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Abstract

This paper presents a novel approach to single-frame

pedestrian classification and orientation estimation. Un-

like previous work which addressed classification and ori-

entation separately with different models, our method in-

volves a probabilistic framework to approach both in a uni-

fied fashion. We address both problems in terms of a set

of view-related models which couple discriminative expert

classifiers with sample-dependent priors, facilitating easy

integration of other cues (e.g. motion, shape) in a Bayesian

fashion. This mixture-of-experts formulation approximates

the probability density of pedestrian orientation and scales-

up to the use of multiple cameras.

Experiments on large real-world data show a significant

performance improvement in both pedestrian classification

and orientation estimation of up to 50%, compared to state-

of-the-art, using identical data and evaluation techniques.

1. Introduction

Pedestrian recognition is a key problem for a number of

application domains, e.g. surveillance, robotics and intelli-

gent vehicles. Yet, it is a difficult task from machine vision

perspective because of the wide range of possible pedes-

trian appearance, due to changing articulated pose, cloth-

ing, lighting, and background. The lack of explicit models

has spawned the use of implicit representations, based on

pattern classification techniques [18].

Beyond detecting a pedestrian in the scene, many ap-

plication areas benefit from knowledge of body orientation

of a pedestrian. In the domain of intelligent vehicles [13],

known pedestrian orientation can enhance path prediction,

to improve risk assessment. Other applications include per-

ceptual interfaces [32], where body orientation can be used

as a proxy for interaction.

Orientation could be inferred by trajectory information

(tracking). Yet, trajectory-based techniques fail in case of

Figure 1. Framework overview. K view-related models specific to

fuzzy clusters Ψk are used for pedestrian classification and orien-

tation estimation. The models capture sample-dependent cluster

priors and discriminative experts which are learned from pedes-

trian (class ω0) and non-pedestrian (class ω1) samples x.

pedestrians which are static or just about to move. Track-

ing approaches also require a certain amount of time to

converge to a robust estimate. Quick adaptation to sudden

changes in movement is often problematic. Particularly in

the intelligent vehicle application, time is precious and fast

reaction is necessary.

As a way out, methods to infer pedestrian orientation

from a single image have been proposed [12, 26, 31]. Such

approaches augment an existing pedestrian detector by a

post-processing step to estimate orientation. Single-frame

orientation estimation allows to recover pedestrian heading

without integration over time; static pedestrians do not pose

a problem.

In this paper, we present a novel integrated method for

single-frame pedestrian classification and orientation esti-

mation. Both problems are treated using the same under-

lying probabilistic framework, in terms of a set of view-

related models which couple discriminative expert models

with sample-dependent priors. Pedestrian classification in-

volves a maximum-a-posteriori decision between the pedes-

trian class and non-pedestrian class. Orientation estimates

are inferred by means of approximating the probability den-

sity of pedestrian body orientation. See Figure 1.



The general approach is independent from the actual

type of discriminative models used and can be extended to

other object classes. This paper is not concerned with estab-

lishing the best absolute performance given various state-

of-the-art discriminative models [7, 9, 11, 14, 17, 33, 35,

36, 37, 39]. Rather, our aim is to demonstrate the relative

performance gain resulting from the proposed integrated ap-

proach, exemplified using two state-of-the-art feature sets

and classifiers in our experiments (see Sec. 4).

2. Previous Work

There is extensive literature on image-based classifica-

tion of pedestrians. See [11, 14] for recent surveys. We do

not consider 3D human pose estimation techniques [24], but

focus on single camera 2D approaches suited for medium

resolution pedestrian data (i.e. pedestrian height smaller

than 80 pixels).

Roughly, approaches to pedestrian classification can be

distinguished by the type of models involved. Generative

approaches model the appearance of the pedestrian class by

approximating its class-conditional density. Combined with

class priors, posterior probabilities for classification can be

inferred using a Bayesian approach.

Discriminative approaches model the Bayesian decision

by learning discriminative functions (decision boundaries)

to separate object classes within a feature space. While

generative models implicitly establish a feature-space spe-

cific to the object class, discriminative models combine a

more generic lower-level feature set with pattern classifica-

tion methods, see [34]. In on-line application, discrimina-

tive models are often faster, since they do not require es-

timation of a large set of model parameters (model fitting)

from the data. Yet, generative models can handle partially

labeled data and allow to generate virtual samples [10].

