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ABSTRACT 

A method is presented  for  combining  two  previously  proposed 
algorithms  for  path-planning  and  dynamic  steering  control  into  a 
computationally  feasible  scheme  for  real-time  feedback  control of 
autonomous vehicles in  uncertain  environments.  In  the  proposed 
approach to vehicle  guidance and  control,  Path Relaxation  is used 
to compute critical  points along  a  globally  desirable path using a 
priori information  and sensor  data'.  Generalized potential fields 
are  then used for local  feedback control  to  drive  the vehicle along  a 
collision-free path using the  critical  points as subgoals'. Simulation 
results  are  presented to demonstrate  the  control scheme. 

INTRODUCTION 
System  architectures  and  algorithms proposed  for  guidance and 
control of autonomous vehicles  normally  reflect  a hierarchical 
decomposition of the problem3' 49 '. Basic levels  in the system 
hierarchy are  illustrated in Fig. 1. At  the highest level the problem 
is represented  symbolically and  artificial intelligence  techniques are 
used to perform  high-level  planning. At  the lowest level, servo 
controllers  track reference  signals,  implementing the desired 
dynamic  trajectory.  This  paper concerns the vehicle guidance 
problem at  the  intermediate levels. Using two previously  proposed 
algorithms we integrate  the  functions of geometric path planning 
and dynamic  steering  control.  The  path-planning  algorithm 
generates a set of critical  points along  a  globally  desirable path, 
while the  steering  control  algorithm  performs local navigation  and 
obstacle avoidance. 

Based on  an  internal  map of the environment  developed  from a 
priori information  and high-level sensory data,  Path Relaxation 
selects  a m i n i m u m  cost collision-free path to the goal'. This  path 
could be executed directly  by  driving  the vehicle through each  point 
on  the  path in turn. Such a  simple-minded  scheme,  however, 
ignores  vehicle  dynamics,  forces the  trajectory to go through each 
point,  and is unable to use new  sensory data  without complete 
replanning.  A  better  strategy  is  to  generate  a  set of critical  points 
along the  path  and  to use them as subgoals for dynamic  steering 
control  using local  feedback  information.  Dynamic steering  control 
is accomplished  in our system  using  Generalized  Potential Fields'. 

This makes  for a good  division of the problem: Path Relaxation 
takes  care of global  issues, like avoiding  dead  ends, finding an 
overall  optimal or near-optimal  path,  and deciding  between areas 
with  different  terrain or better visibility.  Local  issues,  such as 
cutting  corners, slowing the vehicle to maneuver  in tight  spots,  and 
generating  smooth  transitions  from one step  to  the  next,  are all 
handled  by the Generalized Potential  Field feedback  algorithm. 
This dynamic  steering  control also reacts  to new sensory data as the 
vehicle  moves, taking  into  account  updated  obstacle positions 
without  having to  invoke the global path planner.  This two-level 
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scheme  is  computationally  feasible  for real-time implementation. 
Since the  steering  control  algorithm  handles local details,  the  path 
planner  can  work  on a coarse scale. The  set of critical  points  must 
be  re-evaluated  only  when  there  are  extreme  changes  in the 
environmental  information.  Moreover, the  two levels of control  can 
be executed in parallel with the slower  sensor  processing and  path- 
planning  algorithm  generating  future subgoals  while the  steering 
control  algorithm guides the system  through  the  current  set of 
critical  points. 

The following  section  reviews the path-relaxation  algorithm  and its 
implementation for selecting the  critical  points  to be  passed to  the 
steering  control  algorithm.  We  then describe the generalized 
potential j ield approach to dynamic  steering  control using the 
critical  points  and  real-time sensory  information to determine  the 
desired  system  acceleration a t  each control  instant.  Features of the 
proposed  scheme are  illustrated  by  simulation  inciuding  an example 
where the environment  encountered  by the  steering  control 
algorithm  differs  significantly  from  the  model used by the  path- 
planning  algorithm to generate  the subgoals. The simulation  results 
demonstrate  the  viability of the proposed  approach for real-time 
guidance  and  control of autonomous vehicles. Directions for  future 
research and issues  currently  being  investigated are discussed in the 
concluding  section. 

