
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Integrated Performance Monitoring of a Cosmology Application on Leading HEC Platforms

Permalink
https://escholarship.org/uc/item/63w284xb

Authors
Borrill, Julian
Carter, Jonathan
Oliker, Leonid
et al.

Publication Date
2005-04-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/63w284xb
https://escholarship.org/uc/item/63w284xb#author
https://escholarship.org
http://www.cdlib.org/


Integrated Performance Monitoring of a Cosmology Application

on Leading HEC Platforms

J. Borrill, J. Carter, L. Oliker, D. Skinner

Computational Research Division

Lawrence Berkeley National Laboratory

Berkeley, CA 94720

{jdborrill,jtcarter,loliker,dskinner}@lbl.gov

R. Biswas

NAS Division

NASA Ames Research Center

Moffett Field, CA 94035

rbiswas@mail.arc.nasa.gov

Abstract

The Cosmic Microwave Background (CMB) is an

exquisitely sensitive probe of the fundamental parame-

ters of cosmology. Extracting this information is compu-

tationally intensive, requiring massively parallel com-

puting and sophisticated numerical algorithms. In this

work we present MADbench, a lightweight version of the

MADCAP CMB power spectrum estimation code that

retains the operational complexity and integrated sys-

tem requirements. In addition, to quantify communi-

cation behavior across a variety of architectural plat-

forms, we introduce the Integrated Performance Moni-

toring (IPM) package: a portable, lightweight, and scal-

able tool for effectively extracting MPI message-passing

overheads. A performance characterization study is

conducted on some of the world’s most powerful su-

percomputers, including the superscalar Seaborg (IBM

Power3+) and CC-NUMA Columbia (SGI Altix), as well

as the vector-based Earth Simulator (NEC SX-6 en-

hanced) and Phoenix (Cray X1) systems. In-depth anal-

ysis shows that in order to bridge the gap between the-

oretical and sustained system performance, it is critical

to gain a clear understanding of how the distinct parts

of large-scale parallel applications interact with the in-

dividual subcomponents of HEC platforms.

Keywords: Cosmic Microwave Background, MAD-

CAP, Altix Columbia, Earth Simulator, X1 Phoenix,

Power3 Seaborg, parallel performance characterization

1 Introduction

The Cosmic Microwave Background (CMB) is a

snapshot of the Universe when it first became electri-

cally neutral some 400,000 years after the Big Bang.

The tiny anisotropies in the temperature and polarization

of the CMB radiation are sensitive probes of cosmology,

and measuring their detailed statistical properties has

been a high priority in the field since its serendipitous

discovery in 1965. Since these anisotropies are O(10−5)

in temperature and O(10−7) or less in polarization, and

are imprinted on a background that has been cooled by

the expansion of the Universe to only 2.7 K today, har-

nessing the extraordinary scientific potential of the CMB

requires precise measurements of the microwave sky at

high resolution. The progressive reduction of the result-

ing datasets, first to a pixelized sky map, then to an angu-

lar power spectrum, and finally to cosmological parame-

ters, is a computationally intensive endeavor. The prob-

lem is exacerbated by an explosion in dataset sizes as

cosmologists try to make more and more accurate mea-

surements of the CMB. High-end computing (HEC) has

become an essential part of CMB data analysis, and the

effective use of such resources requires a detailed under-

standing of their performance under the demands of real

CMB data analysis algorithms and implementations.

CMB data analyses have typically been performed

on superscalar-based commodity microprocessors due

to their generality, scalability, and cost effectiveness.

However, two recent innovative parallel-vector architec-

tures — the Earth Simulator (ES) and the Cray X1 —

promise to narrow the growing gap between sustained

and peak performance for many classes of scientific ap-

plications. In addition, the new Columbia system at

NASA, constructed in just four months and continuously

operational during the build, brings an unprecedented

level of computational power at a fraction of the cost

of typical supercomputers. In order to characterize what

these platforms offer scientists that rely on HEC, it is

imperative to critically evaluate and compare them in the

context of demanding scientific applications [2, 3, 4, 5].

In this work, we present MADbench, a lightweight

version of the Microwave Anisotropy Dataset Com-

putational Analysis Package (MADCAP) CMB power

spectrum estimation code [1] that retains the opera-

tional complexity and integrated system requirements.

We compare the performance of MADbench on the ES

(NEC SX-6 enhanced) and Phoenix (Cray X1) against

those obtained on Columbia (SGI Altix) and Seaborg

(IBM Power3). To quantify communication behavior



Table 1. Architectural specifications of the Power3, Altix, ES, and X1

CPU/ Clock Peak Mem BW Peak MPI Lat Netwk BW Bisection BW Network

Platform Node (MHz) (GF/s) (GB/s) (bytes/flop) (usec) (GB/s/CPU) (bytes/flop) Topology

Power3 16 375 1.5 0.7 0.47 16.3 0.13 0.087 Fat-tree

Altix 2 1500 6.0 6.4 1.1 2.8 0.40 0.067 Fat-tree

ES 8 500 8.0 32.0 4.0 5.6 1.5 0.19 Crossbar

X1 4 800 12.8 34.1 2.7 7.3 6.3 0.088 2D torus

across this spectrum of architectures, we developed and

utilized the Integrated Performance Monitoring (IPM)

package: a portable, lightweight, and scalable tool for

effectively extracting MPI message-passing overheads.

In-depth analysis shows that in order to bridge the gap

between theoretical and sustained system performance,

it is critical to gain a clear understanding of how the

distinct parts of large-scale parallel applications interact

with the individual subcomponents of HEC platforms.