For generative models, shape cues are widely used be-

cause of their robustness to variations in pedestrian appear-

ance due to lighting or clothing [6, 10, 15]. Other work con-

sidered joint shape and texture models [6, 10, 19], which

require data normalization methods and involve a signifi-

cantly increased feature space.

Discriminative models comprise a combination of fea-

ture extraction and classification. Non-adaptive Haar

wavelet features have been popularized by [27] and used by

many others [25, 31, 35]. The particular structure of local

texture features has also been optimized, in terms of local

receptive field features [36] which adapt to the underlying

data during training. Other texture-based features are code-

book patches, extracted around interest points in the image

[1, 20, 29] and linked via geometric relations.

Gradient-based features have focused on discontinuities

in image brightness. Normalized local histograms of ori-

ented gradients have found wide use in both sparse (SIFT)

[22] and dense representations (HOG) [7, 12, 38, 39]. Spa-

tial variation and correlation of gradients have been encoded

using covariance descriptors enhancing robustness towards

brightness variations [33]. Yet others have proposed local

shape filters exploiting characteristic patterns in the spatial

configuration of salient edges [23, 37].

Regarding classifier architectures, support vector ma-

chines (SVM) have become increasingly popular in the do-

main of pedestrian classification, in both linear [7, 8, 26, 31,

38, 39] and non-linear variants [25, 27]. However, perfor-

mance boosts resulting from the non-linear model are paid

for with a significant increase in computational costs and

memory. Other popular classifiers include neural networks

[13, 18, 36] and AdaBoost cascades [23, 33, 35, 37, 38, 39].

To improve pedestrian classification performance, sev-

eral approaches have attempted to break-down the com-

plexity of the problem into sub-parts. Besides component-

based approaches involving a representation of pedestrians

as an ensemble of parts [23, 25, 37], mixture-of-experts

strategies are particularly relevant to current work. Here,

local pose-specific clusters are established, followed by

the training of specialized classifiers for each subspace

[13, 26, 30, 31, 37, 38]. The final decision of the classifier

ensemble involves maximum-selection [26, 37], majority

voting [31], trajectory-based data association [38] or shape-

based selection [13]. Approaches performing object de-

tection/classification in multiple cameras at different view-

points are also relevant to current work [3, 16].

Besides work in the domain of 3D human pose estima-

tion [24], few approaches have tried to recover an estimate

of pedestrian orientation based on 2D lower-resolution im-

ages [12, 26, 31]. Existing approaches re-used popular

features, i.e. Haar wavelets [31] or gradient histograms

[12], and applied them in a different classification scheme.

While pedestrian classification usually involves a two-class

model (pedestrian vs. non-pedestrian), [12, 26, 31] have

not used non-pedestrian training samples for orientation

estimation. Instead, one vs. one [12] and one vs. rest

[26, 31] multi-class schemes have been trained using pedes-

trian data only. Recovering the most likely discrete orienta-

tion class then involved maximum-selection over the asso-

ciated multi-class model.

We consider the main contribution of our paper to be the

integrated framework for pedestrian classification and ori-

entation, see Figure 1. Previous approaches to orientation

estimation, [12, 26, 31], assumed classification to be solved

beforehand by some other approach or treated both prob-

lems separately with different models and different training

data. In our approach, both problems are addressed in a uni-

fied fashion, using the same underlying mixture-of-experts

model within a probabilistic framework. The integrated

treatment improves the performance of both classification

and orientation estimation. Unlike [12, 26, 31], we utilize

readily available negative samples not only for classification



but also for orientation estimation, to better map out the fea-

ture space and stabilize the learned discriminative models.

Our orientation estimate involves approximating the den-

sity function of pedestrian body orientation. This is quite

unlike [12, 31], where pedestrian heading is only recovered

in terms of pre-defined orientation classes, e.g. front, back,

etc., using multi-class classification techniques. Such ori-

entation classes are implicitly contained in our approach by

integrating the density function. A secondary contribution

is concerned with the integration of other cues, e.g. shape

[13] or motion [2], as sample-dependent priors, by means

of a Bayesian model.

3. Classification and Orientation Estimation

Input to our framework is a training set D of pedestrian

and non-pedestrian samples x
∗

i ∈ D. Associated with each

sample is a class label ωi, (ω0 for the pedestrian and ω1 for

the non-pedestrian class), as well as a K-dimensional clus-

ter membership vector zi, with 0 ≤ zk
i ≤ 1 and

∑
k zk

i = 1.

zi defines the fuzzy membership to a set of K clusters Ψk,

which relate to the similarity in appearance to a certain view

of a pedestrian. Note that the same also applies to non-

pedestrian training samples, where the image structure re-

sembles a certain pedestrian view, see for example the first

non-pedestrian sample in Figure 2. Our definition of cluster

membership zi is given in Sec. 4.1.

