
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3044606, IEEE

Access

Integrated optimization approach of hybrid flow-
shop scheduling based on process set

Xixing Li1, Hongtao Tang2, Zhipeng Yang2, Wu Rui1 and Luo Yabo2
1 Hubei Key Laboratory of Modern Manufacturing and Quality Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan,
430068, China
2 Hubei Key Laboratory of Digital Manufacturing, School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070,
China

Corresponding author: Hongtao Tang (e-mail: 615912286@qq.com).

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51805152, 51705384, 52075401 and 51875430) and the Scientific

Research Foundation for High-level Talents of Hubei University of Technology (GCRC2020009).

ABSTRACT Considering that process planning and production scheduling are independent of each other in a
hybrid flow-shop, this study categorizes the process route into parallel process-set, batch set and unordered
process-set, and builds a multi-objective optimization model to minimize the maximum completion time and the
minimum processing cost. An improved artificial bee colony algorithm has been developed to solve the model. A
segmented decoding method based on the insertion principle and the release time of the predecessor process is
proposed to effectively use the idle time of the machine. A dynamic triggering neighborhood mechanism is
introduced to enhance the local searchability of the algorithm. Finally, the feasibility and effectiveness of this
algorithm to solve such problems are verified via simulation experiments.

INDEX TERMS Process planning, production scheduling, hybrid flow-shop, improved artificial bee colony
algorithm

I. INTRODUCTION

An appropriate feasible workshop scheduling plan is key to
transform and upgrade the manufacturing industry and improve
manufacturing efficiency, particularly in process industries,
such as chemical processes, textiles, metallurgical, printed
circuit boards, and automobile manufacturing enterprises[1].
Generally, a hybrid flow-shop (HF) consists of multiple
processing stages. There are strict order constraints between
different processing stages, with multiple parallel machines in
at least one processing stage. The research objective of HF
scheduling (HFS) is to strategize a feasible and effective
arrangement of a processing sequence of different
manufacturing tasks to satisfy the goals pursued by managers,
such as the equipment load balance in each processing stage,
minimum total flow time, and minimum maximum completion
time. This has been proven to be an NP-hard problem[2]. Most
studies consider certain assumptions (e.g., ignoring the setup
times of operations, non-sequence-dependent) to simplify the
construction model[3]. However, in a real-time production
process, there are different production constraints (e.g., one
stage of the machine is a batch machine instead of a single
parallel machine, or the processing sequence can be
interchanged) and different dynamic events (e.g., new
manufacturing tasks or machine failure) that increases the
corresponding processing time to delay the total completion
time of the original scheduling scheme.

Recently, the methods to solve HFS have been generally
divided into two categories: accurate method and approximate
method[4]. Accurate methods include mathematical
programming method [5][6], branch and bound method [7][8]
and Lagrange Relaxation algorithm [9], which can solve small
scale simple problems. However, the solution space of practical
problems is generally large and its calculation time is
unacceptable. The approximate method is an experience-based
solution algorithm, generally a range of solving time, space,

and feasible solutions has been given. The solution speed is
relatively fast, and the result is a feasible approximate optimal
solution. The method mainly includes a heuristic approach and
hybrid intelligence optimization algorithm. For the integrated
optimization model of permutation flow shop scheduling
problems with HFS, Pang et al. developed an improved
fireworks algorithm to minimize the makespan [10]. Mirsanei
et al. proposed a novel simulated annealing algorithm to
produce a reasonable manufacturing schedule within an
acceptable computational time for solving the HFS with
sequence-dependent setup times [11]. Zhou et al. proposed a
hybrid different algorithm with estimation of distribution
algorithm to solve a reentrant HFS, where inspection and repair
operations are carried out as soon as a layer has completed
fabrication [12]. Yu et al. presented a genetic algorithm
incorporating a new decoding method to solve the HFS with
unrelated machines and machine eligibility to minimize the
total tardiness [13]. Marichelvam et al. developed a cuckoo
search metaheuristic algorithm to minimize the makespan for
the multistage HFS scheduling problem [14]. Liu et al.
combined the estimation of distribution algorithm and
differential evolution algorithm to address a specialized two-
stage HFS scheduling problem with parallel batching machines;
a job-dependent deteriorating effect and non-identical job sizes
were considered simultaneously [15]. Choong et al. combined
particle swarm optimization with simulated annealing and tabu
search, respectively, which were applied to the HFS scheduling
problem [16].

The artificial bee colony (ABC) algorithm is a meta-
heuristic algorithm based on relative populations. It was first
introduced by Karaboga to solve multi-variable, multi-modal
continuous functions [17]. It was inspired by the behavior of
bees collecting honey, it has fast convergence speed and strong
optimization ability when compared with other metaheuristic
algorithms [18][19][20][21]. Therefore, further intensive
studies on the application of ABC algorithm have been

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3044606, IEEE

Access

conducted in the research field of job scheduling, such as single
machine scheduling [22], multi-machine parallel scheduling
[23], flexible job shop scheduling[24], open shop scheduling
[25], flow shop scheduling [26].

The ABC algorithm has received much attention for its
application in the HFS scheduling problem. Lin et al. developed
a hybrid ABC algorithm with bi-directional planning to
minimize the makespan of scheduling multistage HFS with
multiprocessor tasks. Computational evaluations of two well-
known benchmark problem sets supported the proposed hybrid
ABC algorithm with high performance against the best-so-far
algorithm [27]. Cui et al. proposed an improved discrete ABC
algorithm that combined a novel differential evolution and
modified variable neighborhood search to minimize the
makespan of HFS [28]. Li et al. proposed an improved discrete
ABC algorithm to solve the hybrid flexible flowshop
scheduling problem with dynamic operation skipping features
in molten iron systems. A dynamic encoding mechanism,
flexible decoding strategy, and right-shift strategy were
proposed [29]. Li et al. proposed a hybrid ABC algorithm to
solve a parallel batching-distributed flow-shop problem with
deteriorating jobs. Two types of problem-specific heuristics
were introduced, and five types of local search operators were
designed [30]. To solve the large-scale HFS scheduling
problem with limited buffers, Li et al. combined the ABC
algorithm with tabu search to minimize the maximum
completion time [31]. Considering a two-stage HFS with
multilevel product structures and requirement operations,
Kheirandish et al. developed an ABC algorithm along with a
genetic algorithm to obtain near-optimal solutions to minimize

the maximum completion time in reasonable run-times [32].
Pan et al. developed an effective discrete ABC algorithm with
a hybrid representation and combination of forward decoding
and backward decoding methods to solve the HFS scheduling
problem in order to minimize the makespan [33].