2 Target HEC Platforms

We begin by briefly describing the salient features

of the four parallel HEC architectures that are exam-

ined here (Table 1 presents a summary). Note that the

vector machines have higher peak performance and bet-

ter system balance than the superscalar platforms. The

ES and X1 have high memory bandwidth relative to

peak CPU speed (bytes/flop), allowing them to more

effectively feed the arithmetic units. Additionally, the

custom vector interconnects show superior characteris-

tics in terms of measured inter-node MPI latency [6, 9],

point-to-point messaging (network bandwidth), and all-

to-all communication (bisection bandwidth) — both in

raw performance and as a ratio of peak processing speed.

Overall, the ES appears to be the most balanced system,

while the Altix shows the best architectural characteris-

tics among the superscalar platforms.

2.1 Seaborg (Power3)

The Power3 was first introduced in 1998 as part of

IBM’s RS/6000 series. Each 375 MHz processor con-

tains two floating-point units (FPUs) that can issue a

multiply-add (MADD) per cycle for a peak performance

of 1.5 Gflop/s. The Power3 has a pipeline of only

three cycles, thus using the registers very efficiently

and diminishing the penalty for mispredicted branches.

The out-of-order architecture uses prefetching to reduce

pipeline stalls due to cache misses. The CPU has a

32KB instruction cache, a 128KB 128-way set associa-

tive L1 data cache, and an 8MB four-way set associa-

tive L2 cache with its own private bus. Each SMP node

consists of 16 processors connected to main memory

via a crossbar. Multi-node configurations are networked

via the Colony switch using an omega-type topology.

In this model, disk I/O uses the switch fabric, sharing

bandwidth with message-passing traffic. The Power3

experiments reported here were conducted on Seaborg,

the 380-node IBM pSeries system running AIX 5.1 and

operated by Lawrence Berkeley National Laboratory

(LBNL). The distributed filesystem was configured with

16 GPFS servers, each with 32GB of main memory that

can be used to cache files and metadata. The total size

of the filesystem was 30TB, with a block size of 256KB.

2.2 Columbia (Altix 3000)

Introduced in early 2003, the SGI Altix 3000 systems

are an adaptation of the Origin 3000, which use SGI’s

NUMAflex global shared-memory architecture. Such

systems allow access to all data directly and efficiently,

without having to move them through I/O or networking

bottlenecks. The NUMAflex design enables the proces-

sor, memory, I/O, interconnect, graphics, and storage to

be packaged into modular components, called “bricks.”

The primary difference between the Altix and the Ori-

gin systems is the C-Brick, used for the processor and

memory. This computational building block for the Al-

tix consists of four Intel Itanium2 processors (in two

nodes), local memory, and a two-controller ASIC called

the Scalable Hub (SHUB). Each SHUB interfaces to two

CPUs in one node, along with memory, I/O devices,

and other SHUBs. The Altix cache-coherency proto-

col is implemented in the SHUB that integrates both the

snooping operations of the Itanium2 and the directory-

based scheme used across the NUMAflex interconnec-

tion fabric. A load/store cache miss causes the data to

be communicated via the SHUB at a cache-line granu-

larity and automatically replicated in the local cache.

The 64-bit Itanium2 architecture operates at 1.5 GHz

and is capable of issuing two MADDs per cycle for a

peak performance of 6.0 Gflop/s. The memory hierar-

chy consists of 128 FP registers and three on-chip data

caches (32KB L1, 256KB L2, and 6MB L3). The Ita-

nium2 cannot store FP data in L1, making register loads

and spills a potential source of bottlenecks; however, a

relatively large register set helps mitigate this issue. The

superscalar processor implements the Explicitly Paral-

lel Instruction set Computing (EPIC) technology where

instructions are organized into 128-bit VLIW bundles.



The Altix platform uses the NUMAlink3 interconnect, a

high-performance custom network in a fat-tree topology

that enables the bisection bandwidth to scale linearly

with the number of processors. All Altix experiments

reported here were performed on the 10,240-processor

Columbia system running 64-bit Linux version 2.4.21,

the world’s second-most powerful supercomputer [8] lo-

cated at NASA Ames Research Center. The Columbia

experiments used a 6.4TB parallel XFS filesystem with

a 35-fiber optical channel connection to the CPUs.

2.3 Earth Simulator

The vector processor of the Earth Simulator (ES) uses

a dramatically different architectural approach than con-

ventional cache-based systems. Vectorization exploits

regularities in the computational structure of scientific

applications to expedite uniform operations on indepen-

dent data sets. The 500 MHz ES processor (an enhanced

version of the NEC SX-6) contains an 8-way replicated

vector pipe capable of issuing a MADD each cycle, for

a peak performance of 8.0 Gflop/s. The processors con-

tain 72 vector registers, each holding 256 64-bit words.

For non-vectorizable instructions, the ES has a 500 MHz

scalar processor with a 64KB instruction cache, a 64KB

data cache, and 128 general-purpose registers. The four-

way superscalar unit has a peak of 1.0 Gflop/s (an eighth

of the vector performance) and supports branch predic-

tion, data prefetching, and out-of-order execution.

Like traditional vector architectures, the ES vector

unit is cache-less; memory latencies are masked by

overlapping pipelined vector operations with memory

fetches. Each SMP contains eight processors that share

the node’s memory. The ES is the world’s third-most

powerful supercomputer [8], and consists of 640 SMP

nodes connected through a custom single-stage cross-

bar. This high-bandwidth interconnect topology pro-

vides impressive communication characteristics, as all

nodes are a single hop from one another. The 5120-

processor ES runs Super-UX, a 64-bit Unix operating

system based on System V-R3 with BSD4.2 communi-

cation features. Each group of 16 nodes has a pool of

RAID disks (720GB per node) attached via fiber chan-

nel switch. The filesystem used for our tests is SFS, with

a block size of 4MB. Each node has a separate filesys-

tem, in contrast to the other architectures studied here.

As remote access is not available, the reported experi-

ments were performed during the authors’ visit to the

ES Center and by ES Center collaborators in late 2004.