3.1. Pedestrian Classification

For pedestrian classification, our goal is determine the

class label ωi of a previously unseen sample xi. We make

a Bayesian decision and assign xi to the class with highest

posterior probability:

ωi = argmax
ωj

P (ωj |xi) (1)

We decompose P (ω0|xi), the posterior probability that a

given sample is a pedestrian, in terms of the K clusters Ψk

as:

P (ω0|xi) =
∑

k

P (Ψk|xi)P (ω0|Ψk,xi) (2)

≈
∑

k

wk(xi)fk(xi) (3)

In this formulation, P (Ψk|xi) represents a sample-

dependent cluster membership prior for xi. We approxi-

mate P (Ψk|xi) using sample-dependent weights wk(xi),
with 0 ≤ wk(xi) ≤ 1 and

∑
k wk(xi) = 1, as defined in

Eq. (5), Sec. 3.2.

P (ω0|Ψk,xi) represents the cluster-specific probability

that a given sample xi is a pedestrian. Instead of explic-

itly computing P (ω0|Ψk,xi), we utilize an approximation

given by a set of discriminative models fk, as follows.

We train K texture-based classifiers fk on the full training

set D to discriminate between the pedestrian and the non-

pedestrian class. For each training sample x
∗

i , the fuzzy

cluster membership vector zi is used as a sample-dependent

weight during training. The classifier outputs fk(xi) can be

seen as approximation of the cluster-specific posterior prob-

abilities P (ω0|Ψk,xi).
In principle, the proposed framework is independent

from the actual discriminative model used. We only re-

quire example-dependent weights during training, e.g. [4],

and that the classifier output (decision value) fk(xi) relates

to an estimate of posterior probability. In the limit of in-

finite data, the outputs of many state-of-the-art classifiers,

e.g. neural networks or support vector machines, can be

converted to an estimate of posterior probabilities [18, 28].

We use this in our experiments.

3.2. SampleDependent Cluster Priors

Prior probabilities for membership to a certain cluster Ψk

of an unseen sample xi, P (Ψk|xi), are introduced in Eq.

(2). Note, that this prior is not a fixed prior, but depends on

the sample xi itself. At this point, information from other

cues besides texture (on which the discriminative models

fk are based) can be incorporated into our framework in a

probabilistic manner. We propose to model cluster priors

using a Bayesian approach as:

P (Ψk|xi) =
p(xi|Ψk)P (Ψk)∑

l p(xi|Ψl)P (Ψl)
(4)

Cluster conditional-likelihoods p(xi|Ψk) involve the

representation of xi in terms of a set of features, followed by

likelihood estimation. Possible cues include motion-based

features, i.e. optical flow [2, 8], or shape [13]. Likelihood

estimation can be performed via histogramming on training

data or fitting parametric models [13].

In our experiments, we consider both uniform priors, as

well as shape-based priors based on [13]: Within each clus-

ter Ψk, a discrete set of shape templates specific to Ψk is

matched to the sample xi. Shape matching involves cor-

relation of the shape templates with a distance-transformed

version of xi. Let Dk(xi) denote the residual shape dis-

tance between the best matching shape in cluster Ψk and

sample xi. By representing xi in terms of Dk(xi) and us-

ing Eq. (4), sample-dependent shape-based priors for clus-

ter Ψk are approximated as:

wk(xi) =
p(Dk(xi)|Ψk)P (Ψk)∑

l p(Dl(xi)|Ψl)P (Ψl)
≈ P (Ψk|xi) (5)

Priors P (Ψk) are assumed equal and cluster-conditionals

are modeled as exponential distributions of Dk(xi):

p(Dk(xi)|Ψk) ∝ λke−λkDk(xi) (6)



Parameters λk of the exponential distributions are

learned via maximum-likelihood on the training set.

3.3. Pedestrian Orientation Estimation

Instead of simply assigning a test sample to one of the K

view-related clusters Ψk used for training (i.e. a maximum

a-posteriori decision over the expert classifiers), we aim to

estimate the actual body orientation θ of a pedestrian ω0.