Generally, several unexpected disruptions occur in realistic
production systems. Peng et al. studied a real-world HFS
rescheduling problem in which machine breakdown was
considered as the disruption. They developed an improved
ABC algorithm with a population initialization heuristic and
worst solution replacement strategy [34]. Li et al. addressed the
steelmaking scheduling problem with continuous casting
constraint and resource constraints simultaneously. They
proposed several heuristics and developed a discrete ABC
algorithm with a two-phased-based encoding mechanism and
local search procedure [35]. To save energy in sustainable
manufacturing, Zhang et al. studied an HFS green scheduling
problem with variable machine processing speeds to minimize
the mankespan and total energy consumption, and developed a
decomposition-based multiobjective discrete ABC algorithm
[36]. Generally, a conventional foundry manufacturing process
(as shown in FIGURE 1) demonstrates partial sequence flexibility
and batch processing machines. Furthermore, several other
complicated characteristics are as follows: (1) different
processes of the same job can be processed at the same time
(e.g., modeling and core-making stage), (2) the same process of
different jobs can be processed in batches (e.g., melting stage),
and (3) the processing order can be exchanged between
different processes of the same job (e.g., detection phase).

FIGURE 1 Conventional foundry manufacturing process

Therefore, our research aims to propose an integrated
optimization approach for HFS scheduling based on the
process-set division scheme to support production process
tracking and monitoring. The main contributions of our study
are as follows: (1) a feasible division method of process-set is
proposed to satisfy the requirement of integrating the process
route with scheduling, (2) an HFS scheduling model with batch
processors in the middle stage was considered, (3) an
initialization method based on opposite learning was proposed,
and (4) four effective neighborhood search strategies were
formulated to improve the optimization ability of the solving
algorithm. This paper is organized as follows: problem
description and mathematical modeling are presented in
Section 2, an improved ABC algorithm with dynamic trigger
neighborhood search (DTNS) is developed in Section 3, a case
analysis is demonstrated in Section 4, and conclusions and
scope for future work are provided in Section 5.

II. PROBLEM DESCRIPTION AND MATHEMATICAL
MODELING

A. Processes-set definition

Assuming n jobs, and each job Ji has m operations, and that its
technological route is {Oi,1,Oi,2 …,Oi,j …,Oi,k …,Oi,n…,Oi,m},
there are many different process-set in the process route.
However, there is only one process-set for each job. As shown
in FIGURE 2, based on the directed acyclic graph [37], this work
studies the phenomenon where the process route contains three
special process-set: parallel process-set (Tpp), batch process-set
(Tbp), and unordered process-set (Tup). The difference between
Tpp and Tup is whether the internal processes can be processed
at the same time. There is no processing order requirement for
the processes in Tpp and Tup.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3044606, IEEE

Access

FIGURE 2 Process roadmap

(1) Parallel process-set Tpp: Tppi=< ,

, 1

i j

i j

O

O +

>, i.e., the processes

Oi,j and O i,j+1 of the job Ji in the process route can be
processed by different parallel machines simultaneously;
Oi,j and O i,j+1 are called parallel processes. As shown in
FIGURE 2, the parallel processes O1,2 and O1,3 form a parallel
process-set Tpp1.

(2) Batch process-set Tbp: Tbpn=<<J1,k,…,Jn,k >n>, i.e., the k
process of n jobs in the batch stage can be processed in
batches on a batch processing machine. The corresponding
process is called batch process. As shown in FIGURE 2, the
batch process O1,5 and O2,5 form the batch process-set Tbp1,
and O3,5 form the batch process-set Tbp2.

(3) Unordered process-set Tup: Tupi=<Oi,n , O i,n+1 >, i.e., the
process Oi,n and O i,n+1 of the job Ji in the process route have
no processing order requirements, but they cannot be
simultaneously processed, Oi,n and O i,n+1 are called
unorder processes. As shown in FIGURE 2, the unordered
processes O1,6 and O1,7 form the unordered process-set Tup1.

B. Problem description

This work studies the HFS scheduling problem with batch
processors and flexibly sequenced processes. Each job passes
through multiple processing stages, in sequence, of a same
process route; each stage has at least one parallel machine. This
problem contains three special processing stages: parallel
processing, batch processing, and unorder processing stages.
The remaining stages are non-parallel single processing stages.
In the parallel processing and unorder processing stages, we
should determine the processing sequence. In the batch
processing stage, we should determine the grouping and
batching of a job. In the grouping phase, the batch processor is
divided into several job clusters based on the job selection first,
and then further decomposed according to the threshold method.

Therefore, the described problem can be divided into three sub-
problems: (1) determining each job’s process route, (2)
assigning a processing machine to each job, and (3)
determining each job’s status on the machine processing order.

Moreover, the following assumptions are considered for the
problem addressed in this study:
(1) All machines are available at the initial time 0.
(2) Each job has strict processing order constraints between

the other processes except the parallel process set and
unordered process set.

(3) The processing time of each parallel process set and
unordered process set should be processed between its
predecessor and subsequent processes.

(4) Except for the batch process set, the remaining operations
are processed on a single parallel machine.

(5) The batch processing machine has a processing threshold,
and the weight of each batch of jobs cannot exceed the
processing threshold of the batch processing machine.

(6) The start time of the batch process set is not earlier than
the maximum completion time of all its predecessor
processes and the previous batch process set.

(7) The completion time of the batch process set should be
earlier than the start time of all subsequent processes.

(8) The processing time of the batch processing stage is
related to the weight of the batch of jobs, and the
processing time of the jobs in the remaining stages is fixed.

(9) There is no influence on each other.
(10) Each job can belong to only one processing batch.
(11) Each machine will run until all jobs pertaining to the

machine are processed and stopped.

C. Mathematical modeling

(1) Notations

The notations used throughout this paper are list in TABLE I.
TABLE I

NOTATIONS

Notation Signification Notation Signification

n number of jobs Eij completion time of Oi,j

m number of operations in each job Pijt processing time of Oij on Mt

b number of batches RCi raw material cost of Ji

l number of machines SCt static waiting cost of Mt

Oi,j jth operation in Ji DCt dynamic processing cost of Mt

iW weight of the Ji
s
tT static waiting time of Mt

BkW weight of batch Bk
d
tT dynamic processing time of Mt

Mt machine set Sij start time of Oi,j

Q threshold of batch machines STpi start time of subsequent Tppi

ETpi completion time of precursor Tppi STbpi start time of Tbpi

ETbi completion time of all precursor Tbpi α fixed processing time

PTbpk processing time of batch Bk β coefficient of weight

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3044606, IEEE

Access

(2) Decision variables

,1, is processed in

0, else

i j t

ijt

O M
X

,1, is belong to

0, else

i j k

ijk

O B
Y

(3) Objectives

The objective of this study is to minimize the makespan and
cost. The mathematical model is described according to the
aforementioned assumptions and notations.

Makespan: The completion time is the longest time
consumed after the completion of all processes, expressed as f1,
as shown below.

1 max()m 1 1in ijf E i n j m= ， (1)
Production cost: The completion cost is determined in two

parts: material and processing costs. Further, the processing
cost includes two parts: standby state processing cost and
working state processing cost, denoted by f2, as shown below.