2.4 Phoenix (X1)

The Cray X1 combines traditional vector strengths

with the generality and scalability features of modern

superscalar cache-based parallel systems. The com-

putational core, called the single-streaming processor

(SSP), contains two 32-stage vector pipes running at

800 MHz. Each SSP contains 32 vector registers holding

64 double-precision words, and operates at 3.2 Gflop/s

peak for 64-bit data. The SSP also contains a two-way

out-of-order superscalar processor running at 400 MHz

with two 16KB instruction and data caches. Like the

SX-6, the scalar unit operates at 1/8-th the vector per-

formance, making a high vector operation ratio critical

for effectively utilizing the underlying hardware.

The multi-streaming processor (MSP) combines four

SSPs into one logical computational unit. The four

SSPs share a 2-way set associative 2MB data Ecache,

a unique feature that allows extremely high bandwidth

(25–51 GB/s) for computations with temporal data lo-

cality. MSP parallelism is achieved by distributing loop

iterations across each of the four SSPs. An X1 node

consists of four MSPs sharing a flat memory, and large

system configurations are networked through a modified

2D torus interconnect. The torus topology allows scala-

bility to large processor counts with relatively few links

compared with fat-tree or crossbar interconnects; how-

ever, this topological configuration suffers from limited

bisection bandwidth. All reported X1 results were ob-

tained on Phoenix, the 256-MSP system running UNI-

COS/mp 2.4 and operated by Oak Ridge National Lab-

oratory (ORNL). This machine has four nodes available

for I/O, each of which is connected to a RAID array us-

ing fiber channel arbitrated loop protocol. Data transfer

from a batch MSP must travel over the interconnect to

one of the I/O nodes. The filesystem used in this study

is a 4TB XFS filesystem, with a block size of 64KB.

3 Integrated Performance Monitoring

Integrated Performance Monitoring (IPM) is a

portable performance profiling infrastructure that binds

together communication, computation, and memory in-

formation from the tasks in a parallel application into a

single application-level profile. IPM provides a light-

weight portable mechanism for workload-wide paral-

lel profiling that does not require user intervention and

scales to thousands of processors. As the application

executes on the parallel platform, IPM records a per-

process profile of computation and communication us-

ing a small fixed memory footprint and very low CPU

overhead. When the application terminates, a report of

the aggregate profile is generated. In this work, IPM

was used on all the target architectures as a probe of the

amount of communication. There are other ways one

can obtain this information within a procedural context.

For example, MPIP [10] is a name-shifted profiling li-

brary that records the call stack for each MPI call. Cur-



Figure 1. Program control flow from the application through MPI to the IPM layer

rently, determining the call stack on a variety of architec-

tures presents a technical challenge we chose to avoid.

The basic mechanism by which IPM operates is the

name-shifted profiling interface specified in the MPI

standard. Name-shifted profiling wrappers have been

widely used [7] to determine the nature of communi-

cation within parallel codes. The entry point to each

MPI call is replaced with another that wraps a call to

the PMPI entry point. MPI Pcontrol is called directly

from the application to mark the code region to be pro-

filed. The profile is stored in a hash table that is keyed off

the region, MPI call, message size, and the rank to which

the message was sent or received (in the case of point-to-

point communications). Figure 1 shows a schematic of

this process. We are thus able to compute basic statistics

like average, minimum, and maximum for the times that

each rank spends in an MPI call for every buffer size.

For point-to-point calls, we also track the other rank in-

volved in the communication and thereby determine the

topological character of the communication.

The principal benefit of using IPM is that it pro-

vides sufficient contextual clarity to separately analyze

the communication in each of the distinct computational

steps within MADbench. Since each functional compo-

nent has a specific algorithmic or data movement role

in the overall calculation, having region-specific timings

allows one to compare measurements with estimates de-

rived analytically or from microbenchmarks. Analy-

ses of parallel performance that treats the application

as a whole does not provide this level of detail. Be-

cause MADbench uses ScaLAPACK extensively, IPM

also provides insights into the communication primitives

used by an otherwise opaque library call.

To ensure that IPM accurately measures communi-

cation time, we investigated the different implementa-

tions of ScaLAPACK across the target machines. Since

IPM records the time spent in MPI calls, we must know

that all communication is done via MPI or that non-MPI

communication is negligible. For the architectures stud-

ied here, we were able to verify this either by checking

directly with vendor documentation or by testing with

platform-specific profiling tools (PAT, ftmpirun, etc.).

Phoenix and ES spend negligible time in non-MPI com-

munication within ScaLAPACK, while the Seaborg and

Columbia implementations are based entirely on MPI.

In the current work, we use IPM strictly for determin-

ing information about communication occurring within

the MADbench code. No analysis of data obtained from

hardware performance counters was conducted. The

present analysis can be extended by investigating the

distribution of message sizes, communication topology,

and hardware performance counters occurring within

each of the code regions and across architectures. We

currently lack the right tools for fully analyzing the per-

formance profiles generated by IPM. In future, we plan

to expand the scope and level of detail by such analysis.

4 MADbench Overview

The MADCAP CMB angular power spectrum esti-

mator uses Newton-Raphson iteration to locate the peak

of the spectral likelihood function. This involves calcu-

lating the first two derivatives of the likelihood function

with respect to the power spectrum coefficients Cl (since

the CMB is azimuthally symmetric, the full spherical

harmonic basis can be reduced to include the l-modes

only). For a noisy pixelized CMB sky map dp = sp+np

(data is signal plus noise) and pixel-pixel correlation ma-

trix Dpp′ = Spp′(Cl) + Npp′ , the log-likelihood that the

observed data comes from some underlying set of Cl is

L(dp|Cl) = −
1

2

(

dT D−1d + Tr[lnD]
)

whose first two derivatives with respect to the Cl are

∂L

∂Cl

=
1

2

(

dT D−1
∂S

∂Cl

D−1d − Tr

[

D−1
∂S

∂Cl

])

∂2L

∂Cl∂Cl′
= −dT D−1

∂S

∂Cl

D−1
∂S

∂Cl′
D−1d +

1

2
Tr

[

D−1
∂S

∂Cl

D−1
∂S

∂Cl′

]



yielding a Newton-Raphson correction to an initial guess

of the spectral coefficients

δCl =

[

∂2L

∂Cl∂Cl′

]

−1
∂L

∂Cl′

Typically, the data has insufficient sky coverage and/or

resolution to obtain each multipole coefficient individu-

ally, and so we bin them instead, replacing Cl with Cb.