PATH RELAXATION' 
For  robot  path  planning, we want  to find an  optimal  path  to  a 
destination  through  a field of obstacles. Path Relaxation is a two- 
step process that  tries  to  find  the  path  with  the lowest total  cost. 
The cost of a path is a  combination of several factors, including 
distance  traveled,  nearness  to  objects,  traversability of the  terrain, 
and  uncertainty  about  the  area.  The  first  step of path  relaxation 
finds a preliminary path  on  an eight-connected grid of points.  The 
second step  adjusts, or "relaxes",  the position of each  preliminary 
path  point  to  improve  the  path. 

One  advantage of path  relaxation  is  that  it allows many  different 
factors  to be considered in choosing a path. Typical path planning 
algorithms  evaluate the cost of alternative  paths solely on  the basis 
of path  length.  The cost  function used by Path Relaxation,  in 
contrast, also  includes  how close the  path comes to  objects  (the 
further  away,  the lower the  cost)  and  can include penalties for 
traveling  through  particular  are=,  such as areas  outside  the field of 
view of the  robot.  The effect is to produce  paths that neither clip 
the corners of obstacles  nor make wide  deviations  around isolated 
objects,  and  that prefer to stay  in  mapped  areas unless a  path 
through  unmapped regions is  substantially  shorter.  Other  factors, 
based on a  priori information or sensor data, such as roughness of 
terrain or visibility  of landmarks,  can be added for particular 
environments. 
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GRID  SEARCH 

The  first  stage of path  relaxation  finds  an  approximate  path on a 
grid.  The  grid mesh size can  be as large as the  minimum dimension 
of the  robot  and  still  guarantee  that no path will  be  missed.  Once 
the  grid  has been set  up,  the next step is to assign  costs to  paths  on 
the  grid  and  then  to  search for the  best  path along the grid from 
the  start  to  the goal. "Best",  in  this case,  is a compromise  among 
three  potentially conflicting  requirements: shorter  path  length, 
greater  margin  away  from  obstacles,  and less  distance in high-cost 
areas. These three  requirements  are explicitly  balanced  by the  way 
path costs are  calculated.  A  path's cost is the  sum of the costs of 
the nodes through  which  it passes,  each  multiplied  by the distance 
to  the  adjacent nodes. (In  a 4-connected graph all lengths  are  the 
same, but  in  an 8-connected graph we have to distinguish  between 
orthogonal  and  diagonal  links.)  The node  costs  consist of three 
parts  to explicitly represent  the  three  criteria. 

1. Cost  for  distance.  Each node starts  out  with  a cost of 
one unit,  for  length  traveled. 

2. Cost  for  near  objects.  Each  object near a node adds  to 
that node's  cost. The  nearer  the obstacle, the  more  cost 
i t  adds.  The  exact slope of the cost  function will depend 
on the accuracy of the vehicle (a more  accurate vehicle 
can  afford to come closer to objects),  and  the vehicle's 
speed (a faster vehicle  can  afford to go farther  out of its 
way),  among  other  factors. 

3 .  Cost for  being within or near an  unmapped or other 
high-cost  region. The cost for  traveling in  one of these 
regions  depends  on the  particular mission of the vehicle. 
For  instance, if the goal is primarily  exploration,  then 
unmapped  areas could have lower  costs than  other  areas. 
There is  also a cost added for  being  near an  unmapped 
region,  using the  same  sort of function of distance as is 
used for  obstacles. This provides a buffer to keep paths 
from  coming  too close to potentially  unmapped  hazards. 

For costs 2 and 3 we use a cubic  cost function, as illustrated in Fig. 
2, which  ranges  from 0 at  some  maximum  distance,  set by the user, 
to  the  obstacle's  maximum cost at 0 distance.  This function has  the 
advantages of giving good saddles  between  neighboring  obstacles, 
being  easy to compute, and  being  bounded in  a local area. 