1 1

2 ()min
n m

s d
i t tt t

i t

RC SC DCTf T
= =

= + + (2)

(4) Constraints

,1 ()Tpi ij i j pp dpE n O TS i T ， (3)
,1 ()ij ij Tp pi i j p dpi n O T TS P S+ ， (4)

, (), i j pp dij ijt ijt ij pS X P E t MO T T + (5)

1

1 ,1
m

ijt

j

X n ti M
=

 = (6)

,

1

1 1
n

ijk i j

i

bpY k b O T
=

= ， (7)

,1 1 , bBk ijk i j piW Y W i n k b O T= ， (8)
1BkW Q k b (9)

1Tbpk BkW kP b = + (10)

kax 1m Tbk TbpE S k b ）（ (11)
Constraints (3) and (4) indicate that the processing time of the
parallel process set and unordered process set is between their
predecessor and successor processes. Constraint (5) indicates
that except the parallel process and unordered process sets,
there are strict processing order constraints. Constraint (6)
indicates that only one processing machine can be selected for
each process of the job. Constraint (7) indicates that each job
can only belong to one processing batch. Constraint (8)
indicates each batch total weight is the sum of the weights of
all the jobs in the batch. Constraint (9) indicates that the weight
of each batch cannot exceed the processing threshold of the
batch machine. Constraint (10) indicates that the processing

time of each batch set depends on the batch weight and basic
melting time constant. Constraint (11) indicates that the start
time of each batch process set is earlier than the completion
time of all its predecessor processes.

Ⅲ. SOLUTION REPRESENTATION

The ABC algorithm has the advantages of few parameters and
strong versatility. It has been widely applied in solving
scheduling problems. Three types of bees are defined for the
original ABC algorithm: employee, onlook, and scouter bees.
The number of employee and onlook bees are equal. While the
employee bees correspond to the honey source (the solution
number of the problem), the richness of the honey source
represents the adaptation of the solution degree.

Employee stage: Employee bees are responsible for finding
new honey sources. If the quality of the new honey sources is
better than the original, the latter will be replaced and the new
honey source information will be shared with the onlook bees.

Onlook stage: Onlook bees work by sharing the honey
source information with employee bees and deciding whether
to follow the employee bee to collect honey through roulette.
Scouter stage: Scouter bees update the honey source by
updating the unimproved honey source several times.

The HFS problem based on the process set studied here is a
multi-objective optimization problem. Therefore, this study
first proposes an improved artificial bee colony (IABC) based
on process coding. Then, the DTNS is introduced to improve
the local optimization ability of the algorithm during the
iteration process. The details are as follows.

A. ENCODING

Coding is used to solve problems represented by a set of
vectors. A feasible coding method can increase the speed of
convergence of an algorithm to easily find an optimal
solution of a given problem. This study employs the process-
machine-based coding method to generate the job
scheduling sequence. Each group of vectors

 |j mX X X= ,which represents an effective solution to the
problem, where Xj represents the job. The appears order
represents the process sequence of the job, Xm represents the

machine sequence of the optional machine set

corresponding to the process, and not the machine number.
For instance, considering a set of vectors encoding in
TABLE Ⅱ, [|]j mX X X= = [312221123232313213311
132131112212111213231], the first position of Xj represents
O3,1 of job 3, and the fourth position represents O2,2 of job 2.
The corresponding fourth position in Xm represents
processing on the machine M2 of the optional machine set
{M2, M3, M4}.

TABLE Ⅱ
WORKPIECE MACHINING INFORMATION TABLE

Job Weight Operation
Processing time

M1 M2 M3 M4 M5 M6 M7

J1 2 O1,1 6 7 9 - - - -

O1,2（Tpp） - 6 7 11 - - -

O1,3（Tpp） - 4 7 9 - - -

O1,4（Tbp） - - - - - - NaN

O1,5（Tup） - - 5 6 7 - -

O1,6（Tup） - - 4 8 9 - -

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3044606, IEEE

Access

O1,7 - - - 3 8 6 -

J 2 3 O2,1 8 7 - - - - -

O2,2（Tpp） - 6 5 8 - - -

O2,3（Tpp） - 8 5 6 - - -

O2,4（Tbp） - - - - - - NaN

O2,5（Tup） - 7 - 8 - - -

O2,6（Tup） - 7 9 11 - - -

O2,7（Tup） - - - 8 8 6 -

J 3 1 O3,1 6 8 - - - - -

O3,2（Tpp） - 9 10 7 - - -

O3,3（Tpp）） 6 9 4 - - -

O3,4（Tbp） - - - - - - NaN

O3,5（Tup） - 8 - 9 - - -

O3,6（Tup） - 6 7 4 - - -

O3,7 - - - - 8 9 -

⚫ NaN: Representative processing time is variable

B. DECODING

Decoding is a practical solution to a set of vector mapping
problems. Because the scheduling problem studied in this work
has three special processing stages, different corresponding
decoding methods are employed.

(1) Parallel Decoding: The jobs in this stage form a set of
parallel operations and can be machined simultaneously. The
final machining order of parallel operations is determined
based on the principle of Sort Before Insert (SBI), as shown in
FIGURE 3. Considering Oi,2 and Oi,3 of the parallel process-set as
an example, the front operation is Oi,1 and follow-up operation
is Oi,4, decoding steps as follows:

T＇4 T＇2 T＇1 T＇3

M

Oi,1

Idle time of machine M

Oi,3

T3

Oi,2

Tb Te（ Si3）

T1 T2

Time occupied by other processes

Ei3

FIGURE 3 Schematic diagram of parallel decoding

Step1: Determine the processing time period of each parallel
process-set and its front operations in order regardless of the
parallel processes. (In FIGURE 3, parallel process Oi,3 ，start time

Te= Si3, and processing time period is [Si3, Ei3]);

Step2: Determine the idle time segment of processing
machine M from Tb−Te, and sort it in the order of the earliest
idle time to obtain T={ T1,… Tn};

Step3: Select the later process in the parallel process to the

processing time period [Si3, Ei3] and insert each of them in turn

with Tj until it can be put into a certain period of time. If there

is no such period of time, maintain the original start-up time of

Oi,3 unchanged;

Step4: Determine the start time of Oi,4. The start time is not

earlier than the maximum finish time of the parallel process-set.

 (2) Batch Decoding: The processes in this stage are batch
operations; different jobs can be processed in batches. This job
first divides the job cluster based on the number of batch
machines (each job cluster is processed on only one batch), and
then groups batches according to the threshold method in each

job cluster. The processing time of each batch machine is
determined according to Constraint (10). Each job cluster, as
shown in FIGURE 4, is grouped using the rules of Early Release
Time Fit, assuming that there are a total of n jobs, where Oi,4
can be processed on the batch machine. The decoding steps are
as follows:

M

O1,3

O3,4 O1,4

O2,3

O3,3

O2,4

O3,5

O1,5

O2,5

Subsequent operationPrecursor operation

FIGURE 4 Schematic diagram of batch decoding

Step1: Determine the completion time of the forward
operations for all batch set of each job cluster and increments
by the completion time to obtain the sorted artifacts. If its
precursor operation is a parallel process-set, the entire parallel
process-set is the precursor operation.

Step2: Create a new batch and place the sorted jobs in the
batch in turn until the machining threshold for the batch
machine is met or the batch is assigned to each job. The start
time for each batch is selected as the maximum of the
operations contained in the batch and completion time of the
previous batch.