Given the size of the pixel-pixel correlation matri-

ces, it is important to minimize the number of matrices

simultaneously held in memory; the MADCAP imple-

mentation is constrained to have no more than three ma-

trices in core at any one time. It’s operational steps, and

their scalings for a map with NPIX pixels and NMPL mul-

tipoles in NBIN bins, are:

1. Calculate the signal correlation derivative matrices

∂S/∂Cb; complexity is O(NMPL× NPIX2).

2. Form and then invert the data correlation matrix D =
∑

b Cb ∂S/∂Cb + N ; complexity is O(NPIX3).

3. For each bin, calculate Wb = D−1∂S/∂Cb; complex-

ity is O(NBIN× NPIX3).

4. For each bin, calculate ∂L/∂Cb; complexity is

O(NBIN× NPIX2).

5. For each bin-bin pair, calculate ∂2L/∂Cb∂Cb′ ; com-

plexity is O(NBIN2 × NPIX2).

6. Invert the bin correlation matrix ∂2L/∂Cb∂Cb′ and

calculate the spectral correction δCb; complexity is

O(NBIN3).

Note that steps 4–6 are computationally subdominant

as NBIN << NMPL << NPIX.

All pixel-pixel correlation matrices are ScaLAPACK

block-cyclic distributed, so each processor carries a

unique subset of the rows and columns of each matrix.

All I/O is performed in terms of this distribution, with

each processor writing its subset of the full matrix to

its own file. This has the advantage of simplicity when

the matrices need to be read back in, and avoids any

problems with the ES’s distributed filesystem. However,

since the reading or writing of a matrix now involves all

processors simultaneously trying to perform their own

I/O, there is the possibility for significant contention.

This is minimized by restricting the actual number of

processors performing concurrent I/O to a user-specified

fraction of the total, implemented using a simple token-

passing scheme. The specified fraction can be differ-

ent for reading (RMOD) and writing (WMOD), and numeri-

cal experiments are performed to optimize the values of

these parameters — as well as the ScaLAPACK block

size (BSIZE) — on each architecture.

The full MADCAP spectral estimator includes a large

number of special-case features, from preliminary data

checking to marginalization over foreground templates,

that dramatically increase the size and complexity of

the code without altering its basic operational structure.

For simplicity, we have therefore developed a stripped-

down version, called MADbench, expressly designed

for benchmarking that preserves all the computational

challenges of the problem while removing extraneous

bells and whistles. MADbench consists of three func-

tions: dSdC, invD, and W, that respectively perform the

dominant steps 1–3 above. (W also performs a slightly

simplified version of the subdominant steps 4–6 to con-

firm code correctness.) In order to understand the overall

performance, it is useful to lay out the overall sequence

of calculation, communication, and I/O for each func-

tion:

dSdC For each bin b, calculate the local subset of the

∂S/∂Cb matrix using Legendre recursion and write it to

disk. This function involves neither communication nor

reading. The innermost loop of the recursion had to be

rewritten to take advantage of the vector architectures.

invD For each bin b, read in the local subset of the

∂S/∂Cb matrix and weighted-accumulate it to build the

local subset of the data correlation matrix D; invert this

by Cholesky decomposition and triangular solution us-

ing the ScaLAPACK pdpotrf and pdpotri routines.

This function involves no writing.

W For each bin b, read in the local subset of the

∂S/∂Cb matrix and perform the dense matrix-matrix

multiplication Wb = D−1∂S/∂Cb using the ScaLA-

PACK pdgemm routine. This function again requires no

writing. Note that the multiplications are entirely in-

dependent of one another; we therefore compare two

implementations: the first proceeding as above, and

the second introducing a level of gang-parallelism, with

NGANG of the ∂S/∂Cb matrices each being remapped to

a different subset of the processors using the ScaLA-

PACK pdgemr2d function and all of the processor-

gangs then simultaneously calling pdgemm.

5 Parallel Performance Results

MADbench requires six parameters to be specified.

Two set the size of the run (NPIX and NBIN), and one

the degree of gang-parallelism (NGANG). The other three

parameters (RMOD, WMOD, and BSIZE) need to be tuned

for each architecture and were set as follows: Seaborg

(4,1,128), Columbia (1,1,32), ES (1,1,64), and Phoenix

(1,1,128). We ran MADbench on P = 16, 64, and 256

processors on all architectures, and on P = 1024 where

possible (Seaborg and ES). In each case, the number of

bins was fixed at NBIN = 16, and the number of pixels

chosen to keep the total data volume per processor con-

stant, NPIX = 5000×P/16. Each configuration was run

with no gang-parallelism (NGANG = 1), and then only

W was rerun with NGANG = 16. Each experiment was

repeated several times, with the best runtimes reported.



5.1 Overall Performance

We first give a high level overview of MADbench

performance on the architectures described in Section 2

for a variety of problem sizes. In the next subsection

(Section 5.2), we increase the level of detail by conduct-

ing similar performance analyses within the context of

each important functional component (dSdC, invD, and

W) that constitutes MADbench. In a broad sense, MAD-

bench spends almost all of its time calculating, commu-

nicating, or reading/writing data to disk. We identify the

time associated with each of these activities as CALC,

MPI, and I/O in the remainder of this paper. We add an-

other metric, called LBST, which measures load balanc-

ing including synchronization time. When proceeding

from one functional component to the next, we impose a

barrier in order to have a well-defined boundary between

the phases. LBST records the time when all processes do

not reach these barriers at exactly the same time.

