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Abstract

In the present study, an integrated hierarchical approach was applied to: (1) identify pathways associated with susceptibility to
schizophrenia; (2) detect genes thatmaybepotentially affected in thesepathways since they contain anassociatedpolymorphism;
and (3) annotate the functional consequences of such single-nucleotide polymorphisms (SNPs) in the affected genes or their
regulatory regions. The Global Test was applied to detect schizophrenia-associated pathways using discovery and replication
datasets comprising 5,040 and 5,082 individuals of European ancestry, respectively. Information concerning functional gene-sets
was retrieved from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and the Molecular Signatures Database.
Fourteen of the gene-sets or pathways identified in the discovery dataset were confirmed in the replication dataset. These include
functional processes involved in transcriptional regulation and gene expression, synapse organization, cell adhesion, and
apoptosis. For two genes, i.e. CTCF and CACNB2, evidence for association with schizophrenia was available (at the gene-level) in
both the discovery study and published data from the Psychiatric Genomics Consortium schizophrenia study. Furthermore, these
genes mapped to four of the 14 presently identified pathways. Several of the SNPs assigned to CTCF and CACNB2 have potential
functional consequences, and a gene in close proximity to CACNB2, i.e. ARL5B, was identified as a potential gene of interest.
Application of the present hierarchical approach thus allowed: (1) identification of novel biological gene-sets or pathways with
potential involvement in the etiology of schizophrenia, as well as replication of these findings in an independent cohort; (2)
detection of genes of interest for future follow-up studies; and (3) the highlighting of novel genes in previously reported candidate
regions for schizophrenia.
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Introduction

Genome-wide association studies (GWAS) have identified

common susceptibility variants for numerous disorders [1], [2].

For complex diseases, however, many of the discovered variants

have only a moderate or weak effect on disease risk. Due to

correction for multiple testing and limited sample sizes, GWAS are

likely to miss a fraction of loci with small genetic effect sizes, and

researchers assume that a major fraction of heritability remains

hidden for statistical reasons [3]. One way of overcoming this

problem is to investigate the joint effects of multiple functionally

related genes (e.g. gene-sets or pathways). Pathway-based analysis

of GWAS data increases the power to detect disease related genes

and, potentially, single nucleotide polymorphisms (SNPs) with

small genetic effects. This approach provides valuable biological

insights into the etiology of complex diseases [4].

At the time of writing, several methods are in use for the

pathway-based analysis of GWAS data [5], [6], and pathway

association studies have identified novel candidate genes and

pathways for a range of neuropsychiatric disorders [5], [7–12].

Various methodological approaches to pathway association

analysis are available. Maciejewski [13] has described a classifi-

cation for gene-set analysis that is based upon both the statistical

model used and the nature of the underlying hypothesis. This

classification comprises four groups: self-contained, competitive

with sample randomization, competitive with gene randomization,

and parametric. The main advantages of the self-contained and

the competitive with sample randomization tests are twofold.

Firstly, they resemble the underlying biological experiment.

Secondly, the results are amenable to statistical interpretation

[14], [13].

While selection of the pathway association method is an

important consideration, the power of a given pathway association

study is also dependent upon other factors. These include the

biological information (i.e. from gene-set and pathway databases)

that is integrated into the model, the use of independent

replication datasets, and the different levels of interpretation,

which extend from the pathway level to the level of SNPs.

As a logical consequence, researchers are now modifying

analytical frameworks in order to increase their power and

potential impact. To achieve this, the present study has applied a

hierarchical approach (see Figure 1). This approach uses three

levels of evidence to unravel novel biological mechanisms with

potential involvement in complex disorders. An advantage of this

approach is that it builds upon previously developed and proven

tools which gain synergistic effects from intersecting three different

levels of evidence, i.e. evidence from the pathway-, gene-, and

SNP-level. To test disease associated gene-sets and pathways, the

Global Test was applied [15], [16]. To date, this well-established,

self-contained pathway test has mainly been used for gene

expression analyses. Subsequent identification of important risk-

genes within the significant pathways was achieved using FORGE

[17], while detection of the functional consequences of associated

SNPs, i.e. the SNP function annotation, in the significantly

associated genes was performed using RegulomeDB [18]. As part

of our approach, a well-curated list of pathways and gene-set

collections was integrated, and a reduction in false-positive

findings was sought through the use of large-scale exploratory

and independent replication samples. We applied our approach to

data sets for schizophrenia (SCZ), and provide evidence for new

SCZ risk genes that would otherwise have remained undetected in

the investigated study samples.