The cost calculated  for each  node  is  based  on the distances to 
nearby obstacles and  whether  that node is within  a high-cost area. 
Next, each  node is linked to  its  8 neighbors. The  start and  goal 
locations  do not necessarily  lie on grid points, so special  nodes need 
to be created for them  and linked into  the  graph. 

The system then searches this  graph for the  minimum-cost path 
from  the  start  to  the goal,  using a  standard A* search6. The 
estimated  total cost of a  path, used by A* to pick which node to 
expand  next, is the  sum of the cost so far plus the  straight-line 
distance  from  the  current location to  the goal. This  has  the  effect, 
in regions of equal cost, of finding the  path  that most closely 
approximates  the  straight-line  path to  the goal. 

RELAXATION 

Grid  search  finds  an  approximate  path;  the  next  step is an 
optimization  step  that fine-tunes the location of each  node  on the 
path  to minimize the  total cost.  One way to do this  would be to 
define  precisely the cost of the  path  by  a  set of non-linear  equations 
and solve them  simultaneously  to  determine  the  optimal position  for 
each  node. This  approach is not, in  general, computationally 
feasible. The  approach used here is a  relaxation  method.  Each 
node's  position  is adjusted  in  turn, using  only  local information  to 
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minimize the cost of the  path sections  on either side of the node. 
Since  moving  one  node  may  affect  the  cost of its neighbors, the 
entire procedure is repeated  until no  node  moves farther  than  some 
small  amount. 

Node  motion  has to be restricted. If nodes  were  allowed to move in 
any  direction,  they  would all  end up at  low cost points,  with  many 
nodes  bunched  together  and a few long  links  between them.  This 
would  not give a  very good picture of the  actual cost along  the 
path. So in order  to keep the nodes spread  out, a node's motion is 
restricted  to be perpendicular to a line  between the preceding and 
following  nodes. Furthermore,  at  any one step  a node  is  allowed to 
move no  more than one unit. As a node  moves,  all three  factors of 
cost are affected:  distance traveled  (from  the preceding  node, via 
this node, to  the next node),  proximity to objects,  and  relationship 
to  unmapped regions. The  combination of these factors  makes  it 
difficult to directly  solve for  minimum  cost  node  position.  Instead, 
a  binary search is used to find the  minimum cost  node  position to 
the desired  accuracy. 

The  relaxation  step  has  the effect of turning jagged  lines into 
straight ones  where  possible, of finding the  "saddle"  in  the cost 
function between  two objects,  and of curving around isolated 
objects. At  the  boundary between two regions of different  cost, the 
minimum  cost path will "refract" in the  same  way  that  a  ray of 
light  refracts crossing a boundary between two substances. The 
laws of refraction  state  that  a  ray of light crossing a  border between 
two  substances  with different  transmission  velocities will follow the 
path  that minimizes  transmission time.  The  path found  by path 
relaxation will "refract"  in an  analogous way, minimizing  cost 
rather  than  time. 

The  output of path  relaxation is a sequence of positions 
{xo, ... X,=X } from  the  initial position of the vehicle x. to  the goal 
x . As demonstrated  by  the examples  below,  these  positions  can  be 
generated on a  relatively coarse  scale. The  steering  control 
algorithm  performs  the  function of local navigation, using the  set 
{x,, ..., x,} as critical  points or subgoals  along the  dynamic 
trajectory.  Determining  the  best  set of critical  points is an  area for 
future research. 

DYNAMIC  STEERING  CONTROL 
In this section we present  a feedback algorithm for the  dynamic 
steering  control of autonomous vehicles  using  local  feedback 
information. Given a  set of subgoals from the  path-planning 
algorithm  which roughly  define a desirable path  to  the goal, the 
steering  control  algorithm  must  determine  the  appropriate 
acceleration  of the  system  at each instant  to guide i t  along  a 
collision-free trajectory  to  the goal.  Since the  environment is not 
known  entirely at  the  path-planning level, our  steering  control 
algorithm  incorporates  real-time sensor information;  that  is,  the 
steering  control is specified as a feedback  law rather  than  an 
open-loop algorithm. 

