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Integrated Person Tracking Using Stereo, Color, and Pattern Detection
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Abstract. We present an approach to real-time person tracking in crowded and/or unknown environments using
integration of multiple visual modalities. We combine stereo, color, and face detection modules into a single robust
system, and show an initial application in an interactive, face-responsive display. Dense, real-time stereo processing
is used to isolate users from other objects and people in the background. Skin-hue classification identifies and tracks
likely body parts within the silhouette of a user. Face pattern detection discriminates and localizes the face within
the identified body parts. Faces and bodies of users are tracked over several temporal scales: short-term (user stays
within the field of view), medium-term (user exits/reenters within minutes), and long term (user returns after hours
or days). Short-term tracking is performed using simple region position and size correspondences, while medium
and long-term tracking are based on statistics of user appearance. We discuss the failure modes of each individual
module, describe our integration method, and report results with the complete system in trials with thousands of users.

Keywords: face detection, tracking and recognition, human-computer interface, frame-rate stereo, multi-modal
integration

1. Introduction

The creation of displays or environments which pas-
sively observe and react to people is an exciting chal-
lenge for computer vision (Maes et al., 1996; Rehg
et al., 1997). Faces and bodies are central to human
communication and yet machines have been largely
blind to their presence in real-time, unconstrained en-
vironments. Often, computer vision systems for person
tracking exploit a single visual processing technique to
locate and track user features. These systems can be
non-robust to real-world conditions with multiple peo-
ple and/or moving backgrounds. Additionally, track-
ing is usually performed only over a single, short time
scale: a person model is typically based only on an un-
broken sequence of user observations, and is reset when
the user is occluded or leaves the scene temporarily.

We have created a visual person tracking system
which achieves robust performance through the inte-
gration of multiple visual processing modalities and
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by temporal scales. With each modality alone it is pos-
sible to track a user under optimal conditions, but each
also has, in our experience, substantial failure modes
in unconstrained environments. Fortunately these fail-
ure modes are often independent, and by combining
modules in simple ways we can build a system which
is relatively robust.

We will show how our system works well in visu-
ally noisy environments and does not make any as-
sumptions about static background patterns. Addition-
ally we will also show how our system is robust to the
failure of each individual module, and that adding a
given module to the system always increases overall
performance. A key strength of our system is the
use of real-time stereo depth estimation hardware, de-
scribed below; other authors have proposed systems
for person tracking with multiple cues (for example
see Toyama and Hager (1996), Regh et al. (1999) and
Isard and Blake (1998)) but have not incorporated
video-rate range as one of the processing modalities.

In the following sections we describe our tracking
framework and the three vision processing modalities
used. We then describe an initial application of our
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system: a face-responsive, interactive video display. Fi-
nally we show the results of our system when deployed
with naive users, and analyze both the qualitative suc-
cess of the application and the quantitative performance
of our tracking algorithms.

2. Tracking Framework

A person tracking system for interactive environments
has several desired criteria: it should operate in real-
time, be robust to multiple users and changing back-
ground, provide a relatively rich visual description of
the users, and be able to track people when they are
occluded or momentarily leave the scene. We achieve
these goals through the use of multi-modal integration
and multi-scale temporal tracking.

We base our system on three primary visual pro-
cessing modules: depth estimation, color segmenta-
tion, and intensity pattern classification (see Fig. 1).
As described in more detail below, depth information
is estimated using a dense real-time stereo technique
and allows easy segmentation of the user from other
people and background objects. An intensity-invariant
color classifier detects regions of flesh tone on the user
and is used to identify likely body part regions such as
face and hands. A face detection module is used to dis-
criminate head regions from hands and other tracked
body parts.

Figure 2 shows the output of the three vision process-
ing modules. As a person tracker, each is individually
fragile: head-sized objects (e.g. a notebook) can cause
false positives in the range module, flesh-like colors
found in other materials can cause false positives in
the color module, and face pattern detectors typically
are slower and cause false negatives in non-canonical
poses or expressions. However, when integrated to-
gether these modules can yield robust, fast tracking
performance.

