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ABSTRACT Considering that process planning and production scheduling are independent of each other in a 
hybrid flow-shop, this study categorizes the process route into parallel process-set, batch set and unordered 
process-set, and builds a multi-objective optimization model to minimize the maximum completion time and the 
minimum processing cost. An improved artificial bee colony algorithm has been developed to solve the model. A 
segmented decoding method based on the insertion principle and the release time of the predecessor process is 
proposed to effectively use the idle time of the machine. A dynamic triggering neighborhood mechanism is 
introduced to enhance the local searchability of the algorithm. Finally, the feasibility and effectiveness of this 
algorithm to solve such problems are verified via simulation experiments. 

INDEX TERMS Process planning, production scheduling, hybrid flow-shop, improved artificial bee colony 
algorithm 
 

I. INTRODUCTION 

An appropriate feasible workshop scheduling plan is key to 
transform and upgrade the manufacturing industry and improve 
manufacturing efficiency, particularly in process industries, 
such as chemical processes, textiles, metallurgical, printed 
circuit boards, and automobile manufacturing enterprises[1]. 
Generally, a hybrid flow-shop (HF) consists of multiple 
processing stages. There are strict order constraints between 
different processing stages, with multiple parallel machines in 
at least one processing stage. The research objective of HF 
scheduling (HFS) is to strategize a feasible and effective 
arrangement of a processing sequence of different 
manufacturing tasks to satisfy the goals pursued by managers, 
such as the equipment load balance in each processing stage, 
minimum total flow time, and minimum maximum completion 
time. This has been proven to be an NP-hard problem[2]. Most 
studies consider certain assumptions (e.g., ignoring the setup 
times of operations, non-sequence-dependent) to simplify the 
construction model[3]. However, in a real-time production 
process, there are different production constraints (e.g., one 
stage of the machine is a batch machine instead of a single 
parallel machine, or the processing sequence can be 
interchanged) and different dynamic events (e.g., new 
manufacturing tasks or machine failure) that increases the 
corresponding processing time to delay the total completion 
time of the original scheduling scheme.  

Recently, the methods to solve HFS have been generally 
divided into two categories: accurate method and approximate 
method[4]. Accurate methods include mathematical 
programming method [5][6], branch and bound method [7][8] 
and Lagrange Relaxation algorithm [9], which can solve small 
scale simple problems. However, the solution space of practical 
problems is generally large and its calculation time is 
unacceptable. The approximate method is an experience-based 
solution algorithm, generally a range of solving time, space, 

and feasible solutions has been given. The solution speed is 
relatively fast, and the result is a feasible approximate optimal 
solution. The method mainly includes a heuristic approach and 
hybrid intelligence optimization algorithm. For the integrated 
optimization model of permutation flow shop scheduling 
problems with HFS, Pang et al. developed an improved 
fireworks algorithm to minimize the makespan [10]. Mirsanei 
et al. proposed a novel simulated annealing algorithm to 
produce a reasonable manufacturing schedule within an 
acceptable computational time for solving the HFS with 
sequence-dependent setup times [11]. Zhou et al. proposed a 
hybrid different algorithm with estimation of distribution 
algorithm to solve a reentrant HFS, where inspection and repair 
operations are carried out as soon as a layer has completed 
fabrication [12]. Yu et al. presented a genetic algorithm 
incorporating a new decoding method to solve the HFS with 
unrelated machines and machine eligibility to minimize the 
total tardiness [13]. Marichelvam et al. developed a cuckoo 
search metaheuristic algorithm to minimize the makespan for 
the multistage HFS scheduling problem [14]. Liu et al. 
combined the estimation of distribution algorithm and 
differential evolution algorithm to address a specialized two-
stage HFS scheduling problem with parallel batching machines; 
a job-dependent deteriorating effect and non-identical job sizes 
were considered simultaneously [15]. Choong et al. combined 
particle swarm optimization with simulated annealing and tabu 
search, respectively, which were applied to the HFS scheduling 
problem [16].  

The artificial bee colony (ABC) algorithm is a meta-
heuristic algorithm based on relative populations. It was first 
introduced by Karaboga to solve multi-variable, multi-modal 
continuous functions [17]. It was inspired by the behavior of 
bees collecting honey, it has fast convergence speed and strong 
optimization ability when compared with other metaheuristic 
algorithms [18][19][20][21]. Therefore, further intensive 
studies on the application of ABC algorithm have been 
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conducted in the research field of job scheduling, such as single 
machine scheduling [22], multi-machine parallel scheduling 
[23], flexible job shop scheduling[24], open shop scheduling 
[25], flow shop scheduling [26]. 

The ABC algorithm has received much attention for its 
application in the HFS scheduling problem. Lin et al. developed 
a hybrid ABC algorithm with bi-directional planning to 
minimize the makespan of scheduling multistage HFS with 
multiprocessor tasks. Computational evaluations of two well-
known benchmark problem sets supported the proposed hybrid 
ABC algorithm with high performance against the best-so-far 
algorithm [27]. Cui et al. proposed an improved discrete ABC 
algorithm that combined a novel differential evolution and 
modified variable neighborhood search to minimize the 
makespan of HFS [28]. Li et al. proposed an improved discrete 
ABC algorithm to solve the hybrid flexible flowshop 
scheduling problem with dynamic operation skipping features 
in molten iron systems. A dynamic encoding mechanism, 
flexible decoding strategy, and right-shift strategy were 
proposed [29]. Li et al. proposed a hybrid ABC algorithm to 
solve a parallel batching-distributed flow-shop problem with 
deteriorating jobs. Two types of problem-specific heuristics 
were introduced, and five types of local search operators were 
designed [30]. To solve the large-scale HFS scheduling 
problem with limited buffers, Li et al. combined the ABC 
algorithm with tabu search to minimize the maximum 
completion time [31]. Considering a two-stage HFS with 
multilevel product structures and requirement operations, 
Kheirandish et al. developed an ABC algorithm along with a 
genetic algorithm to obtain near-optimal solutions to minimize 

the maximum completion time in reasonable run-times [32]. 
Pan et al. developed an effective discrete ABC algorithm with 
a hybrid representation and combination of forward decoding 
and backward decoding methods to solve the HFS scheduling 
problem in order to minimize the makespan [33].  