(3) Unordered Decoding: The processes in this stage
constitute an unordered process-set. The processing order can
be exchanged between the processes, but they cannot be
processed simultaneously. As shown in FIGURE 5, this study is
based on the principle of SBI. Final processing order of
unordered operations. The composition of the unordered

process Oi,5 and Oi,6 is considered as an example, where the

precursor process is Oi,4. The subsequent process is Oi,7, the

decoding steps are as follows:

Step1: Determine the processing time period of each unordered
process-set and its precursor operations in order regardless of
the sequence of operations (in FIGURE 5, the start time of Oi,6,

Te= Si3, and processing time period is [Si3, Ei3]);

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3044606, IEEE

Access

T＇4 T＇2 T＇1 T＇3

M

Oi,4

Oi,6

T3

Oi,5

Tb1 Te2（ Si3）

T1 T2

Ei3

Idle time of machine M

Time occupied by other processes

Te1 Tb2

FIGURE 5 Schematic diagram of unordered decoding

Step2: Determine the idle time segments of processing
machine M in Tb1~Te1 and Tb2~Te2, and obtain the T= {T1, …,

Tn} in order by the earliest idle time;

Step3: Select the backward operation in the unordered

operation to input its processing period of time [Si3,Ei3], until it
can be placed in a certain period of time. If there is no such
period of time, then maintain the original start time of Oi,6
unchanged;

Step4: Determine the start time of Oi,7. The start time is not

earlier than the maximum completion time of an unordered

process-set.
Considering the job information in TABLE Ⅱ as an example,
each job has seven processes, of which Oi,2 and Oi,3 are parallel
processes, processes Oi,4 are batch processes, and Oi,5 and Oi,6
are unordered processes, M1~M6 are single parallel machines,
and M7 is a batch machine. The processing threshold of the
batch machine is 4. Assuming the processing time of two
batches is Tbpk BkP W = + (if α=1, β=0.5, =10000BkW kg),

 312221123232313213311 13213111[| 22] 121112132| 31j mX X X= === .
The scheduling Gantt chart after decoding is shown in FIGURE 6.

FIGURE 6 Gantt chart of example

C. INITIALIZATION STRATEGY

The quality of the initial population affects the convergence
speed of the algorithm and quality of the final solution. This
work studies the multi-objective optimization problem; hence,
a population initialization strategy based on opposite learning
is proposed to improve the quality of the initial population. The
opposite learning mechanism is a machine learning method
proposed by Tizhoosh [38], where an algorithm can be
identified faster by considering the solution of the current
problem and distance of the opposite solution from the optimal
solution. The concept of opposite learning is introduced below:

(1) Opposition number

If ,X a b , then its inverse number * X a b X= + − .
(2) Opposition point

If the individual 1 2
, , nX X X X= , its opposite

individual * * *

1 2
, ,

n
X X X X

= , then

 * ,i i iX a b X X a b= + − ， .
In this study, all the SN (the number of honey sources)

population is first produced, and then the same amount opposite
population is produced based on initial population. The
opposite population is produced according to the order of the
forward population and machine number, e.g., a vector solution
of seven processes for three jobs [|]j mX X X=
=[312221123232313213311 132131112212111213231] ， Its
inverse solution m

** *[|]jXX X= =[132223321212131231133
121212313131111221311]. Finally, the two populations are
combined to sort the Pareto non-dominant The preceding SN is
selected as the initial population.

D. EMPLOYEE STAGE

In the employee bee stage, the precedence operation crossover
(POX) cross method was employed, as shown FIGURE 7, to
produce a new honey source. The parents of the cross are the
current honey source while the other are randomly selected in
the population. If the number selected is consistent with the
current honey source, then it is crossed with the current optimal
individual to produce two children.

1 2 4 1 3 4 2

1 3 2 3 2 4 1 4

3 1 2 4 3 3 4 2 1
1 1 1 2 3 1 1 2 2 1 1 2 1 1 1 1

2 2 1 1 2 1 1 3

Xj Xj

Xj

Xm Xm

Xm

1 1 2 3 2 4 3 4

1 2 1 3 2 1 2 3

Xj

Xm

P1

P2

C1

C2

FIGURE 7 Schematic diagram of POX crossover operator

Through the aforementioned cross-method used to produce
two new honey sources, we compare the two new sources of
honey to check their dominance over the original honey source,

and the source of raw honey is chosen as a new solution. If two
new sources of honey dominate the source of raw honey, one of
the new sources is randomly selected; else, the source of raw

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3044606, IEEE

Access

honey is not replaced.

E. ONLOOK STAGE

To find a better honey source, this stage first creates a new
honey source X* by inserting the current honey source X
(randomly producing two locations and inserting the post-
position job into the front position). Then, the DTNS
mechanism is introduced based on the fitness of the new honey

source. The method is as follows: first, the tournament method
is considered to select solution X. Then, an insert operation is
performed on X to produce a new solution X*. If the new
solution X* is dominated by X, then X is replaced; else, the four
neighborhood structures defined in this study are triggered in
turn until a better solution is identifies or after executing the
four neighborhood structures. The steps are shown in FIGURE 8.

Choose the solution X by

championships

Perform the Insert on the

individual X to get X*

X* dominates X

Perform the N1 Neighborhood

on the X to get X1

X1 dominates X

Perform the N2 Neighborhood

on the X1 to get X2

X2 dominates X

Perform the N3 Neighborhood

on the X2 to get X3

X3 dominates X

Perform the N4 Neighborhood

on the X3 to get X4

X4 dominates X

Replace the X

END

NO NO NO
NO NO

Yes Yes Yes Yes Yes

FIGURE 8 Schematic diagram of dynamic triggering neighborhood

In the conventional ABC algorithm, the adaptation function is
determined by the target value. This study mainly focuses on
the multi-objective optimization problem. Therefore, a concept
based on the Pareto dominance quantity is proposed to
determine the fitness function, i.e., to determine the number of
remaining solutions dominated by each solution, and finally, to
determine the following probability of following bees
according to the fitness function, as shown in the Eq. (13) and
Eq. (14):

()fit i dom i Foodnum=（） (13)

1

() ()
FoodNum

i

P i fit i fit i
=

= （） (14)

For the mathematical model constructed in this study, the
following four neighborhood searches are defined. After using
the following neighborhood structure to generate a new
solution, we should check the process to avoid illegal solutions.
Each neighborhood may generate more neighborhood solutions,
and the smallest Pareto non-dominated level is the new solution.
If there are multiple solutions, we randomly select one of them.

NS1: Batch process exchanges neighborhoods—Randomly
select several batch processes and reassign process positions in
ascending order of job weight;

NS2: Neighborhood based on critical path—Select the key
block with more than two operations in the critical path (do not
select if it does not exist), and insert the block head or block
end operation into a point that is not adjacent to it in the path;

NS3: Random full neighborhood—Randomly select three
procedures in a vector solution to generate all possible
neighborhood solutions after the entire arrangement of the
selected procedures;

NS4: Neighbor reselection of processing resources—
Randomly select several parallel processes or unordered
processes and redistribute the processing machines for the
selected processes.

