. 8).



Fig. 8. Two variable optimal sizing, final interpolation for Cs = 10 ce/kWh.

Fig. 9. Optimal results depending on the purchased prices increment.

B. Purchase Cost Increment

Purchased cost Cc and Cex are now regularly increased
and the two variables (EFW , PPV ) optimization is per-
formed to estimate when the installation of a storage device
becomes interesting in a case with no sale of the production
(Cp = 0 ce/kWh). The results of Fig. 9 show that the use
of flywheel is justified with prices multiplied by three. Once
again the intervals with small variations of the TCO (< 1 %)
around the optimum are wide with large ranges for the values
of EFW . Note that the self-consumption of the PV production
allows reducing the electrical bill and lowers the return on
investment time. That TRI (for the optimal point) decreases
when the purchased prices are higher with an operational cost
C0 which is more important for the initial case.

C. Derating of the Consumed Power During Peak Hours

Another service to encourage the installation of a storage
unit is no considered. It consists in derating the purchased
energy during the peak hour from 8 a.m. to 9 a.m. and
from 7 p.m. to 9 p.m. for five months from November to
March. The possibility to decrease the purchased power dur-
ing peak hours is set as a constraint (for the management
loop) expressed with adapted values for Pgrid_max and a coef-
ficient Kder(in %) that defines the amount of power that has to
be derated. That constrained optimization is run for only one
design variable EFW (with PFW(kW) = EFW(kWh) for each
flywheel sizing) while PPV remains equal to zero and Ps equal
to 156 kVA. Results are given in Table IV and a cost analysis
is performed to estimate the total retribution with a constant

TABLE IV
COST ANALYSIS FOR THE ONE VARIABLE OPTIMIZATION

coefficient Cder_f = 50 e/MW/year that subsidizes the rated
power of the used storage and a retribution for the derated
energy during the year with Cder_v = 60 ke/kWh. The opti-
mal size of the storage increases with the value of Kder with
a greater amount of energy that has to be derated. For all the
cases the overall gain (electrical bill reduced and retributions)
compared to the initial case is computed with the reduction
of the electrical bill (purchased energy and exceeding of Ps)
and the retribution according Cder_f and Cder_v. In the consid-
ered price context that gain does not compensate the annual
investment cost for the flywheels. Note that the constant cost
of the installed power is much higher than the retribution of
the derated energy.

D. Optimization of the Price Context

In that subsection the sizing approach coupled with the man-
agement strategy developed in the paper is used to optimize
the price context. The goal is to obtain a given TRI denoted
as TRIexpect for fixed values of EFW , PPVnom and Ps. Thus the
design variables are all the costs that intervene in the price
policy. To limit the number of parameters, four variables are
identified with the bounds specified in (15) and with K% the
increment of the basic purchased cost (as in Section V.B).

0 % ≤ K% ≤ 200 %
0 ce/kWh ≤ Cp ≤ 20 ce/kWh
0 ke/MW/year ≤ Cder_f ≤ 100 ke/MW/year
0 ke/kWh ≤ Cder_v ≤ 120 ke/kWh

(15)

The objective function expressed as in (16) is the error
between the obtain TRI and the expected value and the
optimum is obtained when fobj equals zero.

fobj =
(

TRI − TRIexpect
)2

(16)

The solution is not unique as several fares may lead to
the same TRI. Thus Table V shows different price context
that corresponds with a TRI of ten years for an installa-
tion characterized by EFW= 100 kWh (PFW=100 kW) and
PPV = 100 kWc. Ps is set to 200 kVA and the management
loop is run with Kder = 30 %. All the solutions correspond to
an increment of the purchased prices that have to be doubled
at least. Note that the actual purchase cost of electricity from
grid Cc (with no taxes) remains very low with 3 or 4 ce/kWh
during summer. For a moderate increment (150 %) the sale
of the PV production should be highly subsidized with Cp

equal to the upper bound at 20 ce/kWh. The retributions of
the installed storage Ceff _f and Ceff _v must be higher than the



TABLE V
PRICE CONTEXT THAT ENSURES THE EXPECTED TRI

values considered in Section V.C in order to compensate the
investment cost of the storage device.

VI. CONCLUSION

In this paper, a global integrated design approach for the
energy management and sizing of a microgrid with storage
has been presented. The studied microgrid is composed of
commercial buildings and factories that include PV produc-
tion and flywheel storage. In a first part of the paper, several
power flow dispatching strategies based on nonlinear optimiza-
tion techniques have been compared in terms of efficiency
and CPU time. All those methods can be used for predict-
ing for the day ahead the optimal references of the power
flows but they are too expensive in the case of the microgrid
simulation over a long period of time (typically one year).
Furthermore several wide horizon simulations are required in
the context of a second optimization step related to the micro-
grid component sizing taking seasonal variations into account.
To face this problem an original fast power flow dispatch-
ing approach has been presented. This approach relies on the
use of MILP techniques in association with a coarse linear
model of the microgrid in order to speed up the computational
time. Then, a correction procedure is applied for aligning the
results of the coarse model with the finer nonlinear model.
This approach has shown to be highly effective leading to
a significant reduction of the computational time of the power
flow scheduling. In the following part of the paper, a second
optimization level has been introduced aiming at finding the
optimal microgrid configuration with regard to different design
variables (energy management variables and sizing variables).
The developed method based on Kriging interpolation has been
explained with an illustration given for a 1D arbitrary func-
tion. Finally the developed approach is very fast with optimal
designs performed in around 30 min if the references of the
power flows are corrected only for the final solution. The fast
computational time allows running many optimization prob-
lems with different formulation (constraints, optimization of
the TRI) and various price contexts. The obtained results show
that with the actual policy the investments for a storage unit
cannot be compensated by the reduction of the electrical bill.
If the TRI becomes interesting for a great increment of the
purchased costs other services such as derating of the con-
sumed power could be subsidized to favor the installation
of storage devices. The implemented tool revealed itself very
efficient with fast computational time and allows to consider
various kind of problems such as optimal sizing or optimal
price context.
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