The  steering  control  algorithm is based  on the generalized potential 
field approach  for  obstacle avoidance control proposed  by Krogh'. 
In  other  potential field  methods  proposed  by  Hogan  and  Khatib,  an 
artificial force vector is introduced as the  sum of the  gradients of 
position-dependent potential fields for  the obstacles and goal7' 8 .  

The  introduction of generalized  potential  fields, that is, potential 
fields which are  both position and velocity dependent, eliminates 
the possibility  of the stalling at  local minima in the  potential fieldg. 
Other  advantages of the generalized potential field approach  are 
briefly  described in  this section'. 



PROBLEM  FORMULATION 

As in the previous  section, we consider the problem of obstacle 
avoidance  in the  plane, modeling the system as a  point a t  position 
x=[x1,x2IT with  velocity V = [ V ~ , Y ~ ] ~  (in  Cartesian coordinates). 

The  steering  control  is  the  acceleration  vector u = [ u ~ , u ~ ] ~  which is 
assumed to be  constrained  in  magnitude, that  is, 

llull i a. (1) 

The velocity  can also  be  limited by  a maximum speed, IC, that  is 

llvll F IC. (2) 

Thus,  the dynamics of the system are given by 

.- . 
x=v=u (3) 

subject  to  the  constraints (I), (2). 

This simple  dynamic  model  is used to  facilitate  the  real-time 
computation of the desired  system  acceleration u. The  steering 
control  problem is most  easily formulated  in  the global  coordinate 
frame of the system  environment  since  set of critical  points, 
distances  to obstacles and  the goal  position are specified  in these 
coordinates.  The  mapping of the  actual  system  dynamic model and 
control  constraints  (most easily  specified  in  generalized coordinates) 
into global  coordinates  is discussed by  Krogh  and Graettinger". 
To use the model (3) i t  is necessary to choose the acceleration and 
velocity constraints (l), (2) so that  the desired acceleration 
computed  by the  steering  control  algorithm is feasible. A method 
for  computing  these  maneuverability  constraints  and  applications 
to autonomous vehicle control  are  currently  under investigation". 
In  the  present  paper we  use the model (1)-(3) to  illustrate  our basic 
approach  to  steering  control. 

The  steering  control  objective  is  to  drive  the  system along  a 
collision-free path  from  its  initial  position x. to a specified goal 
position x , The higher-level path planning  algorithm  provides  a 
set of critical  points {x1, ..., xn=x } which represents  the  best  path 
in terms of global  information  about  the  locations of obstacles and 
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the environment. As the vehicle  progresses through  the 
environment,  real-time  sensing  provides  more  detailed and more 
exact  feedback  information on  the  locations of the obstacles  within 
the local vicinity of the vehicle.  Using these  data,  the  steering 
control  algorithm  must  determine  the  appropriate acceleration u a t  
each instant. 

Computational complexity  precludes the use of optimal  control or 
dynamic  programming for real-time  steering  control.  The 
remainder of this section  describes  a  computationally  feasible 
algorithm for determining the  acceleration based  on the concept of 
satisficing  strategies Tather than optimality". The underlying 
principle  for  the proposed  feedback  algorithm is to  choose the 
control a t  each instant based on  the  available local  information so 
as to guarantee  the  acceptability  (but  not necessarily the  optimality) 
of the  resulting  global  trajectory. 

THE FEEDBACK  ALGORITHM^ 
At  each  control  instant  the  acceleration u is chosen to maximize the 
rate of  decrease in  a generalized potential  function p(x,.), subject 
to  the  constraints (I), (2) and  a  further  constraint imposed  by the 

finite  sampling  time  (discussed  below).  Thus, u is chosen to 
minimize 

qx,v)=vxP & V Y P  ; (4 )  

which  gives the  control 

u = - c r ~ ~ v Y q ~ - l v Y P  (5) 

when  only constraint (1) is  active. 