F. SCOUTER STAGE

The scouter bee is responsible for searching for new honey
sources instead of the unknown honey source, as the quality of
the random searched honey source may be poor. Therefore, this
study performs an insertion operation and swap operation on
the optimal honey source [39][40] to replace the randomly
generated honey source.

G. DEVELOPED IABC+DTNS ALGORITHM

Based on the aforementioned theories and methods, the
developed IABC+DTNS algorithm in this study is as follows:

Step1: Set the number of iterations of the IABC-DTNS
algorithm Maxcycle, number of searches Limit, number of
honey sources SN, and size of the external archive set SN.
According to the concept of opposite learning, two populations
are produced, two populations are integrated, and Pareto is
sorted as non-dominant. The pre-SN is selected as the initial
population; it is placed in an external archive set with a Pareto
non-dominant rating of 1;

Step2: Generate a new solution based on the crossover method
in Section Ⅲ-D and perform Pareto non-dominated sorting on
the population;

Step3: Determine the following probability of each individual
according to the sorted population;

Step4: Perform neighborhood search for each individual
according to Section Ⅲ-E and perform Pareto non-dominated
sorting on the updated population;

Step5: Update the external file set, remove the solutions that
are dominated, and leave only the non-dominated solutions. If
the size of the external file set is reached, the solution with the
smaller crowding distance is replaced.

Step6: Reinitialize according to Section Ⅲ-F to reach the limit
nonupdated solution.

Step7: Determine whether the specified number of searches is
reached. If the output Pareto non-dominated solution set is not
reached, repeat Step2−Step6.

The flowchart of the IABC+DTNS algorithm proposed in this
study is shown in FIGURE 9 below:

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3044606, IEEE

Access

Start

 Update Population by POX operator

Set algorithm parameters and initialize population

Update external archive

Perform insert operation to generate new solution

Calculate the following probability of OnLook

New dominates original

Update external archive

Reach Limit not update

Perform insert and swap on the solution

Satisfy the
termination conditions

Output solution set

End

Employee

Stage

Using DTNS to Update new solution

OnLook

Stage

Scouter

Stage

N

Y

Y

Y

N

N

FIGURE 9 Flowchart of IABC+DTNS algorithm

H. COMPLEXITY OF IABC-DTNS

Algorithm complexity is an important index to evaluate
algorithm performance, which determines the efficiency of
algorithm execution and affects the solving ability of computer.
Suppose the problem size is D, the population size is SN, and
the maximum number of iterations is G. For each iteration of
the IABC-DTNS, the computational complexity is analyzed as
follows.

In the initial phase, the computational complexity of
generating SN individuals, generating SN opposite individuals,
evaluating the initial population, and performing Non-
dominant sort are O(SN*D), O(SN*D), O(SN*D) and O(8*SN2),
respectively. Then, the computational complexity of generating
SN individuals is O(3*SN*D+8*SN2). In employee stage, the
computational complexity of generating new individuals by
crossing, evaluating newly generated individuals, and selecting
better individuals are O(SN*D), O(2*SN*D), O(SN),
respectively. Then, the computational complexity of employee
stage is O(3*SN*D+SN). Similar to the employee stage, the
computational complexity of onlooker stage is
O(10*SN*D+5SN). In scouter stage, because of its less
executing times and simple operation, computational
complexity of this part is negligible. Besides, the computational

complexity of archive maintenance is O(SN+2*SN*logSN).

In summary, in G iteration, the computation complexity of
IABC-DTNS is shown as follows:
O(D,SN,G)=O(G)*O(8*SN2+2*SN*logSN+16*SN*D+7*SN)
≈G*O(SN2+SN*logSN+SN*D).

IV. EXPERIMENTS AND DISCUSSION

This study focuses on the HFS scheduling problems based on
three proposed process sets. There are no benchmark instances
to verify it. Therefore, a practical casting shop scheduling case
is employed to evaluate and verify the effectiveness of the
constructed model and proposed algorithm. The operating
environment of the algorithm is a 2.7 GHz CPU, 8 GB memory,
64-bit Win7 system computer; the programming environment
was MATLAB 2016.

A. CASE DESCRIPTION

For one production cycle in the foundry workshop, there are 10
different operations with 25 machines. The process division is
shown in TABLE Ⅲ. Tpp contains molding and coremaking
operation, Tbp contains smelting operation, Tup contains
external inspection and internal inspection operations. The raw
material cost and processing time of different jobs are shown in
TABLE Ⅳ. There are different processing times of one
operation processed on different machines in TABLE Ⅴ.

TABLE Ⅲ

PROCESS DIVISION

Operation

Pattern

Making
Molding Coremaking

Mold

Assembling
Smelting Shakeout Cleaning

External

inspection

Internal

inspection
Refinement

M [M1-M4] [M5-M7] [M7-M10] [M11, M12] [M24, M25] [M13, M14] [M14-M16] [M17-M20] [M19-M21] [M22-M25]

 Tpp Tbp Tup

TABLE Ⅳ

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3044606, IEEE

Access

RAW MATERIAL COST AND PROCESSING TIME OF DIFFERENT JOBS

Job

Raw

material

cost (¥)

Processing time (hour)

Oi,1 O i,2 O i,3 O i,4 O i,5 O i,6 O i,7 O i,8 O i,9 O i,10

Job1 3460 [11,3,7,18] [6,13,12] [11,3,7,18] [16,16] NaN [8,20] [12,16] [11,3,7,18] [16,12,10] [15,17]

Job2 2560 [4,12,13,16] [12,8,15] [4,12,13,16] [13,8] NaN [12,20] [4,12] [4,12,13,16] [18,9,5] [5,4]

Job3 3765 [8,10,5,11] [15,14,11] [8,10,5,11] [12,8] NaN [11,15] [17,17] [8,10,5,11] [18,7,18] [5,5]

Job4 4030 [14,12,6,16] [5,10,20] [14,12,6,16] [16,8] NaN [8,16] [10,17] [14,12,6,16] [18,7,3] [4,4]

Job5 4835 [16,6,9,6] [4,9,13] [16,6,9,6] [10,11] NaN [17,16] [6,19] [16,6,9,6] [17,13,17] [11,14]

Job6 2860 [20,4,11,13] [14,11,20] [20,4,11,13] [12,10] NaN [6,14] [9,4] [20,4,11,13] [16,20,9] [20,19]

Job7 1430 [11,14,6,18] [17,16,8] [11,14,6,18] [13,19] NaN [9,5] [17,5] [11,14,6,18] [7,13,20] [7,11]

Job8 6300 [11,16,4,4] [16,13,20] [11,16,4,4] [17,15] NaN [7,3] [6,7] [11,16,4,4] [17,20,12] [6,7]

Job9 907 [12,3,3,17] [20,17,20] [12,3,3,17] [10,18] NaN [9,6] [12,20] [12,3,3,17] [12,17,18] [13,15]

Job10 924 [16,3,20,16] [18,5,18] [16,3,20,16] [20,16] NaN [9,16] [18,4] [16,3,20,16] [10,12,19] [20,11]