Generally, several unexpected disruptions occur in realistic 
production systems. Peng et al. studied a real-world HFS 
rescheduling problem in which machine breakdown was 
considered as the disruption. They developed an improved 
ABC algorithm with a population initialization heuristic and 
worst solution replacement strategy [34]. Li et al. addressed the 
steelmaking scheduling problem with continuous casting 
constraint and resource constraints simultaneously. They 
proposed several heuristics and developed a discrete ABC 
algorithm with a two-phased-based encoding mechanism and 
local search procedure [35]. To save energy in sustainable 
manufacturing, Zhang et al. studied an HFS green scheduling 
problem with variable machine processing speeds to minimize 
the mankespan and total energy consumption, and developed a 
decomposition-based multiobjective discrete ABC algorithm 
[36]. Generally, a conventional foundry manufacturing process 
(as shown in FIGURE 1) demonstrates partial sequence flexibility 
and batch processing machines. Furthermore, several other 
complicated characteristics are as follows: (1) different 
processes of the same job can be processed at the same time 
(e.g., modeling and core-making stage), (2) the same process of 
different jobs can be processed in batches (e.g., melting stage), 
and (3) the processing order can be exchanged between 
different processes of the same job (e.g., detection phase).  

 
FIGURE 1 Conventional foundry manufacturing process 

Therefore, our research aims to propose an integrated 
optimization approach for HFS scheduling based on the 
process-set division scheme to support production process 
tracking and monitoring. The main contributions of our study 
are as follows: (1) a feasible division method of process-set is 
proposed to satisfy the requirement of integrating the process 
route with scheduling, (2) an HFS scheduling model with batch 
processors in the middle stage was considered, (3) an 
initialization method based on opposite learning was proposed, 
and (4) four effective neighborhood search strategies were 
formulated to improve the optimization ability of the solving 
algorithm. This paper is organized as follows: problem 
description and mathematical modeling are presented in 
Section 2, an improved ABC algorithm with dynamic trigger 
neighborhood search (DTNS) is developed in Section 3, a case 
analysis is demonstrated in Section 4, and conclusions and 
scope for future work are provided in Section 5. 

II. PROBLEM DESCRIPTION AND MATHEMATICAL 
MODELING 

A. Processes-set definition 

Assuming n jobs, and each job Ji has m operations, and that its 
technological route is {Oi,1,Oi,2 …,Oi,j …,Oi,k …,Oi,n…,Oi,m}, 
there are many different process-set in the process route. 
However, there is only one process-set for each job. As shown 
in FIGURE 2, based on the directed acyclic graph [37], this work 
studies the phenomenon where the process route contains three 
special process-set: parallel process-set (Tpp), batch process-set 
(Tbp), and unordered process-set (Tup). The difference between 
Tpp and Tup is whether the internal processes can be processed 
at the same time. There is no processing order requirement for 
the processes in Tpp and Tup. 
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FIGURE 2 Process roadmap

(1) Parallel process-set Tpp: Tppi=< ,
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>, i.e., the processes 

Oi,j and O i,j+1 of the job Ji in the process route can be 
processed by different parallel machines simultaneously; 
Oi,j and O i,j+1 are called parallel processes. As shown in 
FIGURE 2, the parallel processes O1,2 and O1,3 form a parallel 
process-set Tpp1. 

(2) Batch process-set Tbp: Tbpn=<<J1,k,…,Jn,k >n>, i.e., the k 
process of n jobs in the batch stage can be processed in 
batches on a batch processing machine. The corresponding 
process is called batch process. As shown in FIGURE 2, the 
batch process O1,5 and O2,5 form the batch process-set Tbp1, 
and O3,5 form the batch process-set Tbp2. 

(3) Unordered process-set Tup: Tupi=<Oi,n , O i,n+1 >, i.e., the 
process Oi,n and O i,n+1 of the job Ji in the process route have 
no processing order requirements, but they cannot be 
simultaneously processed, Oi,n and O i,n+1 are called 
unorder processes. As shown in FIGURE 2, the unordered 
processes O1,6 and O1,7 form the unordered process-set Tup1. 

B. Problem description  

This work studies the HFS scheduling problem with batch 
processors and flexibly sequenced processes. Each job passes 
through multiple processing stages, in sequence, of a same 
process route; each stage has at least one parallel machine. This 
problem contains three special processing stages: parallel 
processing, batch processing, and unorder processing stages. 
The remaining stages are non-parallel single processing stages. 
In the parallel processing and unorder processing stages, we 
should determine the processing sequence. In the batch 
processing stage, we should determine the grouping and 
batching of a job. In the grouping phase, the batch processor is 
divided into several job clusters based on the job selection first, 
and then further decomposed according to the threshold method. 

Therefore, the described problem can be divided into three sub-
problems: (1) determining each job’s process route, (2) 
assigning a processing machine to each job, and (3) 
determining each job’s status on the machine processing order. 