For this, we use a mixed discrete-continuous distribution

p(ω0, θ|xi) which is approximated by a Gaussian mixture

model:

p(ω0, θ|xi) ≈
∑

k

αk,i gk(θ|xi) (7)

In each cluster Ψk, a Gaussian with mean µk and stan-

dard deviation σk is used to approximate the component

density gk(θ|xi) of pedestrian body orientation associated

with cluster Ψk. For mixture weights αk,i, we re-use

wk(xi)fk(xi), the weighted classifier outputs, as defined

in Eq. (3):

gk(θ|xi) = N (θ|µk, σ2
k) ; αk,i = wk(xi)fk(xi) (8)

The most likely pedestrian orientation θ̂i can be recov-

ered by finding the mode of the density in Eq. (7), e.g. [5]:

θ̂i = argmax
θ

(p (ω0, θ|xi)) (9)

Besides estimating p(ω0, θ|xi), our framework allows to

recover so-called orientation classes, similar to [12, 26, 31]:

The probability that a sample xi is a pedestrian with orien-

tation in a range of [θ̃a, θ̃b] is given by:

P (ω0, θ ∈ [θ̃a, θ̃b] | xi) =

∫ θ̃b

θ̃a

p(ω0, θ|xi)dθ (10)

We do not use one vs. one [12, 26] or one vs. rest [26, 31]

multi-class models for orientation estimation. Given the

similarity of front/back or left/right views in low-resolution

scenarios, such schemes would require highly similar train-

ing samples (often of the same physical pedestrians) to ap-

pear in both positive and negative training data, see Figure

2. As a result, the training procedure might become unsta-

ble and the recovered decision boundaries error-prone.

Instead, we tightly integrate orientation estimation and

pedestrian classification by means of re-using our classi-

fication models. Weights αk,i of the employed Gaussian

mixture model are based on the cluster-specific discrimina-

tive models fk and the associated sample-dependent prior

weights, see Eqs. (3) and (8). The training of fk involves

pedestrians and non-pedestrian samples which are readily

available in great quantities at no additional cost and help to

gain robustness by implicitly mapping out the feature space

and the decision boundary. Using this scheme, the problems

Figure 2. Examples of training and test data for pedestrians in four

view-related clusters and non-pedestrian samples.

of the one vs. one or one vs. rest strategies (see above) can

be overcome.

Another aspect is computational efficiency. Our frame-

work does not require to train an additional classifier for

orientation estimation. Due to the integrated treatment, ori-

entation estimation requires only little additional resources,

since the main computational costs are introduced by the

texture-based classifiers fk, which are re-used.

4. Experiments

4.1. Experimental Setup

The proposed integrated framework was tested in large-

scale experiments on pedestrian classification and orienta-

tion estimation. To illustrate the generality with respect to

the discriminative models used, we chose two instances for

experimental evaluation which exhibit a diverse set of fea-

tures. First, we consider histograms of oriented gradients (9

orientation bins, 8 × 8 pixel cells) combined with a linear

support vector machine classifier (HOG) [7]. Second, we

evaluate adaptive local receptive field features (5×5 pixels)

in a multi-layer neural network architecture (NN/LRF) [36].

Results are expected to generalize to other pedestrian clas-

sifiers that are sufficiently complex to represent the large

training sets, e.g. [9, 18, 21, 27, 33, 35, 37, 39].

Training and test sets contain manually labeled pedes-

trian bounding boxes. We consider K = 4 view-related

clusters Ψk, roughly corresponding to similarity in appear-

ance to front, left, back and right views of pedestrians. For

the non-pedestrian samples, we use the approximated clus-

ter prior probability, see Sec. 3.2, as cluster membership

weights for training:

zi
k = wk(xi) ≈ P (Ψk|xi) , ωi = ω1 (11)

To compute wk(xi), a set of 10946 shape templates corre-

sponding to clusters Ψk is used. Rather than Eq. (11), we

use a manual assignment to clusters Ψk for pedestrian train-

ing samples, which we found to perform best in preliminary



Pedestrians Pedestrians Non-

(labeled) (jittered) Pedestrians

Training Set 42645 383805 342271

Test Set 7613 68517 73405

Table 1. Training and test set statistics.

experiments. A possible reason is that shape cannot provide

a clear distinction between front and back views. Note that

the approaches we compare against, i.e. [12, 26, 31], have

similar requirements in terms of data labeling.