Tracking is performed in our system on three differ-
ent time-scales: short-range (frame to frame while the
person is visible), medium-range (when the person is
momentarily occluded or leaves the field of view for a
few minutes), and long range (when the person is ab-
sent for hours, days or more.) Longer-term tracking can
be thought of as a person identification task, where the
database is formed from the set of previous users. For
short-term tracking we simply compute region corre-
spondences specific to each processing modality based
on region position and size. Multi-modal integration is

Figure 1. System overview showing the relationship of each modal-
ity with detection and short-term tracking, and with long-term track-
ing/identification.

performed using the history of short-term tracked re-
gions from each modality, yielding a representation of
the user’s body shape and face location.

We rely on a statistical model of multi-modal ap-
pearance to resolve correspondences between tracked
users over time. In addition to body shape and face ap-
pearance location, the color of hair, skin, and clothes
is recorded at each time step. We record the average
value and covariance of represented features and use
them to identify users when they return. For medium-
term tracking lighting constancy and stable clothing
color are assumed; for long-term tracking we adjust
for changing lighting and do not include clothing in
the match criteria.

We now discuss module specific processing, includ-
ing classification, segmentation/grouping, and short-
term tracking. Following that, we present our in-
tegration scheme, and correspondence method for
medium and long-term tracking. Pixel-wise classifica-
tion, grouping and short-term tracking are performed
independently in each modality. Stereo processing
outputs a user’s silhouette defined by range regions,
color processing yields a set of skin color regions within
range silhouette boundaries, and face processing re-
turns a list of detected frontal face patterns; we describe
each module in turn.
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(a) (b)

(c) (d)

Figure 2. Output of vision processing modules: (a) face pattern detection output, (b) flesh hue regions from skin hue classification, (c) connected
components recovered from stereo range data, and (d) shows the input image with boxes indicating the location of tracked users.

2.1. User Silhouette from Dense Stereo

To compute a set of user silhouettes, we rely on a dense
real-time stereo system. Video from a pair of cameras
is used to estimate dense range using the census stereo
algorithm (Zabih and Woodfill, 1994); we have im-
plemented this algorithm on a reconfigurable, FPGA
based computing engine resident on a single PCI card.
This stereo system searches a window of 32 possible
discrete stereo disparities at each pixel on 320 by 240
images at over 50 frames per second (30 frames per
second for standard video), or over 120 million pixel-
disparities per second. These processing speeds com-
pare favorably with other real-time stereo implemen-
tations such as (Kanade et al., 1996). With sub-pixel
interpolation, eight bits of stereo depth information are
available.

Our segmentation and grouping technique proceeds
in several stages of processing, as illustrated in Fig. 3.

We first smooth the raw range signal to reduce the effect
of low confidence stereo disparities using a morpholog-
ical closing operator. We then compute the response of
a gradient operator on the smoothed range data and
threshold at a critical value based on the largest magni-
tude depth discontinuity expected in the range profile
of one person (e.g. approx 8 inches). Connected com-
ponents analysis is applied to these regions of smoothly
varying range. We return all connected components
whose area exceeds a minimum threshold.

The range processing module provides these ex-
tracted user silhouettes, as well as estimates of head
location. A candidate head is placed below the vertical
maxima of the silhouette, in a mannar similar to Darrell
et al. (1994) and Wren et al. (1997). Head position is
refined in the integration stage, as described below.

Disparity estimation, segmentation, and grouping
are repeated independently at each time step; range
silhouettes are tracked from frame to frame based on
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Figure 3. Stereo range processing to extract user silhouettes. (a) left/right image pair, (b) raw disparity computed using Census algorithm,
(c) disparity after morphological smoothing, (d) regions of slowly varying disparity, and (e) silhouettes recovered after connected components
grouping.
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position and size constancy. The centroid and size of
each new range silhouette is compared to silhouettes
from the previous time step. “Short-term” correspon-
dences are indicated using a greedy algorithm starting
with the closest unmatched region; for each new region
the closest old region within a minimum threshold is
marked as the correspondence match.