Moreover, the following assumptions are considered for the 
problem addressed in this study: 
(1) All machines are available at the initial time 0. 
(2) Each job has strict processing order constraints between 

the other processes except the parallel process set and 
unordered process set. 

(3) The processing time of each parallel process set and 
unordered process set should be processed between its 
predecessor and subsequent processes. 

(4) Except for the batch process set, the remaining operations 
are processed on a single parallel machine. 

(5) The batch processing machine has a processing threshold, 
and the weight of each batch of jobs cannot exceed the 
processing threshold of the batch processing machine. 

(6) The start time of the batch process set is not earlier than 
the maximum completion time of all its predecessor 
processes and the previous batch process set. 

(7) The completion time of the batch process set should be 
earlier than the start time of all subsequent processes. 

(8) The processing time of the batch processing stage is 
related to the weight of the batch of jobs, and the 
processing time of the jobs in the remaining stages is fixed. 

(9) There is no influence on each other. 
(10) Each job can belong to only one processing batch. 
(11) Each machine will run until all jobs pertaining to the 

machine are processed and stopped. 

C. Mathematical modeling 

(1) Notations 

The notations used throughout this paper are list in TABLE I. 
TABLE I 

NOTATIONS 

Notation Signification Notation Signification 

n number of jobs Eij completion time of Oi,j 

m number of operations in each job Pijt processing time of Oij on Mt 

b number of batches RCi raw material cost of Ji 

l number of machines SCt static waiting cost of Mt 

Oi,j jth operation in Ji DCt dynamic processing cost of Mt 

iW  weight of the Ji 
s
tT  static waiting time of Mt 

BkW  weight of batch Bk 
d
tT  dynamic processing time of Mt 

Mt machine set Sij start time of Oi,j 

Q  threshold of batch machines STpi start time of subsequent Tppi 

ETpi completion time of precursor Tppi STbpi start time of Tbpi 

ETbi completion time of all precursor Tbpi α fixed processing time 

PTbpk processing time of batch Bk β coefficient of weight 
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(2) Decision variables 

,1,   is processed in 

0, else

i j t

ijt

O M
X



  

 

,1,   is belong to

0, else

i j k

ijk

O B
Y





  
 

(3) Objectives 

The objective of this study is to minimize the makespan and 
cost. The mathematical model is described according to the 
aforementioned assumptions and notations. 

Makespan: The completion time is the longest time 
consumed after the completion of all processes, expressed as f1, 
as shown below. 

1 max( )m 1 1in ijf E i n j m=     ，        (1) 
Production cost: The completion cost is determined in two 

parts: material and processing costs. Further, the processing 
cost includes two parts: standby state processing cost and 
working state processing cost, denoted by f2, as shown below. 

1 1

2 ( )min
n m

s d
i t tt t

i t

RC SC DCTf T
= =

= +  +    (2) 

(4) Constraints 

,1 ( )Tpi ij i j pp dpE n O TS i T     ，   (3) 
,1 ( )ij ij Tp pi i j p dpi n O T TS P S+      ，   (4) 

, ( ),   i j pp dij ijt ijt ij pS X P E t MO T T +     (5) 

1

1 ,1
m

ijt

j

X n ti M
=

 =     (6) 

,

1

1 1
n

ijk i j

i

bpY k b O T
=

=     ，   (7) 

,1 1 , bBk ijk i j piW Y W i n k b O T=       ，   (8) 
1BkW Q k b      (9) 

1Tbpk BkW kP b = +        (10) 

kax 1m Tbk TbpE S k b   ）（    (11) 
Constraints (3) and (4) indicate that the processing time of the 
parallel process set and unordered process set is between their 
predecessor and successor processes. Constraint (5) indicates 
that except the parallel process and unordered process sets, 
there are strict processing order constraints. Constraint (6) 
indicates that only one processing machine can be selected for 
each process of the job. Constraint (7) indicates that each job 
can only belong to one processing batch. Constraint (8) 
indicates each batch total weight is the sum of the weights of 
all the jobs in the batch. Constraint (9) indicates that the weight 
of each batch cannot exceed the processing threshold of the 
batch machine. Constraint (10) indicates that the processing 

time of each batch set depends on the batch weight and basic 
melting time constant. Constraint (11) indicates that the start 
time of each batch process set is earlier than the completion 
time of all its predecessor processes. 

Ⅲ. SOLUTION REPRESENTATION 

The ABC algorithm has the advantages of few parameters and 
strong versatility. It has been widely applied in solving 
scheduling problems. Three types of bees are defined for the 
original ABC algorithm: employee, onlook, and scouter bees. 
The number of employee and onlook bees are equal. While the 
employee bees correspond to the honey source (the solution 
number of the problem), the richness of the honey source 
represents the adaptation of the solution degree. 

Employee stage: Employee bees are responsible for finding 
new honey sources. If the quality of the new honey sources is 
better than the original, the latter will be replaced and the new 
honey source information will be shared with the onlook bees. 

Onlook stage: Onlook bees work by sharing the honey 
source information with employee bees and deciding whether 
to follow the employee bee to collect honey through roulette. 
Scouter stage: Scouter bees update the honey source by 
updating the unimproved honey source several times. 

The HFS problem based on the process set studied here is a 
multi-objective optimization problem. Therefore, this study 
first proposes an improved artificial bee colony (IABC) based 
on process coding. Then, the DTNS is introduced to improve 
the local optimization ability of the algorithm during the 
iteration process. The details are as follows. 