Job11 3000 [5,11,7,9] [9,18,10] [5,11,7,9] [3,18] NaN [10,20] [7,14] [5,11,7,9] [4,4,4] [13,5]

Job12 2700 [6,4,11,3] [19,9,5] [6,4,11,3] [20,6] NaN [4,13] [8,9] [6,4,11,3] [15,8,15] [9,7]

Job13 1580 [13,10,18,10] [12,11,11] [13,10,18,10] [19,18] NaN [3,11] [14,8] [13,10,18,10] [10,16,6] [5,17]

Job14 3500 [16,9,10,5] [20,18,3] [16,9,10,5] [6,16] NaN [14,12] [7,3] [16,9,10,5] [20,20,12] [18,14]

Job15 2700 [13,6,6,4] [6,6,17] [13,6,6,4] [16,3] NaN [4,19] [3,3] [13,6,6,4] [10,11,5] [10,19]

NaN: Batch process and time determined by formula

TABLE Ⅴ

DCT AND SCT OF DIFFERENT MACHINES (¥)

Machine

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13

DCt 83 70 66 180 155 150 120 190 165 180 65 54 63

SCt 20 25 30 40 35 37 28 80 70 65 10 18 12

Machine

M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25

DCt 78 103 88 90 78 90 103 158 145 78 210 250

SCt 15 25 34 20 20 25 66 30 26 10 70 50

B. PERFORMANCE METRICS

(1) Mean ideal distance (MID) is measured by calculating the
distance between a non-dominant solution and an ideal solution.
This metric measures the convergence rate of the algorithm.
Lower the MID value, better is the quality and performance of
the algorithm.

(2) Spread of a non-dominated solution (SNS): This metric
measures the diversity of the solutions. A higher value of SNS
denotes a better diversity of solutions.

(3) Percentage of domination (POD): This metric measures
the ability of an algorithm to dominate the solutions of other
algorithms. A higher value of POD implies that the algorithm is
more effective than other algorithms.

Further detailed illustrations and formulations of these metrics

are found in References [41][42].
C. EFFECTIVENESS OF THE OPPOSITE LEARNING
STRATEGY

In this study, the initialization method based on opposite
learning is used to improve the quality of the initial population.
To verify the effectiveness of the initialization strategy, a
random initialization strategy (RI) and an initialization strategy
based on opposite learning (OL) are employed in the
initialization stage of the proposed IABC+DTNS algorithm.
The initialization parameters of the two algorithms are same;
the population number is SN=100, Limit=10, and algorithm
running time is 500 s. To avoid randomness, the two algorithms
run independently 30 times. TABLE Ⅵ lists the results of the
two different strategies.

TABLE Ⅵ

THE VALUE OF ALL METRICS OF IABC+DTNS BASED ON OL AND RI SEPARATELY

Algorithm MID SNS POD (%)

IABC+DTNS (OL) 5980.398 211597.32 0.93

IABC+DTNS (RI) 33749.94 211709.37 0.07

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3044606, IEEE

Access

TABLE Ⅵ shows that the MID and POD values based on OL

initialization are better than those of the RI, and the value of the
initialization method based on opposite learning is much less
than random initialization. Although the value of SNS based on
OL initialization is less than that of the RI, the differences
between them are too small to affect the diversity of feasible
solutions. Therefore, the proposed initialization method based
on OL is feasible and effective.

E. PARAMETER SETTINGS

To investigate the influence of different parameters on the
performance of the algorithm, an orthogonal experiment with a
scale of (33) was selected to optimize the algorithm parameters.
To avoid the randomness of the results, each algorithm ran
independently 30 times, and the average value was taken (Eq.
(15)) as the evaluation index. The experimental results are
shown in TABLE Ⅶ:

10 log()
MID

ARV
SNS

= − (15)

According to the orthogonal test table, the horizontal trend
chart of parameters, as shown in FIGURE 10, is drawn. From the
diagram, the performance of the algorithm is the best when SN
= 150, Limit = 10, Pm = 0.2.

F. COMPARISONS ANALYSIS

To verify the validity of the proposed algorithm (IABC-DTNS),
a comparison with other algorithms (NSGA-II [43], SPEA2
[44], MODVOA [45], HPSO [46], and IMOMA-II [47]) of the
multi-objective solution was conducted. Simultaneously, to
verify the validity of the DTNS, the IABC algorithm without
DTNS is tested; its parameters are consistent with those of the
IABC-DTNS. Each algorithm runs independently 30 times, and
the termination time is set to 1500 s. The values of MID, SNS,
and POD are shown in TABLE Ⅷ. It can be seen that the
IABC-DTNS algorithm achieved the best results of MID and
POD, which indicates that the convergence ability and
effectiveness of IABC-DTNS are better than those of the other
algorithms.

TABLE Ⅶ

THE ORTHOGONAL ARRAY AND ARV VALUES

Experiment number
parameter

ARV
SN Limit Pm

1 60 5 0.1 17.38

2 60 10 0.2 17.42

3 60 15 0.3 18.54

4 100 5 0.2 16.36

5 100 10 0.3 16.38

6 100 15 0.1 16.68

7 150 5 0.3 16.11

8 150 10 0.1 16.03

9 150 15 0.2 15.99

FIGURE 10 Fact level trend of IABC-DTNS

TABLE Ⅷ

THE VALUE OF ALL METRICS OBTAINED BY COMPARED ALGORITHMS

Algorithm MID SNS POD

IABC+DTNS 4824.158 209924.6 0.5000

NSGA-II 11749.24 209226.6 0.0714

SPEA2 80010 209334.7 0.1429

MODVOA 48984.33 209302.3 0.0714

HPSO 85565.2 210683 0.0714

IABC 7928.878 210023.7 0.0714

IMOMA-II 18057 211334.2 0.0714

The Pareto front scatterplot of the six compared algorithms is
shown in FIGURE 11. It can be seen that the proposed IABC-
DTNS algorithm proposed is similar to the real Pareto front.
The scheduling Gantt chart of the six compared algorithms’

non-dominated solution sets is shown in FIGURE 12. Each batch
in the FIGURE is processed on the batch process machine 24. The
maximum completion time and cost are listed in TABLE Ⅸ.
For the algorithms’ running time, the proposed algorithm
consumes a shorter running time than those of the other

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3044606, IEEE

Access

algorithms. Further, the cost value is smaller than those of the
other algorithms. In conclusion, the IABC-DTNS has better

performance than the other algorithms.