2.2. Skin Color Localization

Skin color is a useful cue for tracking people’s faces and
other body parts. We detect skin using a classification
strategy which matches skin hue but is largely invariant
to intensity or saturation, as this is robust to shading
due to illumination and/or the absolute amount of skin
pigment in a particular person.

We apply color processing to images obtained from
one camera. Each image is initially represented with
pixels corresponding to the red, green, and blue chan-
nels of the image, and is converted into a “log color-
opponent” space. This space can directly represent the
approximate hue of skin color, as well as its log in-
tensity value. We convert(R,G, B) tuples into tu-
ples of the form(log(G), log(R)− log(G), log(B)−
(log(R)+ log(G))/2). Skin color is detected using
a classifier with an empirically estimated Gaussian
probability model of “skin” and “not-skin” in the
log color-opponent color space. When a new pixel
p is presented for classification, the likelihood ratio
P(p= skin)/P(p= non− skin) is computed as a clas-
sification score. Our color representation is similar to
that used in (Fleck et al., 1996), but we estimate our
classification criteria from examples rather than apply
hand-tuned parameters. For computational efficiency
at run-time, we may precompute a lookup table over
all possible color values.

After the lookup table has been applied, segmenta-
tion and grouping analysis are performed on the clas-
sification score image. Similar to the range case, we
use morphological smoothing, threshold above a crit-
ical value, and apply connected component computa-
tion. However, there is one difference: before smooth-
ing we apply the low-gradient mask from therange
modality. This restricts color regions to be grown only
within the boundary of range regions; if spurious back-
ground skin hue is present in the background it will
not adversely affect the shape of foreground skin color
regions.

As with range processing, classification, segmen-
tation, and grouping are repeated at each time step.

Short-term tracking is performed on recovered color
regions based on similar centroid position and region
size. When a color region changes size dramatically,
we check to see if two regions merged, or if one region
split into two. If so we record the identity of the split
or merged regions, to be used in the integration stage
as described below.

Skin color regions that are above the midline of
their associated range component, and which are ap-
propriately sized at the given depth to be heads, are la-
beled as candidate heads and passed to the integration
phase.

2.3. Face Pattern Detection

To distinguish head from hands and other body parts,
and to localize the face within a region containing the
head, we use pattern recognition methods which di-
rectly model the statistical appearance of faces based
on intensity.

We based our implementation of this module on the
CMU face detector (Rowley, 1996) library. This library
implements a neural network which models the appear-
ance of frontal faces in a scene, and is similar to the
pattern recognition approach described in Poggio and
Sung (1994). Both methods are trained on a structured
set of examples of faces and non-faces.

Face detection is initially applied over the entire im-
age; when one or more detections are recorded, they
are passed directly as candidate head locations to the
integration phase. Short term tracking is implemented
by focusing search in a new frame within windows
around the detected locations in the previous frame.
If a new detection is found within such a window it is
considered to be in short-term correspondence with the
previous detection.

If no new detection is found and the detection in
the previous frame overlapped a color or range region
which was tracked successfully, then the face detection
is updated to move with that region (as long as it per-
sists and no new face detection is found). We record
the relative offset of the face detection head with re-
spect to the range or color head, and maintain that rela-
tionship in subsequent frames. This has the desired ef-
fect of allowing face detection to discriminate between
head and hand regions in subsequent frames even when
there may not be another face detection for several
frames.

There is one special case in propagating face detec-
tion candidate heads. If the two color regions split or
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merge as described above, we take steps to allow the
face detection candidate head to follow the appropri-
ate color region. We assume that the face is stationary
between frames when deciding what color region to
follow. If two regions have merged, the virtual detec-
tion follows the merged region, with offset such that
the face’s absolute position on the screen is the same as
the previous frame. If two regions have split, the face
follows the region closest to its position in the previous
frame. These heuristics are simple, but work in many
cases where users are intermittently touching their face
with their hands.