A. ENCODING 

Coding is used to solve problems represented by a set of 
vectors. A feasible coding method can increase the speed of 
convergence of an algorithm to easily find an optimal 
solution of a given problem. This study employs the process-
machine-based coding method to generate the job 
scheduling sequence. Each group of vectors

 |j mX X X= ,which represents an effective solution to the 
problem, where Xj represents the job. The appears order 
represents the process sequence of the job, Xm represents the 

machine sequence of the optional machine set 

corresponding to the process, and not the machine number. 
For instance, considering a set of vectors encoding in 
TABLE Ⅱ, [ | ]j mX X X=  = [312221123232313213311   
132131112212111213231], the first position of Xj represents 
O3,1 of job 3, and the fourth position represents O2,2 of job 2. 
The corresponding fourth position in Xm represents 
processing on the machine M2 of the optional machine set 
{M2, M3, M4}. 

TABLE Ⅱ 
WORKPIECE MACHINING INFORMATION TABLE 

Job Weight Operation 
Processing time 

M1 M2 M3 M4 M5 M6 M7 

J1 2 O1,1 6 7 9 - - - - 

O1,2（Tpp） - 6 7 11 - - - 

O1,3（Tpp） - 4 7 9 - - - 

O1,4（Tbp） - - - - - - NaN 

O1,5（Tup） - - 5 6 7 - - 

O1,6（Tup） - - 4 8 9 - - 
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O1,7 - - - 3 8 6 - 

J 2 3 O2,1 8 7 - - - - - 

O2,2（Tpp） - 6 5 8 - - - 

O2,3（Tpp） - 8 5 6 - - - 

O2,4（Tbp） - - - - - - NaN 

O2,5（Tup） - 7 - 8 - - - 

O2,6（Tup） - 7 9 11 - - - 

O2,7（Tup） - - - 8 8 6 - 

J 3 1 O3,1 6 8 - - - - - 

O3,2（Tpp） - 9 10 7 - - - 

O3,3（Tpp）） 6 9 4  - - - 

O3,4（Tbp） - - - - - - NaN 

O3,5（Tup） - 8 - 9 - - - 

O3,6（Tup） - 6 7 4 - - - 

O3,7 - - - - 8 9 - 

⚫ NaN: Representative processing time is variable 

B. DECODING 

Decoding is a practical solution to a set of vector mapping 
problems. Because the scheduling problem studied in this work 
has three special processing stages, different corresponding 
decoding methods are employed. 

(1) Parallel Decoding: The jobs in this stage form a set of 
parallel operations and can be machined simultaneously. The 
final machining order of parallel operations is determined 
based on the principle of Sort Before Insert (SBI), as shown in 
FIGURE 3. Considering Oi,2 and Oi,3 of the parallel process-set as 
an example, the front operation is Oi,1 and follow-up operation 
is Oi,4, decoding steps as follows: 

T＇4 T＇2 T＇1 T＇3 

M

Oi,1

Idle time of machine M

Oi,3

T3

Oi,2

Tb Te（   Si3）

T1 T2

Time occupied by other processes

Ei3

 
FIGURE 3 Schematic diagram of parallel decoding 

Step1: Determine the processing time period of each parallel 
process-set and its front operations in order regardless of the 
parallel processes. (In FIGURE 3, parallel process Oi,3 ，start time 

Te= Si3, and processing time period is [Si3, Ei3]);  

Step2: Determine the idle time segment of processing 
machine M from Tb−Te, and sort it in the order of the earliest 
idle time to obtain T={ T1,… Tn}; 

Step3: Select the later process in the parallel process to the 

processing time period [Si3, Ei3] and insert each of them in turn 

with Tj until it can be put into a certain period of time. If there 

is no such period of time, maintain the original start-up time of 

Oi,3 unchanged; 

Step4: Determine the start time of Oi,4. The start time is not 

earlier than the maximum finish time of the parallel process-set. 

 (2) Batch Decoding: The processes in this stage are batch 
operations; different jobs can be processed in batches. This job 
first divides the job cluster based on the number of batch 
machines (each job cluster is processed on only one batch), and 
then groups batches according to the threshold method in each 

job cluster. The processing time of each batch machine is 
determined according to Constraint (10). Each job cluster, as 
shown in FIGURE 4, is grouped using the rules of Early Release 
Time Fit, assuming that there are a total of n jobs, where Oi,4 
can be processed on the batch machine. The decoding steps are 
as follows: 

M

O1,3

O3,4  O1,4 

O2,3

O3,3

O2,4

O3,5

O1,5

O2,5

Subsequent operationPrecursor operation
 

FIGURE 4 Schematic diagram of batch decoding 

Step1: Determine the completion time of the forward 
operations for all batch set of each job cluster and increments 
by the completion time to obtain the sorted artifacts. If its 
precursor operation is a parallel process-set, the entire parallel 
process-set is the precursor operation. 

Step2: Create a new batch and place the sorted jobs in the 
batch in turn until the machining threshold for the batch 
machine is met or the batch is assigned to each job. The start 
time for each batch is selected as the maximum of the 
operations contained in the batch and completion time of the 
previous batch. 