FIGURE 11 Pareto front scatter plot

FIGURE 12a IABC-DTNS

FIGURE 12b IABC

FIGURE 12c NSGA-II

FIGURE 12d HPSO

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3044606, IEEE

Access

FIGURE 12e MODVOA

FIGURE 12f SPEA2

FIGURE 12g IMOMA-II

FIGURE 12 Scheduling Gantt chart

TABLE Ⅸ

COMPLETION TIME AND COST OF COMPARED ALGORITHMS

Algorithm Completion time (h) Cost (￥)

IABC+DTNS 163.74 213068.39

NSGA-II 190.42 216450.56

SPEA2 248.28 283434.56

MODVOA 213.38 251417.53

HPSO 279.41 285906.98

IABC 173.58 216103.68

IMOMA-II 210.43 22175.52

V. CONCLUSIONS AND FUTURE WORK

In this study, an improved ABC algorithm based on the ABC
algorithm and DTNS was developed to solve the HFS
scheduling problem. Three process sets have been introduced
to address the multi-production procedure, such as parallel
operation, batch operation, and unordered operation. The three
process sets are parallel process set, batch process set, and
unorder process set. For the IABC algorithm, the operation-
based three-stage decoding method is designed, an effective
initialization strategy based on opposite learning is proposed to
improve the quality of the initial population, and four
neighborhood search strategies based on DTNS are introduced
to improve the local optimization ability of the algorithm
during the iteration process. Comparisons with other published
algorithms are conducted on a practical casting HFS scheduling
case. The analysis results show that the IABC-DTNS algorithm
has better exploitation capability, exploration capability, and
performance reliability in solving the HFS scheduling problem.

In consideration of further exploration, the following
conclusions can be drawn. (1) Further work can be conducted
on constructing an effective green scheduling mathematical

model of HFS, particularly in certain high-energy-consumption
flow manufacturing enterprises. (2) Constructing a dynamic
decision system with real-time scheduling data and developing
a corresponding prototype system is extremely important for
enterprise managers.

REFERENCES

[1] Noroozi A., Mokhtari H., Abadi I. N. K. Research on computational
intelligence algorithms with adaptive learning approach for scheduling
problems with batch processing machines [J]. Neurocomputing, 2013,
101:190-203.

[2] Mirsanei H. S., Zandieh M., Moayed M. J, et al. A simulated annealing
algorithm approach to hybrid flow shop scheduling with sequence-
dependent setup times [J]. Journal of Intelligent Manufacturing, 2011,
22(6):965-978.

[3] Ribas I., Leisten R., Framiñan J. M. Review and classification of hybrid
flow shop scheduling problems from a production system and a solutions
procedure perspective [J]. Computers & Operations Research, 2010,
37(8):1439-1454.

[4] Ruiz R., Vázquez-Rodríguez J. A. The hybrid flow shop scheduling
problem [J]. European Journal of Operational Research, 2010, 205(1):1-
18.

[5] Tan Y. Y., Huang Y. L., Liu SX. Two-stage mathematical programming
approach for steelmaking process scheduling under variable electricity
price [J]. Journal of Iron & Steel Research International, 2013, 20(7):1-
8.

[6] Teixeira R. F. Jr., Faria F. C., Pereira N. A. Binary integer programming
formulations for scheduling in market-driven foundries [J]. Computers
& Industrial Engineering, 2010, 59(3):425-435.

[7] Wang S. J., Liu M., Chu C. B. A branch-and-bound algorithm for two-
stage no-wait hybrid flow-shop scheduling [J]. International Journal of
Production Research, 2015, 53(4):1143-1167.

[8] Hidri L., Elkosantini S., Mabkhot M. M. Exact and heuristic procedures
for the two-center hybrid flow shop scheduling problem with
transportation times [J]. IEEE Access, 2018, 6:21788-21801.

[9] Nishi T., Isoya Y., Inuiguchi M. An integrated column generation and
Lagrangian relaxation for solving flow-shop problems to minimize the
total weighted tardiness [J]. International Journal of Innovative
Computing Information and Control, 2011, 7(11):6453-6471.

[10] Pang X. L., Xue H. R., Tseng M. L., et al. Hybrid flow shop scheduling

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3044606, IEEE

Access

problems using improved fireworks algorithm for permutation [J].
Applied Sciences-Basel, 2020. 10(3), 1174.

[11] Mirsanei H. S., Zandieh M., Moayed M. J., et al. A simulated annealing
algorithm approach to hybrid flow shop scheduling with sequence-
dependent setup times [J]. Journal of Intelligent Manufacturing, 2011,
22(6):965-978.

[12] Zhou B. H., Hu L. M., Zhong Z. Y. A hybrid differential evolution
algorithm with estimation of distribution algorithm for reentrant hybrid
flow shop scheduling problem [J]. Neural Computing & Applications,
2018, 30(1):193-209.

[13] Yu C. L., Semeraro Q., Matta A. A genetic algorithm for the hybrid flow
shop scheduling with unrelated machines and machine eligibility [J].
Computers & Operations Research, 2018, 100:211-229.

[14] Marichelvam M. K., Prabaharan T., Yang XS. Improved cuckoo search
algorithm for hybrid flow shop scheduling problems to minimize
makespan [J]. Applied Soft Computing, 2014, 19:93-101.

[15] Liu S. W., Pei J., Cheng H., et al. Two-stage hybrid flow shop scheduling
on parallel batching machines considering a job-dependent deteriorating
effect and non-identical job sizes [J]. Applied Soft Computing, 2019, 84,
UNSP105701.

[16] Choong F., Phon-Amnuaisuk S., Alias MY. Metaheuristic methods in
hybrid flow shop scheduling problem [J]. Expert Systems with
Applications, 2011, 38(9):10787-10793.

[17] Li X., Peng Z., Du B., et al. Hybrid artificial bee colony algorithm with
a rescheduling strategy for solving flexible job shop scheduling
problems [J]. Computers & Industrial Engineering, 2017, 113:10-26.

[18] Karaboga N. A new design method based on artificial bee colony
algorithm for digital IIR filters [J]. Journal of the Franklin Institute, 2009,
346(4):328–348.

[19] Karaboga D., Akay B. A comparative study of artificial bee colony
algorithm [J]. Applied Mathematics & Computation, 2009, 214(1):108-
132.

[20] Karaboga D., Basturk B. A powerful and efficient algorithm for
numerical function optimization: Artificial bee colony (ABC) algorithm
[J]. Journal of Global Optimization, 2007, 39(3):459-471.

[21] Karaboga D., Basturk B. On the performance of artificial bee colony
(ABC) algorithm [J]. Applied Soft Computing, 2008, 8(1):687-697.

[22] Yurtkuran A., Emel E. A discrete artificial bee colony algorithm for
single machine scheduling problems [J]. International Journal of
Production Research, 2016, 54(22):6860-6878.

[23] Zhang R., Chang P. C., Song S. J., et al. A multi-objective artificial bee
colony algorithm for parallel batch-processing machine scheduling in
fabric dyeing processes [J]. Knowledge-Based Systems, 2017, 116:114-
129.

[24] Gao K. Z., Suganthan P. N., Chua T. J., et al. A two-stage artificial bee
colony algorithm scheduling flexible job-shop scheduling problem with
new job insertion [J]. Expert Systems with Applications, 2015,
42(21):7652-7663.

[25] Huang Y. M., Lin J. C. A new bee colony optimization algorithm with
idle-time-based filtering scheme for open shop-scheduling problems [J].
Expert Systems with Applications, 2011, 38(5):5438-5447.