The  potential  function  is given by 

qx,v)'P~(x,v)+Po(x,v) (6) 

where P (x,v), P , (x ,v)   a re  independent  potential  functions  for the 
goal (or subgoal)  and  obstacles respectively. As described below 
these  potential  functions  are defined so that  the system is 
"attracted" by the goal and  "repulsed" by the obstacles. The 
dependence of P and Po on  the  system velocity as well as position 
takes  into  account  the  dynamic  aspects of the  trajectory  and  control 
constraints. 

GOAL POTENTIAL 

To compute the  goal-attraction  potential, P (x,v), an  appropriate 
subgoal  is  first selected  from the  set of critical  points 
{x1, ..., x =x }. The  critical  points  are  pursued in sequence; the 
subgoal  is  updated to  the next  critical  point when the system  begins 
to  decelerate  toward  the  current  subgoal. If the  next  critical  point 
is  not visible  from the  current  system position x,  an  intermediate 
subgoal  is chosen as the edge of the  obstructing  obstacle which is 
closest to  the desired  subgoal.  Thus, if the  real-time sensing 
indicates  the presence of an  obstacle which was  not  taken  into 
account  by the path-planner,  this  intermediate subgoal directs  the 
system  around  the  obstacle.  Note  that  this  leads  to  a  trajectory 
that follows the general path specified by the sequence of critical 
points, but  the vehicle does not  stop  or even pass  through each  x .. 

For the selected  subgoal x .  the goal attraction  potential P (x,v) is 
computed so that  the  gradient  results  in  an acceleration  which will 
eventually  bring the system to  rest a t  x . Krogh proposed  a 
heuristic decomposition  was used to compute  orthogonal 
components of the goal attracting  potential gradient". This was 
based on  the  time required to reach the goal  using the  maximum 
acceleration  available in  each  orthogonal  direction,  ignoring the 
obstacles  and  the acceleration allocation  for  the  orthogonal 
direction.  Recently,  a  computationally feasible  method  was  derived 
to  find  the  optimal  time  to go for  the two-dimensional problem". 
Using this  result we define P (x,v) as the minimum  time to reach 
the goal subject  to  the acceleration limit (1). Thus, -VPg(x,v) 
directs  the  acceleration as the  optimal  control if no obstacles are 
present. 

OBSTACLE POTENTIAL 

A  potential  function  can he computed  for  every  visible  obstacle  in 
the  environment2.  In the present  formulation of the algorithm we 
compute P,(x,v) only  for  visible  obstacles  in the  direction of the 
current  system velocty v. This reduces the computational  burden 
while  yielding an acceleration  which  avoids collisions with  the local 
obstacles. If an  obstacle is present the obstacle potential  is 
computed as proposed  by  Krogh2. In particular,  Po(x,v) is defined 
as the inverse of the  reserve  avoidance  time, rM - rm, where  the 
minimum avoidance time T~ is the minimum  time  in  which the 
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velocity toward  the  obstacle can be brought  to zero using  maximum 
deceleration, and  the m a x i m u m  avoidance l ime  rM is the 
maximum  time  in which the velocity toward  the obstacle  can  be 
brought  to zero under  constant deceleration without  hitting  the 
obstacle.  This gives 

P,(x,v)= vo(vo-2axo)-1 2 

where -wo is the velocity toward  the obstacle and zo is the  distance 
to  the  obstacle  barrier.  We  note  that Po(x,v) grows to infinity as 
the  capability to avoid  crossing the obstacle barrier goes to zero. 

REAL-TIME  IMPLEMENTATION 

The generalized potential field  feedback algorithm described  above 
requires the  computation of the feasible  acceleration  which 
minimizes (4). Thus, only the  gradients of P(x,v) (6) with respect 
to  v  are required, and  this is computed  analytically for  real-time 
implementation.  The simple magnitude  constraints (I), (2) permit 
an  analytical  solution of the minimization  problem  (e.g., (5))  which 
means  the  control a t  each instant is  computable  directly from 
sensor data giving the distances to visible  obstacles. 