Results

Pathway analyses
Application of the Global Test to the BOMA-UTR (MooDS

SCZ consortium (BOMA)) dataset and independent data from a

Dutch study (UTR), Table 1) yielded 27 pathways that were

significantly associated with SCZ after correction for multiple

testing (False Discovery Rate (FDR),0.05) (Table S1A). Of these,

14 pathways remained significant in the replication dataset. The

replicated pathways are listed in Table 2, together with their

FDRs, nominal p-values, and SNP set sizes. The replicated

pathways include the following: (i) six gene-sets from the

Transcription factor Targets database (dbTFT); (ii) four Gene

Ontology (GO) terms (zinc ion binding, transition metal ion

binding, positive regulation of gene expression, and synapse

organization); (iii) two Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways (cell adhesion molecules, and apoptosis); (iv)

one gene-set from the Chemical and Genomic Perturbation

database (dbCGP, Kyng DNA damage by UV); and (v) one gene-

set from the microRNA targets database (mir-484 targets). The

Author Summary

Large-scale genetic studies of complex diseases such as
schizophrenia have identified a variety of susceptibility
loci. Since many of the respective variants have only a
weak influence on disease risk, pathophysiological inter-
pretation of the results is problematic. Investigation of the
joint effects of multiple functionally related genes or
pathways increases the power to detect disease related
genes, and provides insights into the etiology of the
disease in question. In the present study, an integrated
hierarchical approach was applied to: (i) identify pathways
associated with complex neuropsychiatric disease schizo-
phrenia (ii) detect potentially affected genes in these
pathways; and (iii) annotate the functional consequences
of genetic markers in the affected genes or their regulatory
regions. Two samples comprising .10,000 individuals of
European ancestry as well as data from the Psychiatric
Genomics Consortium schizophrenia study were exam-
ined. Pathways representing transcriptional regulation and
gene expression, cell adhesion, apoptosis, and synapse
organization showed significant association with schizo-
phrenia. In particular, CTCF, CACNB2, and ARL5B, i.e. genes
involved in chromatin modulation, calcium channel
signaling and membrane transport, respectively, were
highlighted as candidate genes for schizophrenia risk.

Integrated Pathway-Based Approach with Global Test

PLOS Genetics | www.plosgenetics.org 2 June 2014 | Volume 10 | Issue 6 | e1004345



gene overlap for each pathway pair is shown in Figure S1. Table

S2 summarizes the redundancy estimates for pathways retrieved

from the same source. A description and a visual depiction of

pathways with similar SNP content in the BOMA-UTR dataset

are provided in Text S1 (section ‘‘Pathway overlap’’) and Figure

S2, respectively. The overall gene and SNP overlap between all

pairs of replicated pathways are provided in Table S3A and

Table S3C, respectively. For the GAIN-MGS dataset, the gene

and SNP overlap information is provided in Table S3B and

Table S3D, respectively. The section ‘‘Subject vs SNP label

permutations’’ in Text S1 and Figure S3 provides a detailed

description of the results of the SNP-label permutation test

coupled with the subject-sampling test.

To visualize the integration of the Global Test application on a

SNP-, a gene- and a pathway level, Circos plots were generated for

the entire genome (Figure 2). These plots illustrate the impact of

those individual SNPs that were annotated to the replicated

pathways (whether overlapping or unique to a specific pathway)

and the associated genes.

Gene-based analysis
A total of 100 genes fulfilled the criteria described in the

Methods section ‘‘Gene-based analysis with Global Test and

FORGE’’, i.e. these genes map to SNPs with a component Global

Test p-value of ,0.001 in the BOMA-UTR dataset. Of these, the

following eight genes were annotated to at least four (up to eight) of

Figure 1. Flowchart for (1) detection and replication of schizophrenia associated pathways and (2) identification of the most
informative genes, and (3) functional annotation of single nucleotide polymorphisms in the genes of interest.
doi:10.1371/journal.pgen.1004345.g001

Table 1. Description of individual samples.

Sample Ancestry Case (n) Control (n) Platforma Referenceb

BOMA German 1 531 2 168 I5, I6Q, IWQ [48], [49]

UTR Dutch 699 642 I5 [48]

GAIN European 1 157 1 364 A6 [50]

MGS European 1 279 1 282 A6 [50]

aPlatforms are: I5, Illumina HumanHap 550; I6Q, Illumina Human610 Quad; IWQ, Illumina Human660W-Quad; A6, Affymetrix Genome-Wide Human SNP Array 6.0.
bPublication reporting individual sample level genotypes for Schizophrenia is listed.
Discovery set: single nucleotide polymorphisms (SNPs) before pruning – 491,393; after pruning – 419,267.
Replication set: SNPs before pruning – 669,059; after pruning – 552,988.
doi:10.1371/journal.pgen.1004345.t001
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the 14 replicated pathways, thus indicating their potential

importance in terms of SCZ risk: FOXP2 (eight pathways);

BCL11A (six pathways); PCDH7 and RPL36P13 (five pathways

respectively); and CACNB2, CTCF, MECOM, and RIMS1 (four

pathways respectively).