2.4. Integrated Tracking

Our integration method is designed to take advantage
of each module’s strengths: range is typically fast but
coarse, color is fast and prone to false positives, and face
pattern detection is slow and requires canonical pose
and expression. We place priority on face detection
hits, when available, and use color or range to update
position from frame to frame.

For each range silhouette, we collect the range, color,
and face detection candidate head features. We com-
pute the location of a user’s head on the range silhou-
ette as follows: if a face detection candidate head is
present we return its location, otherwise we return any
location with overlapping range and color candidates.
If there is no overlap between candidates we use the lo-
cation of the range candidate, or the location of a color
candidate, in order of preference.

When the head location has been found, we update
the estimate of head size. We recompute size based on
the results of the face detector and the range modules.
When a face detection result has been found, we use it to
determine the real size of the face. If no face detection
hit has been found, we use an average model of real
face size.

Our system can be configured in two modes: single-
or multiple-person tracking. Single-person mode is
most appropriate for interactive games or kiosks which
are restricted to a single user; multiple-person is more
appropriate for general surveillance and monitoring ap-
plications. In single person mode, we return only a
single range silhouette; we initially choose the clos-
est range region, and then follow that region until it is
no longer tracked in the short-term. In multiple-person
mode each observed person is tracked simultaneously.
The maximum number of people that can be tracked

is limited by minimum size constants in the module
specific connected components code.

3. Long-Term Tracking

When users are momentarily occluded or exit the scene,
short-term tracking will fail since position and size cor-
respondences in the individual modules are unavail-
able. To track users over medium and long-term time
scales, we rely on statistical appearance models. Each
visual processing module computes an estimate of cer-
tain user attributes, which are expected to be stable over
longer time periods. These attributes are averaged as
long as the underlying range silhouette continues to be
short-term tracked, and are then used in a classification
stage to establish medium and long-term correspon-
dences.

Like multi-modal person detection and tracking,
multi-modal person appearance classification is more
robust than classification systems based on a single
data modality. Height, color, and face pattern each of-
fer independent classification data and are accompa-
nied by similarly independent failure modes. Although
face patterns are perhaps the most common data source
for current passive person classification methods, it is
unusual to incorporate height or color information in
identification systems because they do not provide suf-
ficient discrimination to justify their use alone. How-
ever, combined with each other and with face patterns,
height and color can provide important cues to dis-
ambiguate otherwise similar people, or help classify
people when only degraded data is available in other
modes.

3.1. Observed Attributes

In the range module, we estimate the height of the user
and use this as an attribute of identity. Height is ob-
tained by computing the median value of the highest
point of a user silhouette in 3-D. In the color mod-
ule, we compute the average color of the skin and hair
regions, and optionally a color histogram of clothing
appearance. We define the hair region to be those pix-
els within a threshold distance to the top or sides of
the head region; we only take those pixels which are of
appropriate range and which are not classified as skin
color. Clothing can be defined as all other pixels on
the range silhouette which are not labeled as skin or
hair.
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In the face detector, we record an image of the actual
face pattern wherever the detector records a hit. When
a region is identified as a face based on the face pattern
detection algorithm, the face pattern (greyscale subim-
age) in the target region is normalized and then passed
to the classification stage. For optimal classification, we
want the scale, alignment, and view of detected faces
to be comparable. We resize the pattern to normalize
for size, and discard images which are not in canonical
pose or expression, which is determined by normalized
correlation with an average canonical face.

For “medium-term” tracking, e.g., over seconds or
minutes of occlusion or absence, we rely on all of the
above attributes. For “long-term” tracking, over hours
or longer, we cannot rely on attributes which are not
invariant with time of day or from day to day: we correct
all color values with a mean color shift to account for
changing illumination, and exclude clothing color from
the match computation.

3.2. Classification

In general, we compute statistics of these attributes
while users are being tracked over short-term time peri-
ods, and compare against stored statistics of previously
observed users to obtain medium- and long-term cor-
respondences. User models can be acquired through
an explicit training process with known identification
strings, or by automatically instantiating models for
each new short-term user track that can not be matched
to a previous model.