It is useful to identify the runtimes associated with

each of these four broad categories to most directly un-

derstand which subsystems of a computing platform are

stressed during the course of a calculation. As the prob-

lem size and concurrency increase, we expect changes

in the relative fraction of time spent in I/O, MPI, CALC,

and LBST to provide the clearest indication of the nature

of the scaling bottlenecks present in MADbench.

Ultimately, however, the absolute timings are the

most important factor when making architectural perfor-

mance comparisons. Table 2 shows the execution times

for each functional component of MADbench for vari-

ous processor counts on each of the four platforms. For

all but the very smallest problem size (P = 16), the ES

shows the best absolute performance in terms of time-

to-solution (Phoenix outperforms the ES for P= 16).

In terms of percentage of theoretical peak performance

(% TPP), Seaborg demonstrates the best results except

for P = 1024 when the ES is superior.

We now focus on the scaling of I/O, MPI, CALC, and

LBST timings for each architecture. Figure 2 shows the

relative amount of time spent in each of these activities.

On Seaborg, the relative amount of time spent in I/O

decreases as the problem size and concurrency increase.

However, the I/O time actually increases more than

threefold as P grows from 16 to 1024. This shows that

while there is contention for the I/O resource, it is not

sufficient to impact code scalability significantly. The

relative amounts of time spent communicating (MPI)

and computing (CALC) remain constant for P = 64,

256, and 1024. Since Seaborg is composed of 16-way

SMPs, the MPI time for P = 16 is misleading because

no data movement occurs over the switch. CALC is the

predominant activity; this is understandable given the

relatively slow (375 MHz) CPUs in this SP cluster.

Table 2. Overall MADbench performance

Time (s) % TPP

Platform P dSdC invD W TOTAL TOTAL

Seaborg 16 42.9 36.5 311.2 390.6 45.0

(Power3) 64 44.5 60.1 608.8 713.4 49.0

256 56.1 107.7 1209.9 1373.7 50.7

1024 121.3 214.8 2466.7 2802.8 49.6

ES 16 23.8 43.8 63.3 130.9 25.2

(SX-6 64 28.9 48.9 98.9 176.7 37.1

enhanced) 256 29.2 58.6 173.9 261.7 49.9

1024 31.8 94.5 321.4 447.7 58.3

Phoenix 16 3.1 9.2 45.5 57.8 35.6

(X1) 64 51.8 106.0 86.1 243.9 16.8

256 1029.3 379.0 421.4 1829.7 4.5

Columbia 16 58.2 7.2 163.2 228.6 19.2

(Altix) 64 117.2 14.1 306.6 437.9 19.9

256 483.4 23.8 409.4 916.6 19.0

Figure 2. Relative timings for MADbench

On the ES, the I/O timings do not increase appre-

ciably with concurrency. The filesystems on the ES

are semi-local RAID arrays attached to each 128 CPUs.

Since the I/O resources scale with concurrency, the per-

formance trend makes sense. As with Seaborg, the rel-

ative amount of time spent in I/O decreases as the prob-

lem is scaled up. This however comes at the cost of not

having a parallel filesystem. In calculations where ex-

ternal data must be read in, the staging time of datasets

to the different filesystems could become a significant

bottleneck. The overall trends in MPI and CALC are

smooth functions of concurrency. The amount of MPI

time increases dramatically (10x) between 16 and 1024

tasks, but represents only a small fraction of total time.

CALC increases by a factor of 6x over the same range

but doubles its contribution to the overall runtime.

On Phoenix, the trends seen in CALC, MPI, and I/O

are smooth functions of concurrency. For this X1 ar-

chitecture, the scaling of I/O becomes the predominant

bottleneck at about P = 64. It is unclear to the authors

what is the expected level of I/O parallelism for this ma-

chine. From our measurements, it appears that a scal-

ing threshold in I/O has been crossed or that the manner



in which MADbench performs I/O interferes with the

filesystem. The primary contribution to the I/O time was

from writing and synchronizing at the barrier following

the writes. This is consistent with the presence of a limit

to the number of simultaneous parallel writes and thus a

serialization in I/O for large problem sizes.

Unlike the other platforms, the trends are not as

smooth on Columbia. For some runs, we observe the

MPI time to decrease with increasing problem size. This

is clearly unexpected and the variation in these timings

is under investigation. For instance, although all calcu-

lations were performed on the same 512-way SMP, it is

unclear whether the placement of tasks was done in a

consistent fashion by the OS. However, results demon-

strate that I/O is the predominant component of runtime

at and above 256-way runs. As with Phoenix, most of

the I/O time is spent in writing data within dSdC. We

note that a significant (3.6x) increase in I/O occurs be-

tween P = 16 and 64. Since there are 35 independent

links to the filesystem in use, it is possible that the num-

ber of channels to disk had become saturated.

5.2 Performance of Individual Functions

The detailed performance of MADbench is better un-

derstood by separately examining each of the functional

components of the code.

dSdC Table 3 presents the timing breakdowns for

dSdC. Results show that for P = 64, the ES achieves

the highest raw performance, approximately 1.5x, 1.8x,

and 4x faster than Seaborg, Phoenix, and Columbia, re-

spectively. Due to the weak scaling nature of the prob-

lem, CALC remains roughly constant as concurrency in-

creases, with Phoenix showing the fastest values; how-

ever, ES attains the best CALC TPP (19.0%) followed

by Phoenix (16.5%), Seaborg (6.7%) and Columbia

(2.7%). The original dSdC implementation relied on

fine-grained recursive computations that prevented ef-

fective vectorization. A customized version was there-

fore developed for the ES and X1 so that at each recur-

sion a large batch of angular separations is computed in

the inner loop, allowing high vector performance. This,

coupled with their superior memory bandwidth charac-

teristics lead to the significantly higher performance of

the vector architectures over the superscalar machines.