Of the genes that were annotated to the 14 replicated pathways,

the top 100 were then tested in the Psychiatric Genomewide

Association Study Consortium (PGC) data. Of these, significant

results were obtained for 18 genes (see Table S4). The vast

majority of the 18 genes reside on different chromosomes, while

most of the remainder reside on different chromosome arms. It

therefore seems reasonable to assume that they represent

independent signals, which results in a p-value of 0.004 for an

enrichment of SCZ-associated genes among the 100 top genes.

Included in the list of 18 replicated genes are known SCZ

susceptibility genes, such as NRXN1, GRM3, and MMP16. Two of

the eight most frequent genes in the top 14 pathways were also

among the nominally significant genes in the gene-based FORGE

analysis, i.e. CACNB2 (p = 8.5761024) and CTCF (p = 0.015).

Given the overlap (approx. 1,200 cases) between the PGC sample

(FORGE analyses) and the present discovery sample (component

Global Test), we opted to analyze the PGC dataset without

including our discovery dataset. These analyses generated results

of the same order of magnitude for both genes (CACNB2:

p = 0.0090; CTCF: p = 0.0320). While CACNB2 showed a trend

towards association in an independent dataset from Denmark

(p = 0.0970), thus supporting the strong signal from the PGC data,

CTCF was found to be strongly associated in the same independent

Danish sample (p = 0.0075).

Potential functional consequences of SNPs in CTCF
Polyphen-2 predicted that the coding SNPs of interest in CTCF

were ‘‘benign’’, whereas SIFT predicted that they were ‘‘tolerat-

ed’’ (Table S5). Figure 3 illustrates the potential consequences

predicted for SNPs in CTCF and its regulatory regions. These

include SNPs genotyped in the present discovery study and SNPs

identified as their proxies using SNAP. For the latter, only those

that were annotated by RegulomeDB as being (1) likely to affect

DNA binding of the protein and linked to expression of a gene

target, or (2) likely to affect DNA binding, are listed. The complete

functional annotation data for the SNPs of CTCF are provided in

Table S5. All genotyped SNPs annotated to CTCF showed a

significant (component Global Test p-value of #0.05) contribution

to pathway associations. Of these, rs6499137 and rs7191281 were

located at the 39-UTR and the intron of CTCF, respectively. Given

the 20 kb flanking region allowed for assigning the SNPs to a gene,

the other two SNPs were considered to be shared with the

neighboring gene RLTPR. Based on the functional annotation with

the RegulomeDB database, the 39-UTR SNP of CTCF

(rs6499137) and its proxies were considered to be associated with

the altered expression of the neighboring gene RLTPR (Figure 3,

Table S5). One of the proxies (rs17686899) overlaps with a

number of functional elements, such as open chromatin region,

the binding sites for different transcription factors, and regions

with certain histone modifications across many cell types. This

suggests that the SNP was likely to affect the binding of a number

of transcription factors to the genomic region of this gene. The

respective expression quantitative trait loci (eQTL) information

suggested that the SNP was likely to affect the expression of two

genes, i.e. DUS2L and RLTPR. Among the CTCF-annotated SNPs,

the intronic SNP of CTCF, rs7191281, was one of the top SNPs

(component Global Test p-value of ,0.001) contributing to the

association of CTCF (and the association of the four replicated

pathways containing CTCF). In addition, this SNP had the lowest

p-value in the analyses of the PGC SCZ sample. While no

information concerning functionality was available in the Reg-

ulomeDB database for this intronic SNP of CTCF, its proxy,

rs13334205, was annotated with strong functional consequences.

This proxy SNP was located in the regulatory region of CTCF and

overlapped with the binding site of DNA-binding proteins, such as

EBF1, TCF12, POLR2A, in an open chromatin region (Figure 3,

Table S5).