(3) Unordered Decoding: The processes in this stage 
constitute an unordered process-set. The processing order can 
be exchanged between the processes, but they cannot be 
processed simultaneously. As shown in FIGURE 5, this study is 
based on the principle of SBI. Final processing order of 
unordered operations. The composition of the unordered 

process Oi,5 and Oi,6 is considered as an example, where the 

precursor process is Oi,4. The subsequent process is Oi,7, the 

decoding steps are as follows: 

Step1: Determine the processing time period of each unordered 
process-set and its precursor operations in order regardless of 
the sequence of operations (in FIGURE 5, the start time of Oi,6, 

Te= Si3, and processing time period is [Si3, Ei3]);  



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3044606, IEEE

Access

 

T＇4 T＇2 T＇1 T＇3 

M

Oi,4

Oi,6

T3

Oi,5

Tb1 Te2（   Si3）

T1 T2

Ei3

Idle time of machine M

Time occupied by other processes

Te1 Tb2

 

FIGURE 5 Schematic diagram of unordered decoding 

Step2: Determine the idle time segments of processing 
machine M in Tb1~Te1 and Tb2~Te2, and obtain the T= {T1, …, 

Tn} in order by the earliest idle time; 

Step3: Select the backward operation in the unordered 

operation to input its processing period of time [Si3,Ei3], until it 
can be placed in a certain period of time. If there is no such 
period of time, then maintain the original start time of Oi,6 
unchanged; 

Step4: Determine the start time of Oi,7. The start time is not 

earlier than the maximum completion time of an unordered 

process-set. 
Considering the job information in TABLE Ⅱ as an example, 
each job has seven processes, of which Oi,2 and Oi,3 are parallel 
processes, processes Oi,4 are batch processes, and Oi,5 and Oi,6 
are unordered processes, M1~M6 are single parallel machines, 
and M7 is a batch machine. The processing threshold of the 
batch machine is 4. Assuming the processing time of two 
batches is Tbpk BkP W = +   (if α=1, β=0.5, =10000BkW kg  ),

 312221123232313213311 13213111[ | 22] 121112132|  31j mX X X= ===  .
The scheduling Gantt chart after decoding is shown in FIGURE 6.  

 
FIGURE 6 Gantt chart of example 

C. INITIALIZATION STRATEGY 

The quality of the initial population affects the convergence 
speed of the algorithm and quality of the final solution. This 
work studies the multi-objective optimization problem; hence, 
a population initialization strategy based on opposite learning 
is proposed to improve the quality of the initial population. The 
opposite learning mechanism is a machine learning method 
proposed by Tizhoosh [38], where an algorithm can be 
identified faster by considering the solution of the current 
problem and distance of the opposite solution from the optimal 
solution. The concept of opposite learning is introduced below: 

(1) Opposition number 

If  ,X a b , then its inverse number *  X a b X= + − . 
(2) Opposition point 

If the individual  1 2
, , nX X X X=  , its opposite 

individual  * * *

1 2
, ,

n
X X X X


=  , then

 *   ,i i iX a b X X a b= + − ， . 
In this study, all the SN (the number of honey sources) 

population is first produced, and then the same amount opposite 
population is produced based on initial population. The 
opposite population is produced according to the order of the 
forward population and machine number, e.g., a vector solution 
of seven processes for three jobs [ | ]j mX X X=
=[312221123232313213311 132131112212111213231] ， Its 
inverse solution m

** *[ | ]jXX X=  =[132223321212131231133   
121212313131111221311]. Finally, the two populations are 
combined to sort the Pareto non-dominant The preceding SN is 
selected as the initial population. 

D. EMPLOYEE STAGE 

In the employee bee stage, the precedence operation crossover 
(POX) cross method was employed, as shown FIGURE 7, to 
produce a new honey source. The parents of the cross are the 
current honey source while the other are randomly selected in 
the population. If the number selected is consistent with the 
current honey source, then it is crossed with the current optimal 
individual to produce two children. 

1 2 4 1 3 4 2

1 3 2 3 2 4 1 4

3 1 2 4 3 3 4 2 1
1 1 1 2 3 1 1 2 2 1 1 2 1 1 1 1

2 2 1 1 2 1 1 3

Xj Xj

Xj

Xm Xm

Xm

1 1 2 3 2 4 3 4

1 2 1 3 2 1 2 3

Xj

Xm

P1

P2

C1

C2

 

FIGURE 7 Schematic diagram of POX crossover operator 

Through the aforementioned cross-method used to produce 
two new honey sources, we compare the two new sources of 
honey to check their dominance over the original honey source, 

and the source of raw honey is chosen as a new solution. If two 
new sources of honey dominate the source of raw honey, one of 
the new sources is randomly selected; else, the source of raw 
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honey is not replaced. 

E. ONLOOK STAGE 

To find a better honey source, this stage first creates a new 
honey source X* by inserting the current honey source X 
(randomly producing two locations and inserting the post-
position job into the front position). Then, the DTNS 
mechanism is introduced based on the fitness of the new honey 

source. The method is as follows: first, the tournament method 
is considered to select solution X. Then, an insert operation is 
performed on X to produce a new solution X*. If the new 
solution X* is dominated by X, then X is replaced; else, the four 
neighborhood structures defined in this study are triggered in 
turn until a better solution is identifies or after executing the 
four neighborhood structures. The steps are shown in FIGURE 8. 

    

Choose the solution X by 

championships

Perform the Insert on the 

individual X to get X*

X* dominates  X

Perform the N1 Neighborhood 

on the  X to get X1

X1 dominates  X

Perform the N2 Neighborhood 

on the  X1 to get X2

X2 dominates  X

Perform the N3 Neighborhood 

on the  X2 to get X3

X3 dominates  X

Perform the N4 Neighborhood 

on the  X3 to get X4

X4 dominates  X

Replace the X

END

NO NO NO
NO NO

Yes Yes Yes Yes Yes

 
FIGURE 8 Schematic diagram of dynamic triggering neighborhood 

In the conventional ABC algorithm, the adaptation function is 
determined by the target value. This study mainly focuses on 
the multi-objective optimization problem. Therefore, a concept 
based on the Pareto dominance quantity is proposed to 
determine the fitness function, i.e., to determine the number of 
remaining solutions dominated by each solution, and finally, to 
determine the following probability of following bees 
according to the fitness function, as shown in the Eq. (13) and 
Eq. (14):  

( )fit i dom i Foodnum=（）   (13) 

1

( ) ( )
FoodNum

i

P i fit i fit i
=

= （）   (14) 

For the mathematical model constructed in this study, the 
following four neighborhood searches are defined. After using 
the following neighborhood structure to generate a new 
solution, we should check the process to avoid illegal solutions. 
Each neighborhood may generate more neighborhood solutions, 
and the smallest Pareto non-dominated level is the new solution. 
If there are multiple solutions, we randomly select one of them. 