One  practical issue  is the  finite  sampling  time for  processing  sensor 
data.  To  account  for  this  delay,  an  additional  constraint is imposed 
on the acceleration at  each control  instant.  A  sampled-data control 
is assumed  with  constant acceleration during  the sampling interval. 
It is necessary to  assure  that  when  the new sensor data is available, 
the system  will still  have  the  capability  to avoid  collisions with  the 
obstacles. This is guaranteed by limiting  the acceleration  in the 
direction of the  obstacle so that  the position and velocity a t  the 
next control  instant will still be  safe with respect to  the obstacle. 

Analytical  methods for guaranteeing  the efficacy of this feedback 
algorithm  have been proposed and  are  currently being extended to 
accommodate  more  realistic  steering  control  problemsg. In the next 
section  examples are presented to  illustrate  the  integration of the 
feedback algorithm  with  the  path-planning  algorithm of the 
previous  section. 

EXAMPLES 
As an example,  consider the obstacle-strewn environment  illustrated 
in  Fig.  3  which includes a detailed path  from x. to xg generated  by 
the  Path  Relaxation  algorithm.  Passing these points to  the  steering 
control  algorithm,  the  resulting  dynamic  trajectory is  shown  in  Fig. 
4. The  dynamic  steering  control, which is based  on  only local 
information  about  the  obstacle locations,  generates a  dynamic 
trajectory  to  the goal  which  follows the general path received  from 
the  path-planner. 

One  motivation for introducing feedback  in the  steering  control 
loop is to reduce the required level of detail at  the  path planning 
stage. In Fig.  5  a  much coarser set critical  points is  specified 
along the desired path  to  the goal. Using these points as subgoals, 
the feedback algorithm  again generates a  smooth  dynamic 
trajectory  to  the goal, as shown  in  Fig.  6.  Thus,  the  local  feedback 
algorithm produces an acceptable trajectory  without having a 
detailed path  plan. 

Finally,  Fig.  7  illustrates  the  ability of the feedback algorithm  to 
use  real-time information  not  available  to  the  path-planner.  The 
same set of critical  points  (Fig. 5)  were used as subgoals, but as the 
system  moved through  the obstacles, three new obstacles  were 
detected  which had  not been taken  into  account  by  the  path 
planner.  ,shown  in  Fig. 7, the generalized potential field 
algorithm successfully  guided the system  along the desired path 
while  avoiding  collisions with  the new obstacles. 

FUTURE  RESEARCH 
This  paper  presents  and  demonstrates  the basic  elements for  an 
integrated  approach  to  path  planning and  dynamic  steering  control 
for  autonomous vehicles. The concepts  have been demonstrated by 
simulation  and  work is currently  underway  to  implement  the 
proposed approach  to guidance and  control for an  actual  test 
vehicle. 

There  are several directions for future research,  including: 

methods  for  determining  the  appropriate  set of critical 
points at the  path planning level 

representation of a priori information  at  the  steering 
control level  for interpreting real time  data 

criteria for  deciding  when the  path  should be  re-planned, 
that is,  when  the  steering  control  algorithm should 
request new points  from  the  path-planner 

incorporation of learning in the high-level  feedback  loop 
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Figure 1: Hierarchical  allocation of functions for 
autonomous vehicle control. 

Figure 2: Cross-section of cubic cost  functions 
for two  point  obstacles. 

Figure 3: Detailed path plan from Path Relaxation  algorithm Figure 4: Dynamic  trajectory following detailed path from Fig. 3 
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Figure 5: Sparse  set of critical points along  desired path. Figure 6: Dynamic  trajectory using sparse  set of critical 
points from Fig. 5 as subgoals. 

Figure 7: Dynamic  steermg  control for local  obstacle  avoidance 
using sparse  set of critical points  from  Fig. 5. 
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