In terms of dSdC’s I/O behavior (dominated by

data writing), all systems show significant performance

degradation at the highest concurrencies — except for

ES whose local filesystem is insensitive to the degree

of parallelism. This is particularly true for Phoenix and

Columbia where performance drops precipitously for

256 processors, resulting in I/O bandwidth of only 0.2

Mb/s/P and 0.4 Mb/s/P, respectively.

Table 3. Detailed timings for dSdC

Plat- Time (s) Mb/s/P % TPP

form P LBST I/O CALC TOT BW TOT CALC

Sbg 16 3.3 9.7 29.9 42.9 20.6 4.7 6.7

64 4.1 11.1 29.3 44.5 18.0 4.5 6.8

256 4.1 22.2 29.8 56.1 9.0 3.6 6.7

1024 4.6 86.9 29.8 121.3 2.3 1.6 6.7

ES 16 0.1 21.7 2.0 23.8 9.2 1.6 19.2

64 0.1 26.8 2.0 28.9 7.5 1.3 19.0

256 0.1 27.1 2.0 29.2 7.4 1.3 18.9

1024 0.7 29.1 2.0 31.8 6.9 1.2 18.5

Phx 16 0.1 1.6 1.4 3.1 124.2 7.6 16.6

64 0.1 50.3 1.4 51.8 4.0 0.5 16.5

256 0.1 1027.8 1.4 1029.3 0.2 0.0 16.3

Cmb 16 17.6 21.3 19.3 58.2 9.4 0.9 2.6

64 18.4 80.4 18.4 117.2 2.5 0.4 2.7

256 1.0 464.1 18.3 483.4 0.4 0.1 2.7

Figure 3. Relative timings for dSdC

Finally, the LBST metric (computational load imbal-

ance) shows a non-trivial cost for the superscalar sys-

tems, accounting for approximately 15% of the total

overhead on Seaborg and Columbia for the 64-processor

case; the vector systems are mostly unaffected.

Figure 3 shows the relative performance breakdown

of dSdC for each platform. These results clearly demon-

strate that at high concurrencies, the relative I/O cost in-

creasingly dominates the overall runtime. Note, how-

ever, that on the ES, the ratio between computation and

I/O remains roughly constant due to the local filesystem.

invD The breakdown of invD runtime components are

shown in Table 4. Since this function performs dense

linear algebra operations, CALC is expected to grow

linearly with increasing numbers of processors and pix-

els, while I/O requirements remain constant. Columbia

shows the best overall performance in terms of total run-

time and TPP, followed by ES, Seaborg, and Phoenix.

For example, for P = 64, Columbia achieves a total TPP

of 24.6% compared to only 1.5% on Phoenix. Since

the numerical kernel of invD is computationally inten-



Table 4. Detailed timings for invD

Time (s) Mb/s/P % TPP

Plat- MPI+

form P MPI I/O CALC TOT BW TOT CALC CALC

Sbg 16 4.3 21.0 11.0 36.5 9.5 19.0 63.0 45.2

64 19.7 22.6 17.7 60.1 8.9 23.1 78.3 37.1

256 50.5 23.7 33.3 107.7 8.5 25.8 83.4 33.1

1024 109.4 40.4 64.7 214.8 5.0 25.9 85.8 31.9

ES 16 0.8 41.0 2.0 43.8 4.9 3.0 65.1 47.3

64 1.8 43.3 3.8 48.9 4.6 5.3 68.0 46.4

256 3.7 47.3 7.6 58.6 4.2 8.9 68.4 46.2

1024 7.6 71.7 15.1 94.5 2.8 11.0 69.2 45.9

Phx 16 5.0 2.4 1.8 9.2 84.7 8.9 45.7 12.0

64 13.8 89.1 3.1 106.0 2.2 1.5 51.7 9.6

256 41.4 331.7 5.9 379.0 0.6 0.9 55.6 6.9

Cmb 16 3.4 1.1 2.6 7.2 180.2 24.0 67.6 28.9

64 8.5 1.2 4.3 14.1 166.7 24.6 81.1 27.2

256 13.3 1.0 9.4 23.8 210.5 29.1 73.8 30.6

Figure 4. Relative timings for invD

sive, all architectures sustain a high CALC TPP: for

P = 64, Columbia achieves 81.1% of peak, compared

with 78.3%, 68.0%, and 51.7% on Seaborg, ES, and

Phoenix, respectively. Thus, for this functional compo-

nent of MADbench, the superscalar architectures out-

perform the vector systems in computational efficiency.

In terms of MPI costs, the high-performance single-

stage switch of the ES shows the lowest runtime re-

quirements: 4.7x, 7.6x, and 11x lower than the commu-

nication overhead of Columbia, Phoenix, and Seaborg,

respectively. The read-dominated I/O overhead varies

greatly among the architectures. Columbia shows the

most impressive performance, approximately 20x, 36x,

and 75x higher than Seaborg, ES, and Phoenix. Note

that for P = 256, Phoenix’s I/O bandwidth diminishes

to only 0.5 Mb/s/P. The source of these large discrep-

ancies is primarily due to memory caching that affects

read/write rates differently on each platform.

Figure 4 presents the relative cost of invD compo-

nents for each of the studied architectures. Observe that

on the vector systems, I/O is responsible for a significant

fraction of the total runtime, while the MPI overhead is

relatively negligible. The opposite is true with the super-

scalar systems, which show relatively low I/O overheads

compared with the MPI requirements. Finally, note that

the computational requirements consume a roughly con-

stant fraction of overhead for each architecture regard-

less of processor count.