NS1: Batch process exchanges neighborhoods—Randomly 
select several batch processes and reassign process positions in 
ascending order of job weight; 

NS2: Neighborhood based on critical path—Select the key 
block with more than two operations in the critical path (do not 
select if it does not exist), and insert the block head or block 
end operation into a point that is not adjacent to it in the path; 

NS3: Random full neighborhood—Randomly select three 
procedures in a vector solution to generate all possible 
neighborhood solutions after the entire arrangement of the 
selected procedures; 

NS4: Neighbor reselection of processing resources—
Randomly select several parallel processes or unordered 
processes and redistribute the processing machines for the 
selected processes. 

F. SCOUTER STAGE 

The scouter bee is responsible for searching for new honey 
sources instead of the unknown honey source, as the quality of 
the random searched honey source may be poor. Therefore, this 
study performs an insertion operation and swap operation on 
the optimal honey source [39][40] to replace the randomly 
generated honey source. 

G. DEVELOPED IABC+DTNS ALGORITHM 

Based on the aforementioned theories and methods, the 
developed IABC+DTNS algorithm in this study is as follows: 

Step1: Set the number of iterations of the IABC-DTNS 
algorithm Maxcycle, number of searches Limit, number of 
honey sources SN, and size of the external archive set SN. 
According to the concept of opposite learning, two populations 
are produced, two populations are integrated, and Pareto is 
sorted as non-dominant. The pre-SN is selected as the initial 
population; it is placed in an external archive set with a Pareto 
non-dominant rating of 1; 

Step2: Generate a new solution based on the crossover method 
in Section Ⅲ-D and perform Pareto non-dominated sorting on 
the population; 

Step3: Determine the following probability of each individual 
according to the sorted population; 

Step4: Perform neighborhood search for each individual 
according to Section Ⅲ-E and perform Pareto non-dominated 
sorting on the updated population; 

Step5: Update the external file set, remove the solutions that 
are dominated, and leave only the non-dominated solutions. If 
the size of the external file set is reached, the solution with the 
smaller crowding distance is replaced. 

Step6: Reinitialize according to Section Ⅲ-F to reach the limit 
nonupdated solution. 

Step7: Determine whether the specified number of searches is 
reached. If the output Pareto non-dominated solution set is not 
reached, repeat Step2−Step6. 

The flowchart of the IABC+DTNS algorithm proposed in this 
study is shown in FIGURE 9 below: 
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FIGURE 9 Flowchart of IABC+DTNS algorithm 

H. COMPLEXITY OF IABC-DTNS 

Algorithm complexity is an important index to evaluate 
algorithm performance, which determines the efficiency of 
algorithm execution and affects the solving ability of computer. 
Suppose the problem size is D, the population size is SN, and 
the maximum number of iterations is G. For each iteration of 
the IABC-DTNS, the computational complexity is analyzed as 
follows. 

In the initial phase, the computational complexity of 
generating SN individuals, generating SN opposite individuals, 
evaluating the initial population, and performing Non-
dominant sort are O(SN*D), O(SN*D), O(SN*D) and O(8*SN2), 
respectively. Then, the computational complexity of generating 
SN individuals is O(3*SN*D+8*SN2). In employee stage, the 
computational complexity of generating new individuals by 
crossing, evaluating newly generated individuals, and selecting 
better individuals are O(SN*D), O(2*SN*D), O(SN), 
respectively. Then, the computational complexity of employee 
stage is O(3*SN*D+SN). Similar to the employee stage, the 
computational complexity of onlooker stage is 
O(10*SN*D+5SN). In scouter stage, because of its less 
executing times and simple operation, computational 
complexity of this part is negligible. Besides, the computational 

complexity of archive maintenance is O(SN+2*SN*logSN).  

In summary, in G iteration, the computation complexity of 
IABC-DTNS is shown as follows: 
O(D,SN,G)=O(G)*O(8*SN2+2*SN*logSN+16*SN*D+7*SN)
≈G*O(SN2+SN*logSN+SN*D).  

IV. EXPERIMENTS AND DISCUSSION 

This study focuses on the HFS scheduling problems based on 
three proposed process sets. There are no benchmark instances 
to verify it. Therefore, a practical casting shop scheduling case 
is employed to evaluate and verify the effectiveness of the 
constructed model and proposed algorithm. The operating 
environment of the algorithm is a 2.7 GHz CPU, 8 GB memory, 
64-bit Win7 system computer; the programming environment 
was MATLAB 2016.  

A. CASE DESCRIPTION  

For one production cycle in the foundry workshop, there are 10 
different operations with 25 machines. The process division is 
shown in TABLE Ⅲ. Tpp contains molding and coremaking 
operation, Tbp contains smelting operation, Tup contains 
external inspection and internal inspection operations. The raw 
material cost and processing time of different jobs are shown in 
TABLE Ⅳ. There are different processing times of one 
operation processed on different machines in TABLE Ⅴ.  