Potential functional consequences of SNPs in CACNB2
The complete functional annotation data for the SNPs of

CACNB2 are provided in Table S6. The positions of the majority

of the genotyped and the proxy SNPs of CACNB2 overlapped a

motif match to the FOX (FOXP1, FOXJ1, FOXJ2) and GATA

(GATA1, GATA3) family motifs in open chromatin regions. Among

the SNPs mapped to CACNB2, rs12257556 and its proxy

rs4748474 were annotated with the strongest functional conse-

quences. These intronic SNPs were eQTLs for ARL5B, and

overlapped an open chromatin region. The proxy SNPs

rs35803482 and rs7897710 both overlap with the binding sites

of RAD21, SMC3, CTCF, and have a motif match for FOXP1. The

intronic SNP rs2799573 (which was also the most highly

associated SNP of CACNB2 in the PGC data) lies in the binding

region of a number of proteins, such as CDX2, CTCF, JUN, JUND,

MEF2A, RAD21, and SMC3 (Table S6), as identified in the

ENCODE ChIP-seq data across a diverse set of cell types.

Discussion

SCZ GWAS data analyses
In the present study, a genome-wide pathway association

analysis was performed by means of the Global Test. The analyses

involved well-curated descriptions of 7,350 pathways, and were

carried out on large-scale discovery and replication datasets. A

gene-based analysis of genes with a high contribution to the

significance of the top pathways was then performed using the

Figure 2. (A) Circos plots integrating the Global Test and FORGE analysis and heatmaps for the levels of single nucleotide
polymorphism (SNP)- and gene significance. (B) Inset legend providing information represented by each data ring. Notes: for visibility, the
implicated gene locations were zoomed in upon by up to 1200%. The inset legend image provides information represented by each ideogram. 2
log10 of the individual SNP and the gene p-values increase radially outward. The arc of each heatmap wedge maps directly to the location of the SNP
in the genome. The arc width is proportional to the size of the associated gene (plus 20 kb upstream and downstream). Individual SNP p-values for
the BOMA-UTR and the GAIN-MGS data sets are shown as scatterplots on ideograms A and B. The gene p-values for Psychiatric Genetics Consortium
(PGC) datasets are shown as a scatterplot on ideogram C. The significance scores for genes contributing to a pathway significance are shown as
heatmaps on ideograms 1–14. 1 - dbGO:0050808:synapse organization; 2 - dbKEGG:04514:cell adhesion molecules; 3 - dbCGP:Kyng dna damage by
UV; 4 - dbKEGG:04210:apoptosis; 5 - dbGO:0046914:transition metal ion binding; 6 - dbGO:0008270:zinc ion binding; 7 - dbGO:0010628:positive
regulation of gene expression; 8 - dbMIR:gagcctg,mir-484; 9 - dbTFT:v$cebpa 01; 10 - dbTFT::v$hnf4 q6; 11 - dbTFT:v$chop 01; 12 - dbTFT:v$ptf1bea
q6; 13 - dbTFT:v$ciz 01; 14 - dbTFT:v$sox5 01. The darker the red, the higher the contribution of the SNP/gene to the association of the respective
pathway. Comparing the overlapping of important genes in different pathways allows investigation of whether they lie within intersections of those
pathways.
doi:10.1371/journal.pgen.1004345.g002
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SCZ GWAS results of the PGC. Finally, a functional SNP-based

analysis of the top hit genomic regions was conducted. Through

this hierarchical approach, we were able to replicate pathway

findings from previous studies of SCZ and detect novel pathways

and genomic regions with an association to SCZ in the

investigated samples. In the discovery set, we detected evidence

for a significant contribution of 27 pathways. Of these, 14

remained significant in the replication dataset. The 14 replicated

pathways are involved in transcriptional regulation and gene

expression, synapse organization, cell adhesion, and apoptosis.

Previous pathway analyses of SCZ GWAS data have identified

associations with pathways that are mainly involved in processes

critical to synaptic function, neurodevelopment, cell adhesion, the

immune system, the estrogen biosynthetic process, and apoptosis

[10], [19], [20]. One of the 14 significant pathways in the present

study, i.e. cell adhesion, was also the most significant pathway in

the study by O’Dushlaine et al. [10]. Jia et al. [19] reported

nominal significance for the following four pathways: CARM_ER

(CARM1 and Regulation of the Estrogen Receptor); glutamate

metabolism; TNFR1; and TGF beta signaling. Glutamate is

implicated in synaptic neurotransmission, and TGF-beta and

TNFR1 signaling are involved in several cellular processes,

including apoptosis and excitotoxicity. The top hit pathways

‘‘synaptic organization’’ and ‘‘apoptosis’’ from the present study

are thus consistent with the results of Jia et al [19].

However, the majority of pathways with significant association

to SCZ in the present study are novel, and they are mainly

involved in transcriptional regulation and gene expression. One

reason for the failure of previous pathway-based studies of SCZ to

generate similar findings may have been that they focused mainly

on gene sets from the KEGG and BioCarta databases, whereas we

accessed several pathway databases. These included the GO

database, as well as special gene-set collections on chemical and

genomic perturbations (dbCGP), and transcriptional regulation

such as dbTFT and dbMIR. It should be noted that only few of

our 14 replicated pathways achieved significance in the analysis of

our discovery sample using GRASS [21], gseaSNP [22], and

ALIGATOR [23]; see Text S1 and Table S1C). The difference

in results can be explained by the different assumptions these

alternative pathway approaches rest on.