See Table 1 and Figure 2 for the dataset used. All train-

ing samples are scaled to 48 × 96 pixels (HOG) or 18 × 36
pixels (NN/LRF) with an eight-pixel border (HOG) or two-

pixel border (NN/LRF), to retain contour information. Nine

training (test) samples were created from each label by ge-

ometric jittering. Pedestrian samples depict non-occluded

pedestrians in front of a changing background.

Non-pedestrian samples were the result of a shape detec-

tion pre-processing step with relaxed threshold setting, i.e.

containing a bias towards more ”difficult” patterns. Train-

ing and test set were strictly separated: no instance of the

same real-world pedestrian appears in both training and test

set, similarly for the non-target samples.

4.2. Pedestrian Classification Performance

In our first experiment, we evaluate the classification per-

formance of the proposed view-related mixture architecture

in comparison to a single classifier trained on the whole

dataset irrespective of view, i.e. the approach of [7, 36].

Cluster priors, see Sec. 3.2, are considered uniform. Results

in terms of ROC performance are shown in Figure 3(a).

The mixture classifiers perform better than the corre-

sponding single classifiers. The decomposition of the prob-

lem into view-related subparts simplifies the training of the

expert classifiers, since a large part of the observable varia-

tion in the samples is already accounted for. Classification

performance and robustness is increased by a combined de-

cision of the experts. The performance benefit for the HOG

classifier is approx. a factor of two in reduction of false

positives at the same detection rate. Using LRF features,

the benefit of the mixture classifier is less pronounced.

Figure 3(b) shows the effect of adding a sample-

dependent cluster prior based on shape matching, see Sec.

3.2. For both HOG and LRF, only a small benefit is ob-

served. This suggests, that the utilized classifiers are capa-

ble to adequately capture the structure of each cluster, based

on the employed texture-based feature set alone.

4.3. Orientation Estimation Performance

Discrete Orientation Classes In our second experiment,

we evaluate orientation estimation performance using the

best performing system variant, as given in Figure 3: HOG
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Figure 3. (a) Performance of single classifiers vs. the view-related

mixture architecture. (b) Benefit of shape-based priors in compar-

ison to non-informative priors.

mixture classifier with shape-based cluster priors. The

Gaussian mixture components used to model the cluster-

specific density of body orientation θ are empirically set as

follows (cf. Sec. 4.1):

Ψi : µi = i · 90◦, σi = 45◦, for i ∈ {0, 1, 2, 3} (12)

Figure 4 visualizes probability densities of body orien-

tation θ using a polar coordinate system. The angular axis

depicts orientation θ whereas the value of the densities is

shown on the radial axis (i.e. distance from the center).

In Figure 4(a), Gaussian mixture components gk(θ|xi), see

Eq. (8), are shown with parameters given in Eq. (12). Fig-

ure 4(b) depicts weighted mixture components and the re-

sulting mixture density p(ω0, θ|xi). Weights αk,i are de-

rived from the given test sample xi using Eq. (8). Note that

the actual orientation of the pedestrian sample matches the

mode of the recovered mixture density.

We compare our approach to our own implementations

of two state-of-the-art approaches to recover discrete orien-

tation classes (front, back, left and right), using the same

data and evaluation criteria, in terms of confusion matri-

ces. First, we consider the approach of Shimizu & Poggio

[31] which involves Haar wavelet features with a set of sup-

port vector machines in a one vs. rest scheme. Second,
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Figure 4. Orientation densities in polar coordinates. (a) Gaussian

mixture components gk(θ|xi), (b) Mixture density p(ω0, θ|xi)
and components, weighted using αk,i for sample xi (as shown).

we evaluate the single-frame method of Gandhi & Trivedi

[12]. This technique uses HOG features (we use identical

HOG parameters as for our approach) and support vector

machines in a one vs. one fashion, together with the esti-

mation of pairwise cluster probabilities. Both approaches

were trained on pedestrian data only. To obtain discrete ori-

entation classes in our approach, we utilize Eq. (10). We

additionally consider a variant of our framework involving

maximum-selection over the expert classifiers, instead of

the Gaussian mixture-model (GMM) formulation, cf. Sec.

3.3.

Results are given in Figures 5 and 6. Our approach

reaches up to 67% accuracy for front/back views and up
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Figure 5. Confusion matrices and correct / false decision rate per

test sample for: (a) this paper (GMM), (b) this paper (max. selec-

tion), (c) Gandhi & Trivedi [12], (d) Shimizu & Poggio [31].

to 87% accuracy for left/right views, clearly outperforming

previous work. The overall correct (false) decision rate is

0.74 (0.26) per test sample. This represents a reduction in

false decision rate of more than 20% compared to Gandhi

& Trivedi [12] and more than 35% compared to Shimizu

& Poggio [31]. Note, that we use the same feature set for

both our approach and for Gandhi & Trivedi [12]. The ob-

served performance differences result from the proposed in-

tegration of orientation estimation and classification. Using

maximum-selection decreases the performance over GMM.