When we observe a new person, we see if there is
a previously tracked individual which could have gen-
erated the current observations. We find the previous
individual most likely to have generated the new obser-
vations; if this probability is above a minimum thresh-
old, we label the currently tracked region as being in
correspondence with the previous individual. We inte-
grate likelihood over time and modality: at timet , we
find the identity estimate

u∗ = arg max
j

P(U j | ω) (1)

where

P(U j | ω)
= P(U j | F0, . . . , Ft , H0, . . . , Ht ,C0, . . . ,Ct ) (2)

whereFi ,Hi , andCi are the face pattern, height, and
color observations at timei , andU j are the saved statis-

tics for personj . We restart time att = 0 when a new
range silhouette is tracked. For the purposes of this
discussion we assumeP(Uj ) is uniform across users.
With Bayes rule and the assumption of modality inde-
pendence, we have:

u∗ = arg max
j
(P(F0, . . . , Ft | U j )

P(H0, . . . , Ht | U j )P(C0, . . . ,Ct | U j )) (3)

Since our observations are independent of the observed
noise in our sensor and segmentation routines, the pos-
terior probabilities at different times may be considered
independent. With this we can incrementally compute
probability in each modality:

P(F0, . . . , Ft | U j )

= P(F0, . . . , Ft−1 | U j )P(Ft | U j ) (4)

and similarly for range and color data.
We collect mean and covariance data for the ob-

served user color data, and mean and variance of user
height; the likelihoodsP(Fi |U j ) and P(Ci |U j ) are
computed assuming a Gaussian density model. For face
pattern data, we store the size- and position-normalized
mean pattern for each user, and approximateP(Ft |Cp)

with an empirically determined density which is a func-
tion of the normalized correlation ofFt with the the
mean pattern for personj .

Our present implementation does not have any time-
bias—previously viewed individuals are equally likely
to be recognized independent of the interval since their
earlier interaction with the system. This is a reason-
able assumption if no prior knowledge about visit time
statistics is available for a particular application; if
such knowledge is available then the inter-visit interval
should be included as a data term when computing the
liklihood of a model given the current observation.

4. A Real-Time Face-Responsive Display

Our initial application of our integrated, multi-modal
visual person tracking framework is a face-responsive
visual display. We construct a video display where cam-
eras observe the user from the same optical axis as
used by the display, and send estimates of the 3-D head
position of observers of the screen to the application
program.

We create a virtual mirror by placing cameras so that
they share the same optical axis as a video display, using
a half-silvered mirror to merge the two optical paths.
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Figure 4. Display and viewing geometry for interactive video kiosk
applications: cameras and video-display share optical axis through a
half-silvered mirror.

The cameras view the user through a 45-degree half
mirror, so that the user can view a video monitor while
also looking straight into (but not seeing) the cameras.
Video from one camera is displayed on the monitor
after the application of various computer graphics dis-
tortion effects, so as to create a virtual mirror effect.
Figure 4 shows the display and viewing geometry of
our apparatus.

One application we have explored using this display
is an interactive graphics experience. Users approach
the display, and see video of their faces distorted with
real-time special effects. The effect is a virtual fun-
house mirror, but in which only the face regions are dis-
torted. Using video texture mapping and the OpenGL
graphics system, we have implemented graphics meth-
ods to distort faces on the screen using one of the fol-
lowing special effects: spherical expansion, spherical
shrinking, swirl, lateral expansion, and a vertical melt-
ing effect. This creates a novel and entertaining in-
teractive visual experience where users get immediate
visual feedback from their tracked faces. Our tracking
system is not limited to this type of interactive special
effect, of course, but we have found it to be an intuitive
and entertaining demonstration of the capabilities of
the system.

Our system is currently implemented using three
computer systems (one PC, two SGI O2), a large NTSC
video monitor, stereo video cameras, a dedicated stereo
computation PC board, and the half-mirror imaging ap-
paratus. The full tracking system, including all vision
and graphics processing, runs at approximately 12 Hz
with approximately 100 ms delay.