As part of our hierarchical approach, we aimed to identify

which genes in a particular pathway could be responsible for the

association with SCZ risk. Integration of gene-based analysis

facilitated both the prioritization of potential candidate genes and

more precise formulation of hypotheses concerning the functional

consequences of the potential pathway perturbations (i.e. at the

gene- and SNP-level). In particular, we explored how variants that

emerged as being of importance for our pathway- and gene-based

signals might affect the function and regulation of other genes.

In the gene-based analysis, CACNB2 and CTCF showed the

strongest evidence for association with SCZ in both the present

samples and in those of the PGC. The gene CACNB2 encodes an

auxiliary voltage-dependent L-type calcium-channel subunit that

is mainly expressed in heart and brain tissue [24]. This subunit is

essential for normal surface expression, adequate trafficking, and

functioning of voltage-gated calcium channels [24]. Recently,

CACNB2 was among four loci with genome-wide significance in a

cross-disorder analysis of GWAS data for autism spectrum

disorder, attention deficit-hyperactivity disorder, bipolar disorder,

major depressive disorder, and SCZ [25]. Previously, CACNB2 had

been one of the top hit regions in a GWAS of bipolar disorder I in

a Han Chinese population [26]. Functionally, the calcium channel

beta-2 subunit encoded by CACNB2, together with the calcium

channel alpha(2)/delta subunit, affects the kinetics and expression

Figure 3. RegulomeDB functional annotation for SNPs in CTCF and its regulatory regions. Notes: * genotyped in the BOMA-UTR data set
and sorted by their genomic coordinates. SNPs are within or 20 kb upstream and downstream of CTCF. ** AR FOXA1 USF1 CDX2 HNF4A TRIM28 USF2
TCF4 HDAC2 SP1 BHLHE40. *** KROX SP4 SP1:SP3 HIC1 Zif268 Sp4 Sp1 SP1 Egr. 1 RegulomeDB score: [1f] - likely to affect binding and linked to
expression of a gene target; [2b] - likely to affect binding; [4,5,6] - minimum binding evidence.
doi:10.1371/journal.pgen.1004345.g003
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of Ca(V)1.2 (encoded by CACNA1C) [27]. CACNA1C is a well-

established susceptibility gene for bipolar disorder, SCZ, and

major depressive disorder [25], [28–31]. The RegulomeDB search

of genotyped SNPs and their proxies in CACNB2 resulted in the

detection of the intronic SNPs rs12257556 and rs10764566, and

these were eQTLs for ARL5B. The gene ARL5B encodes a trans-

Golgi network localized small G protein that has been described as

a key regulator of retrograde membrane transport [32]. Altered

ARL5B expression may be involved in the dysregulation of axonal

transport. Interestingly, a previous study found that the transcript

of one of the most widely studied susceptibility genes for SCZ,

DISC1, was an interacting molecule for a motor protein of axonal

transport [33]. It is of note that SNPs (both genotyped and proxies)

at the CACNB2 locus suggested an interplay with our second gene

of interest, i.e. CTCF. Such a connection is also suggested with

RAD21. A substantial body of literature describes an interaction

between RAD21 and CTCF, particularly in neurons [34], [35].

Although few data are available on a potential interaction between

CACNB2 and RAD21/CTCF, moderate evidence is available from

several protein-protein interaction databases (data not shown) for

an interplay between CTCF, RAD21, and ARL5B.

CTCF encodes a transcriptional regulator protein with 11

conserved zinc finger domains, and is an important modulator of

conformational changes in chromatin [36]. A recent study of

conditional knockout of the ctcf gene in mice demonstrated that

CTCF was a key regulator of neuronal differentiation, and was

essential for neuronal diversity and functional neural networks

[37]. The authors showed that CTCF was required for appropri-

ate dendritic arborization and synapse formation, since it

controlled clustered protocadherin expression. Previous studies

have shown an association between genetic variation in the

protocadherin gene cluster and SCZ [38], [39]. Our result adds to

this body of research the finding that transcriptional regulation of

genes essential for neuronal diversity, such as the regulation of

protocadherins by CTCF, may alter synaptic connectivity and thus

contribute to the etiology of SCZ. Intriguingly, evidence from the

majority of CTCF SNPs (both genotyped and proxies) suggested

that the variants influence RLTPR expression (Figure 3). The

RLTPR gene is expressed in several brain regions (EMBL-EBI

Expression Atlas; http://www.ebi.ac.uk/gxa/gene/

ENSG00000159753). The resulting protein has a RGD (Argi-

nine-Glycine-Aspartic acid) motif [40]. This is a universal cell

recognition site of extracellular proteins and interacts with a family

of cell-surface receptors, such as integrins for cell-adhesion

molecules [41]. Together with the replicated KEGG pathway cell

adhesion molecules, this finding strongly supports the hypothesis

that modulation of adhesion, and interactions between cells as well

as cell and the extracellular matrix, are implicated in the etiology

of SCZ.