[26] Gong D. W., Han Y. Y., Sun J. Y. A novel hybrid multi-objective artificial
bee colony algorithm for blocking lot-streaming flow shop scheduling
problems [J]. Knowledge-Based Systems, 2018, 148:115-130.

[27] Lin S. W., Ying K. C., Huang C. Y. Multiprocessor task scheduling in
multistage hybrid flowshops: A hybrid artificial bee colony algorithm
with bi-directional planning [J]. Computers & Operations Research,
2013, 40(5):1186-1195.

[28] Cui Z., Gu X. S. An improved discrete artificial bee colony algorithm to
minimize the makespan on hybrid flow shop problems [J].
Neurocomputing, 2015, 148:248-259.

[29] Li J. Q., Pan Q. K., Duan P. Y. An improved artificial bee colony
algorithm for solving hybrid flexible flowshop with dynamic operation
skipping [J]. IEEE Transactions on Cybernetics, 2016, 46(6):1311-1324.

[30] Li J. Q., Song M. X., Wang L., et al. Hybrid artificial bee colony
algorithm for a parallel batching distributed flow-shop problem with
deteriorating jobs [J]. IEEE Transactions on Cybernetics, 2020,
50(6):2425-2439.

[31] Li J. Q., Pan Q. K. Solving the large-scale hybrid flow shop scheduling
problem with limited buffers by a hybrid artificial bee colony algorithm
[J]. Information Sciences, 2015, 316:487-502.

[32] Kheirandish O., Tavakkoli-Moghaddam R., Karimi-Nasab M. An
artificial bee colony algorithm for a two-stage hybrid flowshop
scheduling problem with multilevel product structures and requirement
operations [J]. International Journal of Computer Integrated
Manufacturing, 2015, 28(5):437-450.

[33] Pan Q. K., Wang L., Li J. Q., et al. A novel discrete artificial bee colony
algorithm for the hybrid flowshop scheduling problem with makespan
minimization [J]. OMEGA-International Journal of Management
Science, 2014, 45:42-56.

[34] Peng K. K., Pan Q. K., Gao L., et al. An Improved Artificial Bee Colony
algorithm for real-world hybrid flowshop rescheduling in Steelmaking-
refining-Continuous Casting process [J]. Computers & Industrial

Engineering, 2018, 122:235-250.
[35] Li J. Q., Duan P. Y., Sang H. Y., et al. An efficient optimization algorithm

for resource-constrained steelmaking scheduling problems [J]. IEEE
Access, 2018, 6:33883-33894.

[36] Zhang B., Pan Q. K., Gao L., et al. A multiobjective evolutionary
algorithm based on decomposition for hybrid flowshop green scheduling
problem [J]. Computers & Industrial Engineering, 2019, 136:325-344.

[37] Gerbner D., Keszegh B., Palmer C., et al. Topological orderings of
weighted directed acyclic graphs [J]. Information Processing Letters,
2016, 116(9):564-568.

[38] Mahdavi S., Rahnamayan S., Deb K. Opposition based learning: A
literature review [J]. Swarm & Evolutionary Computation, 2018, 39:1-
23.

[39] Li J. Q., Bai S. C., Duan P. Y., et al. An improved artificial bee colony
algorithm for addressing distributed flow shop with distance coefficient
in a prefabricated system [J]. International Journal of Production
Research, 2019, 57(22):6922-6942.

[40] Niu B., Chen Y. R., Tan L. J., et al. Discrete artificial bee colony
algorithm for low-carbon traveling salesman problem [J]. Journal of
Computational & Theoretical Nanoscience, 2012, 9(10):1766-1771.

[41] Fathollahi-Fard AM., Hajiaghaei-Keshteli M., Tavakkoli-Moghaddam R.
The social engineering optimizer (SEO) [J]. Engineering Applications of
Artificial Intelligence, 2018, 72:267-293.

[42] Govindan R. B., Massaro A. N., Al-Shargabi T., et al. Detrended
fluctuation analysis of non-stationary cardiac beat-to-beat interval of
sick infants [J]. EPL, 2014, 108(4), 40005.

[43] Han H. Z., Yu R. T., Li B. X., et al. Multi-objective optimization of
corrugated tube inserted with multi-channel twisted tape using RSM and
NSGA-II [J]. Applied Thermal Engineering, 2019, 159, UNSP 113731.

[44] Amin-Tahmasbi H., Tavakkoli-Moghaddam R. Solving a bi-objective
flowshop scheduling problem by a Multi-objective Immune System and
comparing with SPEA2+and SPGA [J]. Advances in Engineering
Software, 2011, 42(10):772-779.

[45] Lu C., Li X. Y., Gao L., et al. An effective multi-objective discrete virus
optimization algorithm for flexible job-shop scheduling problem with
controllable processing times [J]. Computers & Industrial Engineering,
2017, 104:156-174.

[46] Mason K., Duggan J., Howley E. Multi-objective dynamic economic
emission dispatch using particle swarm optimisation variants [J].
Neurocomputing, 2017, 270:188-197.

[47] Sun J., Miao Z., Gong D., et al. Interval multiobjective optimization with
memetic algorithms[J]. IEEE Transactions on Cybernetics, 2019, 99:1-
14.

XIXING LI received the M.S. degree (2014) and Ph.D.
degree (2017) in Mechanical Engineering from Wuhan
University of Technology, Wuhan, China.
 He is currently a lecturer with the School of
Mechanical Engineering, Hubei University of
Technology, Wuhan, China. He has published about 10
journal papers. His current research interests include
production planning & scheduling, manufacturing
informatization and optimization modeling.

HONGTAO TANG received the M.S. degree (2008) in
Mechanical Engineering from Wuhan University Of
Technology, Wuhan, China, and Ph.D degree (2014) in
Mechanical Engineering from Huazhong University of
Science and Technology, Wuhan, China.

He is currently an associate professor of Industrial
Engineering in Wuhan University of Technology. He
has published more than 50 academic papers. His
current research interests include Intelligent
manufacturing system and complex system
optimization.

ZHIPENG YANG received the B.Sc. degree (2018) in
Mechanical Engineering Wuhan University of
technology, where he is currently pursuing the M.S.
degree.

He has published two papers in related journals, and
his current research interests include Intelligent
manufacturing system.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3044606, IEEE

Access

RUI WU received the B.Sc. degree from Wuhan
University of Technology, Wuhan, China, in 2012, and
Ph.D degree (2019) in Mechanical Engineering from
Wuhan University of Technology, Wuhan, China.

He is currently a lecturer with the School of
Mechanical Engineering, Hubei University of
Technology, Wuhan, China. His current research
interests include manufacturing scheduling and
intelligent optimization algorithms.

YABO LUO received the M.S. degree (1994) in
Petroleum Engineering from Yangtze University,
Jingzhou, China, and Ph.D degree (2001) in
Mechanical Engineering from Wuhan University of
Technology, Wuhan, China.

He is currently a professor of Industrial Engineering
in Wuhan University of Technology. He has published
three academic works or college textbooks, and more
than 70 academic papers. His current research interests
include complex system optimization and bionic
algorithm developing.