5. Results

We have demonstrated versions of our system at sev-
eral conferences and one public museum installation

(Darrell et al., 1997, 1998). Conservatively, we esti-
mate that over ten thousand users have experimented
with our system. In the interactive video distortion ap-
plication the goal of the system is to identify the 3-D
position and size of users’ heads in the scene, and ap-
ply a distortion effect in real-time only over the region
of the image containing the user’s face. The distorted
image was then displayed on the virtual mirror screen.
In the first version of the system (Darrell et al., 1997)
only a single user was tracked and there was no long-
term identification capability; the most recent version
tracked all users present and implemented the long-
term tracking described above.

Qualitatively, the system was a complete success.
Our tracking system was able to localize video dis-
tortion on the user’s face accurately enough for them
to experience the desired perceptual effect. Overall,
users reported that the system was interesting and en-
tertaining. Figure 5 shows a typical final image dis-
played on the virtual mirror. The system performed
well with both single users and crowded conditions,
and despite environments which were often quite vi-
sually noisy. At several conference sites visual effects
from other exhibits were randomly projected onto both
the background and the people being tracked by our
system; this would have caused great difficultly for
systems which relied on static color background mod-
els rather than real-time stereo data for obtaining body
silhouettes.

Figure 5. Example distortion output from interactive special-effect
application.
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5.1. Evaluation

We quantitatively evaluated the performance of our sys-
tem using two different datasets: a set of stills captured
at the conference installations to evaluate detection per-
formance, and video sequences of users in our labora-
tory who interacted with the system over several days
to evaluate medium- and long-term tracking.

At the conference installation, we sampled the per-
formance of the system every 15 seconds over an eval-
uation period of approximately 3 hours. At each sam-
ple point we captured both a color image of the scene
and an image of the output of the range module after
disparity smoothing. We segregated image/range pairs
of scenes with no users present, after verifying that
our system did not generate any false positive detec-
tion on these images. We retained approximately 300
registered color/range pairs with one or more people
present.

We also collected a similar set of approximately 200
registered range/color stills of users of the system while
on display in our laboratory, similar to the images in
Figs. 2 and 3(a). Table 1 summarizes the single-person
detection results we obtained on these test images. A
correct match was defined when the corners of the es-
timated face region were sufficiently close to manually
entered ground truth (within14 of the face size). Over-
all, when all modules were functioning, we achieved a
success rate in excess of 96%; when the color or face
detection module was removed performance was still
above 93%, indicating the power of the range cue for
detecting likely head locations. Face detection results
for the conference data set are not reported as we were
not able to record images at sufficient resolution to fully
evaluate detection performance off-line. We note that

Table 1. Face detection and localization results on Confer-
ence and Lab datasets using different combinations of input
modules, ordered by increasing error rate.

Modules enabled

Color Range Pattern Conference data Lab data

√ √ √
97% 96%

√ √
97% 95%

√ √
97% 93%

√
97% 90%

√ √
92% 93%

√
90% 89%

√ ∗ 80%

faces in our dataset were often quite small and our ap-
plication encouraged unusual expression and pose; this
explains the decreased performance relative to more
traditional face detection databases.

Performance was generally better on the Conference
dataset than on the Lab dataset, which we believe was
due to the fact that users in the latter dataset were more
familiar with the system and attempted to push the
limits of the tracking system. Users in the Conference
dataset exhibited fewer hand gestures and limb move-
ments, allowing overly simple heuristics such as em-
ployed by the range module alone to accurately identify
head location in a relatively large proportion of trails.