Another top hit gene in the present study was FOXP2, which

was among the top genes in eight of the 14 most implicated

pathways. FOXP2 (forkhead-box P2) is a transcription factor with

an essential role in the development of speech and language

regions in the brain. The fact that SCZ patients often show

language impairments such as reading difficulties [42] renders

FOXP2 a plausible SCZ candidate gene. Interestingly, a previous

study reported an association between genetic variation in FOXP2

and SCZ in a Han Chinese population [43]. Furthermore, Walker

et al. [44] identified FOXP2 as an inhibitor of the promoter activity

and protein expression of DISC1. The present study supports the

hypothesis that FOXP2 plays an important role in SCZ on the level

of the transcriptional regulation of target genes.

The association with the apoptosis pathway was driven

predominantly by a SNP which mapped to AKT3. Besides being

detected via the Global Test, this gene was the most significantly

associated gene in the FORGE analysis of the PGC data. AKT3 is

a serin/threonine protein kinase, and is a member of the AKT

family. It is involved in many biological processes, including

apoptosis and cellular proliferation [45]. In a recent study by Diez

et al. [46], AKT3 was identified as a modulator of the fine

regulation of apoptotic processes and axon growth. Disruption of

AKT3 significantly reduced axon length and viability of neurons

in cell culture [46]. Moreover, AKT3 is the most abundant AKT

member in the brain during neurogenesis. AKT3 controls brain

size, and research has shown that genetic variation (duplication

and point mutation) of AKT3 contributes to hemimegalencephaly

[47].

In conclusion, the present study demonstrated that use of

information from databases focusing on cell-regulatory networks

together with information from traditional pathway database

resources can facilitate the identification of susceptibility factors for

the complex neuropsychiatric disease SCZ. Through the applica-

tion of a well-designed hierarchical framework, our study

highlighted the importance of calcium channel signaling, cell

adhesion, and the modulation of transcriptional regulation

implicated in neuronal diversity, neurite growth, and synapse

formation in the etiology of SCZ. In particular, CTCF and

CACNB2 (and possibly ARL5B) were identified as SCZ candidate

genes.

Materials and Methods

Ethics statement
Each participant provided written informed consent prior to

inclusion and all aspects of the study complied with the

Declaration of Helsinki. The study was approved by the ethics

committees of all study centers. For the German samples, this

comprised the Ethics Committee of the Rheinische Friedrich-

Wilhelms-University Medical School in Bonn, Ethics Committee

‘‘Medizinische Ethik-Kommission II’’ of the University of Heidel-

berg, the Ethics Committee of the Friedrich-Schiller-University

Medical School in Jena, and the Ethics Committee of the Ludwig-

Maximilians-University Munich. Samples obtained through

dbGaP were collected using institutional review board-approved

protocols in three studies, i.e. Schizophrenia Genetics Initiative

(SGI), Molecular Genetics of Schizophrenia Part 1 (MGS1), and

MGS2.

Data sets
Participants from four datasets were included (Table 1). The

discovery set was the BOMA-UTR sample. This consisted of data

from the MooDS SCZ consortium (BOMA) [48], [49], and

independent data from a Dutch study (UTR) [48], and comprised

2,230 SCZ cases and 2,810 controls. The replication set consisted

of the GAIN [dbGaP accession number: phs000021.v2.p1], and

the MGS [dbGaP accession number: phs000167.v1.p1] datasets,

and comprised 2,436 SCZ cases and 2,646 controls [50]. The

BOMA and MGS samples were also used in the PGC SCZ study.

An overlap of 80% existed between the PGC study and the sample

used in the present pathway-based analysis.

Linkage disequilibrium (LD)-based SNP pruning
To accommodate the Global Test’s assumption of indepen-

dence between variables, the SNP set was reduced according to a

variance inflation factor (VIF) and using a sliding window

approach, as implemented in PLINK [51] (http://pngu.mgh.

harvard.edu/purcell/plink/, version 1.07). A VIF of 100 was used.