W Table 5 presents the breakdown of timing compo-

nents for W. Overall, the vector architectures achieve

higher performance than the superscalar systems. For

example, for P = 64, Phoenix is approximately 1.1x,

3.6x, and 7x faster than ES, Columbia, and Seaborg,

respectively. However, ES achieves the highest over-

all TPP at 63.2% while Columbia shows the lowest at

27.2%. Like invD, W performs dense linear algebra cal-

culations and therefore achieves high CALC TPP across

all architectures. ES shows the most impressive results

for the numerical computation, sustaining over 92% of

peak, compared with 69% or less on the other platforms.

Both MPI and I/O shows similar performance char-

acteristics to that of invD, since it is also comprised of

dense algebra calculations. The ES once again achieves

the lowest communication overhead, while the relatively

old switch technology of Seaborg results in the highest

MPI time. Columbia demonstrates impressive I/O (read

dominated) characteristics, sustaining over 215 Mb/s/P

for P = 64: 1.6x, 20x, and 28x faster than Phoenix, ES,

and Seaborg, respectively. However, for P = 256, both

Phoenix and Columbia show anomalously slow I/O be-

havior, achieving only 0.8 Mb/s/P and 2.2 Mb/s/P.

The relative breakdown of costs for W is presented

in Figure 5. These results show that, due to the large

computational requirements, the MPI and I/O overheads

represent a small fraction of the total runtime — thereby

allowing high sustained performance across all architec-

Table 5. Detailed timings for W

Time (s) Mb/s/P % TPP

Plat- MPI+

form P MPI I/O CALC TOT BW TOT CALC CALC

Sbg 16 13.1 17.5 279.5 311.2 11.4 53.6 59.6 57.0

64 79.3 18.2 509.2 608.8 11.0 54.8 65.5 56.6

256 180.2 18.9 1008.3 1209.9 10.6 55.1 66.1 56.1

1024 413.4 30.5 2019.5 2466.7 6.6 54.1 66.0 54.8

ES 16 2.7 26.6 33.9 63.3 7.5 49.4 92.1 85.4

64 5.5 26.0 67.4 98.9 7.7 63.2 92.8 85.7

256 12.3 27.2 134.4 173.9 7.4 71.9 93.0 85.2

1024 25.3 27.5 268.5 321.4 7.3 77.8 93.1 85.1

Phx 16 10.8 2.0 31.2 45.5 100.5 42.9 62.6 46.5

64 24.7 1.5 58.4 86.1 130.7 45.4 66.8 47.0

256 49.2 257.0 113.7 421.4 0.8 18.5 68.7 48.0

Cmb 16 81.3 0.4 80.4 163.2 500.0 25.5 51.8 25.8

64 155.2 0.9 149.1 306.6 215.1 27.2 55.9 27.4

256 40.3 91.6 276.1 409.4 2.2 40.7 60.4 52.7



Figure 5. Relative timings for W

tures for this phase of the MADbench calculation.

5.3 Performance with Multi­Gang

In this section, we analyze the trade-offs inherent in

the multi-gang strategy. As mentioned in Section 4, the

function W can operate in two modes: either all of the

processors work on each matrix-matrix multiplication in

turn, or the processors divide into NGANG gangs and each

gang independently performs NBIN/NGANG multiplica-

tions. Increasing the data density in this fashion should

increase the efficiency of this step, but since the matrices

are initially block-cyclically distributed over the whole

processor grid, they must be redistributed over the gang

processor grid before multiplication. The relative ef-

ficiency between single- and multi-gang approaches is

therefore a trade-off between the benefit of the faster

multiplication and the cost of the remapping.

Table 6 and Figure 6 show the absolute and relative

timings for W using 16 gangs (with the remap times

for the 1-gang runs shown in parentheses of Table 6).

Compared to Figure 5 (single gang W performance), ob-

serve that the MPI time drops considerably on all ar-

chitectures, as expected. In addition, it is clear that the

CALC time changes by only a small amount. This is

because the optimized dgemm algorithm performs well

over a large range of matrix sizes.

The relative I/O cost shows no overall pattern, but de-

pends on the architecture. Within W, the amount of I/O

is identical in the single- and multi-gang cases; however,

the interleaving of I/O and calculation is changed. For

the 1-gang runs, one matrix is read and then multiplied;

whereas for the 16-gang runs, all the matrices are read

in and remapped, and only then are all 16 multiplies per-

formed simultaneously. On Seaborg, there is a modest

increase in I/O time when going to 16 gangs at all con-

currencies. On the ES, I/O varies only slightly. Phoenix

and Columbia show only a small change for P = 16 and

64, but large changes at P = 256. In the case of Phoenix,

Table 6. Detailed timings for W using 16
gangs (and remap cost for 1­gang runs)

Time (s) % TPP

Plat- MPI+

form P MPI I/O CALC REMAP RTOT RTOT CALC CALC

Sbg 16 0.0 23.7 207.3 50.4 (9.6) 281.5 59.2 80.4 80.4

64 13.8 20.8 509.3 74.4 (10.5) 618.3 53.9 65.4 63.7

256 30.9 36.0 1016.9 193.6 (11.6) 1277.3 52.2 65.6 63.6

1024 83.8 43.7 2005.1 246.1 (26.1) 2378.7 56.1 66.5 63.8

ES 16 0.0 23.7 31.4 19.6 (12.8) 74.6 41.9 99.7 99.7

64 0.5 24.6 66.8 25.5 (15.6) 117.4 53.2 93.6 92.8

256 1.9 24.7 133.3 35.1 (31.9) 195.0 64.1 93.8 92.4

1024 7.1 24.8 266.4 61.6 (51.8) 359.8 69.5 93.9 91.4

Phx 16 0.0 0.9 23.3 7.9 (1.9) 32.0 61.0 83.9 83.9

64 4.3 2.0 54.9 7.2 (3.2) 68.5 57.1 71.1 65.9

256 17.1 303.5 110.9 73.3 (38.2) 504.7 15.5 70.4 61.0

Cmb 16 0.0 1.0 50.4 15.8 (1.0) 67.2 62.0 82.7 82.7

64 12.0 1.6 161.4 24.6 (1.0) 199.6 41.7 51.6 48.1

256 12.7 7.6 313.0 — (—) — — 53.2 51.2

Figure 6. Relative timings for W (16 gangs)

the I/O seems generally very sensitive at P = 256; in

the case of Columbia, the cause of the difference is un-

known at this time.