While the errors in orientation estimation for left and
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Figure 6. Cumulative distribution of absolute orientation error using different system variants, see text.

right views are evenly distributed among the other classes,

front and back views are more often confused with each

other. We attribute this to front and back views of pedes-

trians being highly similar both in shape and texture. The

main distinguishing factor is the head/face area, which is

very small compared to the torso/leg area, see Figure 2. In

case of left and right views, characteristic leg posture and

body tilt seem to be more discriminative cues.

Continuous Orientation To evaluate the quality of our

continuous orientation estimate, we utilize 14118 2D im-

ages of fully visible pedestrians from a realistic multi-

camera (3 cameras at different view-points, 4706 images

per camera) 3D human pose estimation dataset, see [16]1.

Since ground-truth 3D pose is available, we can obtain ex-

act ground-truth body orientation for all 2D images to com-

pare against. We evaluate the two best performing systems

from the previous experiment: our approach using GMM

and maximum-selection. Our evaluation measure is ab-

solute difference of estimated orientation and ground-truth

orientation.

First, we treat all images independently, irrespective of

which camera they come from (simulating a single cam-

era) and perform orientation estimation using Eq. (9). Sec-

ond, we take into account that each pedestrian is visible

in three cameras at the same time from different view-

points. One camera serves as a reference camera and the

rotational offsets of the other cameras are known through

camera calibration. For orientation estimation, we estab-

lish K = 4 view-related models (related to front, back, left

and right) per camera and incorporate all clusters into a sin-

gle 12-component GMM model, see Sec. 3.3, with orien-

tations normalized to the reference camera. For maximum-

selection using multiple cameras, we perform orientation

estimation using maximum-selection over the expert classi-

fiers independently for each camera and average (normal-

ized) orientations over all three cameras. This technique

performs better than maximum-selection over all 12 mod-

els.

1Thanks to the authors of [16] for making the dataset publicly available.

Results are shown in Figure 6, in terms of cumulative

distributions of absolute orientation error which are ob-

tained using histogramming. All GMM variants outperform

the maximum-selection variants. Multi-camera fusion sig-

nificantly improves performance. The benefit is more sig-

nificant for the GMM approach (blue curve vs. red curve)

than for the maximum-selection approach (green curve vs.

black curve) which demonstrates the strength of the pro-

posed GMM-based orientation estimation technique. Cov-

ering the same fraction of samples, orientation errors for

the multi-camera GMM approach are up to 50% less than

for the corresponding maximum-selection technique (blue

curve vs. green curve).

Note that the presented results were obtained by consid-

ering orientation errors for all views. Results on a subset

consisting of left and right views are significantly better, cf.

Figure 5. Further, no temporal filtering of the recovered

orientation densities was applied, which would presumably

further improve absolute performance.

5. Conclusion

This paper presented a novel integrated approach for

pedestrian classification and orientation estimation. Our

probabilistic model does not restrict the estimated pedes-

trian orientation to a fixed set of orientation classes but di-

rectly approximates the probability density of body orien-

tation. Cluster priors can be incorporated using a Bayesian

model. In large-scale experiments, we showed that the pro-

posed integrated approach reduces the error rate for classifi-

cation and orientation estimation by up to 50%, compared to

state-of-the-art. We take this as evidence for the strength of

the proposed integrated approach. Future work deals with

additional cues as priors (e.g. motion) and full integration

into a pedestrian recognition system.
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[32] M. Turk and M. Kölsch. Perceptual interfaces. In G. Medioni

and S. Kang, editors, Emerging Topics in Computer Vision.

Prentice Hall, 2004. 1

[33] O. Tuzel, F. Porikli, and P. Meer. Human detection via clas-

sification on Riemannian manifolds. In Proc. CVPR, 2007.

2, 4

[34] I. Ulusoy and C. M. Bishop. Generative versus discrimina-

tive methods for object recognition. In Proc. CVPR, pages

258–265, 2005. 2

[35] P. Viola, M. Jones, and D. Snow. Detecting pedestrians using

patterns of motion and appearance. IJCV, 63(2):153–161,

2005. 2, 4
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