The window size was set at 50 SNPs, and was shifted by 5 SNPs at
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each step. An LD-based pruned set of SNPs (Table 1) was then

considered for mapping to pathways. A detailed description of this

procedure is provided in Text S1 (section ‘‘SNP independence

and LD-based SNP pruning’’) and in Table S7.

PGC sample
For the gene-based analysis, PGC data (https://pgc.unc.edu/

ResultFiles/pgc.scz.2012-04.zip) were used.

Annotation of SNPs to genes
SNPs were annotated with information from dbSNP Build 127.

The ‘‘seq-gene’’ file containing information for annotating the

SNP rs numbers to ENTREZ gene IDs was downloaded from the

NCBI ftp website (BUILD 36.3). SNPs were assigned to a gene if

the SNP was located within the genomic sequence or within 20 kb

of the 59 and 39 ends of the first and last exons in order to account

for important regulatory regions [52]. If a SNP was within a region

shared by more than one gene, it was assigned to all genes (for

details see Text S1).

Pathway and gene-set databases
Selected gene-set collections were accessed from the Molecular

Signatures Database (MSigDB, version 3.0) [53] website (http://

www.broadinstitute.org/gsea/msigdb). This included the path-

ways from BioCarta (217 pathways), Chemical and Genomic

Perturbations (1,825 gene-sets), Reactome (775 pathways), Micro-

RNA Targets (176 gene-sets), and Transcription Factor Targets

(456 gene-sets). Information concerning GO terms [54] and

KEGG pathways [55], [56] was obtained from the respective R

packages (3,686 GO terms; GO.db, version 2.5.0; 215 KEGG

pathways; R package KEGG.db, version 2.5.0). At the time of

data retrieval (June, 2011), these repositories were more up-to-date

than the MSigDB database. A total of 7,350 pathways were

included. These were represented by 237 788 (53.7%) of the SNPs

in the BOMA-UTR dataset. Hence 53.7% of SNPs genotyped in

the exploration samples were mapped to pathways. For the SNP

data, SNP effect was coded as an allele dose effect (0, 1, 2).

Detailed information on the pathway information overlap and

redundancy is provided in Text S1 (section ‘‘Choice of pathways

and gene-sets’’) and in Table S2 and Figure S1.

Pathway analysis with the Global Test
For the pathway-based analysis, the Global Test [15] was used

(R package globaltest, version 5.12.0; Figure 1). The Global Test

takes the individual level GWAS data as an input, and tests

whether the global polymorphism pattern of a group of genes is

significantly associated with the phenotype of interest. To account

for both a potential underlying correlation structure and pathway

and/or gene size, the Global Test with subject sampling was

applied on the basis of 10,000 permutations of case-control status

[15]. To study the impact of pathway and/or gene size in more

detail, a SNP label permutation test was performed (for detailed

information see Text S1, section ‘‘Subject vs SNP label

permutations’’).

At the discovery stage of the analysis, less conservative

correction for multiple testing was applied in order to prioritize

the identification of associated pathways. This was a legitimate

approach, since any false positives would be controlled for in the

replication analysis. Multiplicity correction was applied for each

individual collection of pathways/gene-sets. For pathways/gene-

sets retrieved from the KEGG, Reactome, and MSigDB gene-set

collections, the pathway scores were corrected for multiple testing

using the Benjamini-Hochberg method [57]. A pathway was

considered to be significantly associated with the phenotype of

interest (i.e. SCZ) if the false discovery rates from all three of the

following were ,0.05: (i) un-permuted test; (ii) the subject-

sampling test; and (iii) the SNP-label permutation tests. The

resulting list of significant pathways was ranked according to the

false discovery rate obtained from the SNP-label permutation tests.

For the GO terms, correction for multiple testing was performed

using the Focus Level method [58]. A GO term was considered to

be significant if both of the following were,0.05: (i) the focus level

obtained from the un-permuted test; and (ii) the false discovery

rate obtained from the subject-sampling test. To account for a

gender-specific variance in the perturbed pathways, control for

gender was used as a covariate [15].

Component Global Test
To estimate the contributions of individual SNPs to a pathway-

or a gene association, the component global test was performed

using the covariates function implemented in the R package globaltest

[15]. Throughout the text, the single SNP p-values obtained using

the Global Test refer to the results obtained using the component

global test.

The Global Test with the replication dataset
Only pathways that were significantly associated with SCZ in

the discovery set were followed-up (Figure 1, step 1). All tests in

the follow-up step were performed as described above, with the

exception that all tested pathways were subjected to Benjamini-

Hochberg correction for multiple testing. Possible stratification in

the data was investigated using a multi-dimensional scaling (MDS)

approach. MDS covariates were obtained from PLINK using a

previously described protocol [48]. To correct for the potential

effect of stratification on the association test, the Global Test was

run with four leading MDS dimensions as covariates.