TABLE Ⅲ 

PROCESS DIVISION 

 

Operation 

Pattern 

Making 
Molding Coremaking 

Mold 

Assembling 
Smelting Shakeout Cleaning 

External 

inspection 

Internal 

inspection 
Refinement 

M [M1-M4] [M5-M7] [M7-M10] [M11, M12] [M24, M25] [M13, M14] [M14-M16] [M17-M20] [M19-M21] [M22-M25] 

  Tpp  Tbp   Tup  

TABLE Ⅳ 
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RAW MATERIAL COST AND PROCESSING TIME OF DIFFERENT JOBS  

Job 

Raw 

material 

cost (¥) 

Processing time (hour) 

Oi,1 O i,2 O i,3 O i,4 O i,5 O i,6 O i,7 O i,8 O i,9 O i,10 

Job1 3460 [11,3,7,18] [6,13,12] [11,3,7,18] [16,16] NaN [8,20] [12,16] [11,3,7,18] [16,12,10] [15,17] 

Job2 2560 [4,12,13,16] [12,8,15] [4,12,13,16] [13,8] NaN [12,20] [4,12] [4,12,13,16] [18,9,5] [5,4] 

Job3 3765 [8,10,5,11] [15,14,11] [8,10,5,11] [12,8] NaN [11,15] [17,17] [8,10,5,11] [18,7,18] [5,5] 

Job4 4030 [14,12,6,16] [5,10,20] [14,12,6,16] [16,8] NaN [8,16] [10,17] [14,12,6,16] [18,7,3] [4,4] 

Job5 4835 [16,6,9,6] [4,9,13] [16,6,9,6] [10,11] NaN [17,16] [6,19] [16,6,9,6] [17,13,17] [11,14] 

Job6 2860 [20,4,11,13] [14,11,20] [20,4,11,13] [12,10] NaN [6,14] [9,4] [20,4,11,13] [16,20,9] [20,19] 

Job7 1430 [11,14,6,18] [17,16,8] [11,14,6,18] [13,19] NaN [9,5] [17,5] [11,14,6,18] [7,13,20] [7,11] 

Job8 6300 [11,16,4,4] [16,13,20] [11,16,4,4] [17,15] NaN [7,3] [6,7] [11,16,4,4] [17,20,12] [6,7] 

Job9 907 [12,3,3,17] [20,17,20] [12,3,3,17] [10,18] NaN [9,6] [12,20] [12,3,3,17] [12,17,18] [13,15] 

Job10 924 [16,3,20,16] [18,5,18] [16,3,20,16] [20,16] NaN [9,16] [18,4] [16,3,20,16] [10,12,19] [20,11] 

Job11 3000 [5,11,7,9] [9,18,10] [5,11,7,9] [3,18] NaN [10,20] [7,14] [5,11,7,9] [4,4,4] [13,5] 

Job12 2700 [6,4,11,3] [19,9,5] [6,4,11,3] [20,6] NaN [4,13] [8,9] [6,4,11,3] [15,8,15] [9,7] 

Job13 1580 [13,10,18,10] [12,11,11] [13,10,18,10] [19,18] NaN [3,11] [14,8] [13,10,18,10] [10,16,6] [5,17] 

Job14 3500 [16,9,10,5] [20,18,3] [16,9,10,5] [6,16] NaN [14,12] [7,3] [16,9,10,5] [20,20,12] [18,14] 

Job15 2700 [13,6,6,4] [6,6,17] [13,6,6,4] [16,3] NaN [4,19] [3,3] [13,6,6,4] [10,11,5] [10,19] 

NaN: Batch process and time determined by formula 

TABLE Ⅴ 

DCT AND SCT OF DIFFERENT MACHINES (¥) 

 
Machine 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 

DCt 83 70 66 180 155 150 120 190 165 180 65 54 63 

SCt 20 25 30 40 35 37 28 80 70 65 10 18 12 

 

Machine 

M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25  

DCt 78 103 88 90 78 90 103 158 145 78 210 250  

SCt 15 25 34 20 20 25 66 30 26 10 70 50  

B. PERFORMANCE METRICS 

(1) Mean ideal distance (MID) is measured by calculating the 
distance between a non-dominant solution and an ideal solution. 
This metric measures the convergence rate of the algorithm. 
Lower the MID value, better is the quality and performance of 
the algorithm. 

(2) Spread of a non-dominated solution (SNS): This metric 
measures the diversity of the solutions. A higher value of SNS 
denotes a better diversity of solutions. 

(3) Percentage of domination (POD): This metric measures 
the ability of an algorithm to dominate the solutions of other 
algorithms. A higher value of POD implies that the algorithm is 
more effective than other algorithms. 

Further detailed illustrations and formulations of these metrics 

are found in References [41][42]. 
C. EFFECTIVENESS OF THE OPPOSITE LEARNING 
STRATEGY 

In this study, the initialization method based on opposite 
learning is used to improve the quality of the initial population. 
To verify the effectiveness of the initialization strategy, a 
random initialization strategy (RI) and an initialization strategy 
based on opposite learning (OL) are employed in the 
initialization stage of the proposed IABC+DTNS algorithm. 
The initialization parameters of the two algorithms are same; 
the population number is SN=100, Limit=10, and algorithm 
running time is 500 s. To avoid randomness, the two algorithms 
run independently 30 times. TABLE Ⅵ lists the results of the 
two different strategies. 

TABLE Ⅵ 

THE VALUE OF ALL METRICS OF IABC+DTNS BASED ON OL AND RI SEPARATELY 

Algorithm MID  SNS POD (%) 

IABC+DTNS (OL) 5980.398  211597.32 0.93 

IABC+DTNS (RI) 33749.94  211709.37 0.07 
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TABLE Ⅵ shows that the MID and POD values based on OL 

initialization are better than those of the RI, and the value of the 
initialization method based on opposite learning is much less 
than random initialization. Although the value of SNS based on 
OL initialization is less than that of the RI, the differences 
between them are too small to affect the diversity of feasible 
solutions. Therefore, the proposed initialization method based 
on OL is feasible and effective.  