To evaluate our longer term tracking performance
we used statistics gathered from 25 people in our lab-
oratory who visited our display several times on dif-
ferent days. This population included multiple races,
an even distribution of genders, and a relatively wide
range of adult heights. People’s hairstyle, clothing, and
the exterior illumination conditions varied between the
times data were collected. We tested whether our sys-
tem was able to correctly identify users when they
returned to the display. During this time period no
other users interacted with the system. In general, our
results were better for medium term tracking (intra-
day) than for long term (inter-day) tracking, as would
be expected. Table 2 shows the extended tracking re-
sults: the correct classification percentage is shown for
each modality and for the combined observations from
all modes. This table reflects the recognition rate us-
ing all of the data from each short-term tracking ses-
sion: on average, users were tracked for 15 seconds
before short-term tracking failed or they exited the
workspace.

By integrating modes we were able to correctly es-
tablish correspondences between tracked users in all of
the medium-term cases, which typically involved tem-
poral gaps between 10 and 100 seconds. In the long-
term cases, which typically reflected gaps of one day,
integrated performance was 87%. Performance was

Table 2. Extended tracking performance:
correct identification rate at end of session.

Medium-term Long-term
Performance (intra-day) (inter-day)

Height 44% 20%

Color 84% 63%

Face pattern 84% 67%

Multi-modal 100% 87%
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generally worse across longer time intervals. While
there are many unknown factors which contribute to
this effect, we suspect that variations in scene illumina-
tion, user clothing and footware, and user behavior are
larger inter-day rather than intra-day and can explain
the observed performance. Further work is needed to
fully analyze the various sources of classification un-
certaintly across different time-scales.

A more complete depiction of medium- and long-
term performance is shown in Fig. 6. These figures

(a) (b)

Figure 6. Identification performance for different thresholds on the size of the target set returned (the rank threshold). The highest probability
models are returned in the target set. If the actual person is in the target set, the match is considered correct. Performance is shown for:
(a) medium-term tracking, (b) long-term tracking. The left edge of the graph thus shows exact-match performance.

(a) (b)

Figure 7. Average rank of correct person vs. time. (a) medium-term tracking, (b) long-term tracking.

show the recognition rate vs rank threshold, i.e., the
percentage of time the correct person was above a given
rank in the ordered likelihood list of predicted users.
As expected, identification becomes more reliable over
time as more data is collected. Figure 7 shows the rank
of the correct person over time, averaged across all
test sessions; correct identification (average rank equals
one) is almost always achieved within one second in
the medium-term case, and within three seconds in the
long-term case.
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5.2. Discussion

We draw two main conclusions from the detection re-
sults; first, that range data is a powerful cue to detecting
heads in complex scenes. Second, integration is use-
ful: in almost every case, the addition of modules
improved system performance. Performance was gen-
erally high, but individual module results varied con-
siderably across datasets. In particular the face pat-
tern module fared relatively poorly on the Conference
dataset. We believe that this is largely due to the small
size and poor illumination of many of the faces in these
images. Additionally, in both datasets our application
encouraged people to make exaggerated expressions,
which was beyond the scope of the training for this
module.

In contrast, for extended tracking it is clear from
these results that the face pattern is the most valuable of
the three modes when we consider all the data available
during the session. Face pattern data is most discrimi-
nating at theendof the test session; however, the other
modalities are dominant early in the session. The face
detection module operates more slowly than the other
modes, so the face pattern data is not available imme-
diately and accumulates at a slower rate. Therefore, in
the first few seconds the overall performance of the ex-
tended tracking system is due primarily to color and
height data, and far exceeds the performance based on
face pattern alone.

6. Conclusion

We have demonstrated a system which can respond
to a user’s face in real-time using completely passive
and non-invasive techniques. Robust performance is
achieved through the integration of three key modules:
depth estimation to eliminate background effects, color
classification for fast tracking, and pattern detection to
discriminate the face from other body parts. We use de-
scriptions of the user computed from the same modali-
ties to track over longer time scales when the user is oc-
cluded or leaves the scene. Our system has application
in interactive entertainment, telepresence/virtual envi-
ronments, and intelligent kiosks which respond selec-
tively according to the presence, pose, and identity of
a user. We hope these and related techniques can even-
tually balance the I/O bandwidth between typical users
and computer systems, so that they can control compli-

cated virtual graphics objects and agents directly with
their own expression.
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