Gene-based analysis with Global Test and FORGE
The aim of the second step (Figure 1, gene-based analysis) was

to identify genes of particular importance to the replicated

pathways. Genes that mapped to one or more of the identified

pathways were analyzed (Figure 1, step 2). First, the component

global test was performed for every individual SNP that was

annotated to the replicated pathways. SNPs with a component

global test p-value of ,0.001 in the BOMA-UTR dataset were

then annotated to genes. These genes are referred to as ‘‘top

genes’’ in the subsequent text. Gene-based analysis of PGC data

for the top genes was then conducted using FORGE [17] As with

the Global Test, the analyses focused on genomic sequences that

included both the genes themselves and a 20 kb window on either

side of the respective gene to account for important regulatory

regions. Along with the summary statistics of the PGC, genotype

data from the European HapMap 3 samples were used (CEU and

TSI). Details of the program and the test statistic used to calculate

the gene-based p-values (fixed-effects Z score method) are

provided elsewhere [17]. Genes that remained nominally signif-

icant (p,0.05) in both the component global test and the FORGE

analyses were considered for the third step of the analyses (SNP

function annotation). No correction for multiple testing was

performed. However, replication of our most interesting findings

was sought in an independent dataset from Denmark. Detailed

information on these Danish samples is provided elsewhere [59].

SNP function annotation
The third step (Figure 1, SNP function annotation) focused on

genes identified in step 2. Evidence that SNPs annotated to these
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genes are implicated in SCZ was sought by investigating the

potential consequences of SNPs in terms of gene regulation or

function. For each gene of interest, we first selected all SNPs that

were annotated to this gene and which had shown evidence for

association with SCZ in the discovery dataset (Global Test, p#

0.05). To account for the relevant information from other

correlated SNPs, we then identified all SNPs from the 1000

genomes project (pilot project) [60] that showed strong LD with

the associated SNPs (r2.0.8, maximum distance between both

SNPs = 500 kb). The webtool SNAP [61] (Version 2.2) was used.

Each query SNP was included as its own proxy. RegulomeDB [18]

and Polyphen-2/SIFT [62], [63] were used for the functional

classification of non-coding and coding SNPs, respectively.

Supporting Information

Figure S1 The heatmap of the level of gene overlap between the

27 schizophrenia associated pathways. The values in the cells

indicate the maximum fraction overlap of the genes in a pathway

(listed on y-axis). The corresponding pathway name in the x-axis is

a pathway with the highest overlap (self-overlap is excluded).

(TIF)

Figure S2 Hierarchical clustering of replicated pathways. The

data are the counts of overlapping implicated single nucleotide

polymorphisms, as detected using the Global Test in the BOMA-

UTR dataset.

(TIF)

Figure S3 Comparison of the p-values obtained from the single

nucleotide polymorphism-label permutation and subject-sampling

test for all gene-sets.

(TIF)

Table S1 Comparisons of FDRs (BH) and P-values (P) for (A)

BOMA-UTR datasets for top 27 schizophrenia associated

pathways identified by the GlobalTest performed to account for

gender differences, linkage disequilibrium-structure, and gene-set

size, (B) for the independent datasets (BOMA, UTR, GAIN, and

MSG) for the top 27 schizophrenia associated pathways, (C) for

BOMA-UTR dataset for top 14 replicated schizophrenia

associated pathways identified by various analysis methods.

(DOC)

Table S2 Comparison of redundancies in the subsets of the 6

pathway databases/gene-set collections.

(DOC)

Table S3 (A) Genes overlapping between the 14 replicated

pathways in the BOMA-UTR dataset and (B) the GAIN-MGS

dataset. (C) Single nucleotide polymorphisms overlapping between

the 14 replicated pathways in the BOMA-UTR dataset and (D)

the GAIN-MGS dataset.

(DOC)

Table S4 List of schizophrenia (SCZ) associated genes, their p-

values (FORGE analysis), and membership in the SCZ associated

pathways discovered and replicated in the present study. Pathways

in bold also showed an overall association using one of the other

three methods (ALIGATOR, GRASS, gseaSNP) applied in the

present study.

(DOC)

Table S5 Potential functional consequences of CTCF associated

SNPs.

(XLS)

Table S6 Potential functional consequences of CACNB2

associated SNPs.

(XLS)

Table S7 The Global Test results for the discovered gene-sets

remained significant when the test was repeated with varying

degrees of multicollinearity in the data.

(DOC)

Text S1 Description of supplementary results and methods.

(DOC)
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