The remapping is performed using the ScaLAPACK

routine pdgemr2d. (The ScaLAPACK remapping func-

tion on Columbia failed for P = 256; SGI engineers are

currently addressing this problem.) For simplicity, and

to maintain a consistent mapping of the data in mem-

ory, the routine is called even in the single-gang case.

However the current implementation of pdgemr2d takes

no advantage of potential simplifications, but always as-

sumes the worst case data-remapping scenario. It is

thus extremely slow, as evidenced by the parenthetical

1-gang timings in Table 6, where the remappings are

equivalent to each processor performing 17 completely

local 12.5Mb memcopies — over 51 seconds on 1024

processors of the ES! Given this, we are in the process

of developing a custom remapping function which will

considerably reduce the overhead of this phase for both

single- and multi-gang simulations.



6 Summary and Conclusions

In this paper, we presented MADbench, a synthetic

benchmark that preserves the full computational com-

plexity of the underlying scientific application. We

tested the performance of its computation, communica-

tion, and I/O modules both individually and collectively

on four of the world’s most powerful supercomputers.

Figure 7 illustrates the percentage of theoretical peak

performance obtained on each architecture, using 16

gangs in W. Each entry actually consists of four over-

layed bars showing the percentage of peak achieved by

considering (i) the total runtime, (ii) all but the remap-

ping time, (iii) all but the remapping and I/O times,

and (iv) all but the remapping, I/O, and MPI times.

(Note that the 256-processor Columbia run is missing

the white bar since the remapping function failed.)

Figure 7. Percentage of peak performance
for MADbench with 16­gang parallelism

A more perceptive way to interpret Figure 7 is that the

height of the light grey bars reflects the relative cost of

remapping, dark grey the relative cost of I/O, and black

the relative cost of MPI. From this perspective, I/O is a

minor issue for Seaborg, but a significant factor for the

ES at all concurrencies, for Phoenix 64-way or more,

and for Columbia 256-way. The I/O cost for increasing

parallelism is broadly flat for Seaborg, significantly de-

creasing for the ES (reflecting its slow but perfectly scal-

able filesystem), but dramatically increasing for Phoenix

and Columbia. It is also apparent that MPI constitutes a

small overhead for all but Phoenix where it is significant

and increases with concurrency.

We also introduced a new performance profiling tool,

called IPM, and showed that it can be used successfully

on a wide variety of computational platforms to extract

useful performance data. In particular, we were able to

identify the ScaLAPACK function pdgemr2d as a bot-

tleneck in our algorithm.

A more general conclusion of this work is that greater

clarity in the application context and overall specificity

of performance timings greatly benefit understanding of

how the distinct parts of large-scale parallel applications

interact with the major subsystems of HEC platforms.

It is therefore insufficient to report only the total run-

time for a full-blown scientific application and expect

to understand its parallel performance. As witnessed in

Figures 2-7, the achieved performance will not approx-

imate that seen in simple computational kernels which

model only the compute phase and often vastly overes-

timate sustained performance. Such in-depth analysis is

critical in first understanding and then bridging the gap

between theoretical and sustained parallel performance.

Acknowledgments

The authors thank the ESC for providing access to

the ES, and ORNL for access to the X1. The authors are

grateful to Yoshinori Tsuda, David Parks, and Michael

Wehner for collecting much of the latest ES data. All

authors from LBNL were supported by the Office of Ad-

vanced Scientific Computing Research in the DOE Of-

fice of Science under contract DE-AC03-76SF00098.

References

[1] J. Borrill. MADCAP: The Microwave Anisotropy

Dataset Computational Analysis Package. In 5th Euro-

pean SGI/Cray MPP Wkshp., 1999.
[2] T. Dunigan Jr., M. Fahey, J. White III, and P. Worley.

Early evaluation of the Cray X1. In SC2003, 2003.
[3] K. Nakajima. Three-level hybrid vs. flat MPI on the

Earth Simulator: Parallel iterative solvers for finite-

element method. In 6th IMACS Intl. Symp. on Iterative

Methods in Scientific Computing, 2003.
[4] L. Oliker, R. Biswas, J. Borrill, A. Canning, J. Carter,

M.J. Djomehri, H. Shan, and D. Skinner. A performance

evaluation of the Cray X1 for scientific applications. In

6th Intl. Mtg. on High Performance Computing for Com-

putational Science, pages 219–232, 2004.
[5] L. Oliker, A. Canning, J. Carter, J. Shalf, D. Skinner,

S. Ethier, R. Biswas, M.J. Djomehri, and R. V. der Wi-

jngaart. Performance evaluation of the SX-6 vector ar-

chitecture for scientific computations. Concurrency and

Computation; Practice and Experience, 17(1):69–93,

2005.
[6] ORNL Cray X1 Evaluation.

http://www.csm.ornl/∼dunigan/cray.
[7] R. Rabenseifner. Recent advances in Parallel Virtual

Machine and Message Passing Interface. In 6th Eu-

ropean PVM/MPI Users’ Group Mtg., volume LNCS

1697, pages 35–42, 1999.
[8] Top500 Supercomputer Sites. http://www.top500.org.
[9] H. Uehara, M. Tamura, and M. Yokokawa. MPI perfor-

mance measurement on the Earth Simulator. Technical

Report 15, NEC R&D, 2003.
[10] J. Vetter and A. Yoo. An empirical performance evalua-

tion of scalable scientific applications. In SC2002, 2002.