E. PARAMETER SETTINGS 

To investigate the influence of different parameters on the 
performance of the algorithm, an orthogonal experiment with a 
scale of (33) was selected to optimize the algorithm parameters. 
To avoid the randomness of the results, each algorithm ran 
independently 30 times, and the average value was taken (Eq. 
(15)) as the evaluation index. The experimental results are 
shown in TABLE Ⅶ: 

10 log( )
MID

ARV
SNS

= −               (15) 

According to the orthogonal test table, the horizontal trend 
chart of parameters, as shown in FIGURE 10, is drawn. From the 
diagram, the performance of the algorithm is the best when SN 
= 150, Limit = 10, Pm = 0.2. 

F. COMPARISONS ANALYSIS 

To verify the validity of the proposed algorithm (IABC-DTNS), 
a comparison with other algorithms (NSGA-II [43], SPEA2 
[44], MODVOA [45], HPSO [46], and IMOMA-II [47]) of the 
multi-objective solution was conducted. Simultaneously, to 
verify the validity of the DTNS, the IABC algorithm without 
DTNS is tested; its parameters are consistent with those of the 
IABC-DTNS. Each algorithm runs independently 30 times, and 
the termination time is set to 1500 s. The values of MID, SNS, 
and POD are shown in TABLE Ⅷ. It can be seen that the 
IABC-DTNS algorithm achieved the best results of MID and 
POD, which indicates that the convergence ability and 
effectiveness of IABC-DTNS are better than those of the other 
algorithms.  

TABLE Ⅶ 

THE ORTHOGONAL ARRAY AND ARV VALUES 

Experiment number 
parameter 

ARV  
SN Limit Pm 

1 60 5 0.1 17.38 

2 60 10 0.2 17.42 

3 60 15 0.3 18.54 

4 100 5 0.2 16.36 

5 100 10 0.3 16.38 

6 100 15 0.1 16.68 

7 150 5 0.3 16.11 

8 150 10 0.1 16.03 

9 150 15 0.2 15.99 

 
FIGURE 10 Fact level trend of IABC-DTNS 

TABLE Ⅷ 

THE VALUE OF ALL METRICS OBTAINED BY COMPARED ALGORITHMS 

Algorithm MID SNS POD 

IABC+DTNS 4824.158 209924.6 0.5000 

NSGA-II 11749.24 209226.6 0.0714 

SPEA2 80010 209334.7 0.1429 

MODVOA 48984.33 209302.3 0.0714 

HPSO 85565.2 210683 0.0714 

IABC 7928.878 210023.7 0.0714 

IMOMA-II 18057 211334.2 0.0714 

The Pareto front scatterplot of the six compared algorithms is 
shown in FIGURE 11. It can be seen that the proposed IABC-
DTNS algorithm proposed is similar to the real Pareto front. 
The scheduling Gantt chart of the six compared algorithms’ 

non-dominated solution sets is shown in FIGURE 12. Each batch 
in the FIGURE is processed on the batch process machine 24. The 
maximum completion time and cost are listed in TABLE Ⅸ. 
For the algorithms’ running time, the proposed algorithm 
consumes a shorter running time than those of the other 
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algorithms. Further, the cost value is smaller than those of the 
other algorithms. In conclusion, the IABC-DTNS has better 

performance than the other algorithms. 

 

FIGURE 11 Pareto front scatter plot 

 

 

FIGURE 12a IABC-DTNS 

 

FIGURE 12b IABC 

 

FIGURE 12c NSGA-II 

 

FIGURE 12d HPSO 
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FIGURE 12e MODVOA 

 

FIGURE 12f SPEA2 

 
FIGURE 12g IMOMA-II 

 

FIGURE 12 Scheduling Gantt chart 

TABLE Ⅸ 

COMPLETION TIME AND COST OF COMPARED ALGORITHMS 

Algorithm Completion time (h) Cost (￥) 

IABC+DTNS 163.74 213068.39 

NSGA-II 190.42 216450.56 

SPEA2 248.28 283434.56 

MODVOA 213.38 251417.53 

HPSO 279.41 285906.98 

IABC 173.58 216103.68 

IMOMA-II 210.43 22175.52 

V. CONCLUSIONS AND FUTURE WORK 

In this study, an improved ABC algorithm based on the ABC 
algorithm and DTNS was developed to solve the HFS 
scheduling problem. Three process sets have been introduced 
to address the multi-production procedure, such as parallel 
operation, batch operation, and unordered operation. The three 
process sets are parallel process set, batch process set, and 
unorder process set. For the IABC algorithm, the operation-
based three-stage decoding method is designed, an effective 
initialization strategy based on opposite learning is proposed to 
improve the quality of the initial population, and four 
neighborhood search strategies based on DTNS are introduced 
to improve the local optimization ability of the algorithm 
during the iteration process. Comparisons with other published 
algorithms are conducted on a practical casting HFS scheduling 
case. The analysis results show that the IABC-DTNS algorithm 
has better exploitation capability, exploration capability, and 
performance reliability in solving the HFS scheduling problem.  

In consideration of further exploration, the following 
conclusions can be drawn. (1) Further work can be conducted 
on constructing an effective green scheduling mathematical 

model of HFS, particularly in certain high-energy-consumption 
flow manufacturing enterprises. (2) Constructing a dynamic 
decision system with real-time scheduling data and developing 
a corresponding prototype system is extremely important for 
enterprise managers.  
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