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Abstract: Limited-angle torque motor (LATM) is a critical component to precisely drive the valve
angle of an engine’s fuel metering apparatus and accurately measure the fuel flow, and research on it
is of great significance. Thus, the LATM of a certain kind is regarded as the research object in this
paper. Firstly, a Simscape-based LATM integrated physical modeling method is proposed, which
can better demonstrate the real operational characteristics of a motor, compared with the current
mathematical model. Secondly, a Proportional-Integral-Derivative (PID) parameter self-tuning
method based on a constriction factor particle swarm optimization (CPSO) algorithm is broached
since it is difficult to tune due to a large number of multi-loop cascade PID control parameters.
Simulation and experimental results showed that the control performance increases by 40% in the
triple closed-loop PID control system with a stronger disturbance rejection, simpler design, and
quickly responds when compared with the previous empirical tuning method. The triple closed-loop
PID control system comprises an angle loop + angle velocity loop + current loop and technically
supports the engineering application design of motors.

Keywords: limited-angle torque motor; cascade PID control; PSO; physical modeling; control
parameter tuning

1. Introduction

In aviation, whether fuel metering apparatus can precisely control the fuel flow is a
prerequisite for an engine or an aircraft to operate safely and reliably. The key to realizing
the “precise control” lies in whether a limited-angle torque motor (LATM) regulating the
valve angle can perform precise control [1,2]. Hence, it is essential and crucial to research
the LATM of fuel metering apparatus.

An LATM is characterized by small size, fast dynamic response, high steady-state
accuracy, and high environmental adaptability [3–5]. Thus, many researchers have studied
it carefully on LATMs. For example, Tsai et al. [6] designed a two-pole brushless DC LATM
with a toroidally wound armature using selected ferromagnetic material and rare-earth
permanent magnets. A designed position controller of LATM is applied to the fuel control
of gas turbine engine, and experiments verified the effectiveness and practicability of the
motor. Subsequently, using magnetic equivalent circuit modeling, Nasiri-Zarandi et al. [7]
presented a two-pole brushless DC LATM with a toroidally wound armature. They intro-
duced a new segmented rotor pole tip structure of the LATM, and the experimental results
demonstrated its correctness. Wu et al. [8] proposed a toroidally wound radial-flux Halbach
array permanent magnet LATM. Based on this type of motor, a fully parameterized and
flexible equivalent magnetic circuit model arranged in matrix form employing Kirchhoff’s
current laws is also proposed to improve the computational efficiency and extensibility.
Meanwhile, a multi-objective optimization process is used to obtain the Pareto front of the
desired objectives. Hekmati et al. [9] analyzed the outer rotor structure of slotless radial
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flux permanent magnet limited-angle torque motor with disturbed armature winding. The
exact 2-D analytical modeling is applied to obtain the magnetic field parameters of the
windings and excitation for both the outer rotor and the conventional inner rotor topolo-
gies. Experimental results showed good accuracy of the theoretical design and numerical
simulations. The comparison results showed that the performance of the new actuator with
outer rotor structure is significantly better. Li et al. [10] conducted a study on a novel LATM
with an irregular slot number and established the relationship between its performance
and main parameters according to analytical equations that are derived for predicting the
torque-angle characteristic of the LATM, thus providing theoretical support for LATMs’
optimal design.

In recent years, researchers have also focused on LATM modeling and control. For
example, in order to realize accurate tracking control of LATM with 50 Hz sawtooth refer-
ence waveform as input, Zhang et al. [11] established a dual closed-loop linear controller
based on angle loop + current loop according to a nonlinear motor mathematical model
and designed a gain scheduling controller for linear dynamic compensation, which ef-
fectively compensates the nonlinear variation of motor parameters. However, it has a
poor control effect in the case of adding a load. Xiao et al. [12] built up an LATM posi-
tion servo system based on a triple closed-loop PID control strategy comprised of angle
loop + velocity loop + current loop, and successfully applied it in practical production, but
no study on parameter self-tuning was conducted, and parameters were tuned completely
based on experience. Li et al. [13] established a DC torque motor model based on the
system generator platform and only designed a current loop control system based on PI
controller. Liu et al. [14] contrived a new method of DC brushless motor speed control
system based on radial basis function neural network control, and the simulation results
demonstrated that it has excellent static and dynamic performance. However, these meth-
ods have poor disturbance rejection for motor angle control. Zhao et al. [15] proposed
a quadruple closed-loop PID control strategy based on angle loop + angle acceleration
loop + velocity loop + current loop according to the LATM mathematical model. There
are more parameters to be adjusted and it is laborious for design although the simulation
results achieved the desired goal. Chen et al. [16] derived an ideal model of the single-phase
LATM with cylindrical Halbach magnetic array according to theories and proposed a robust
output feedback control with a high-gain observer to manage a model’s uncertainty and the
angle-related nonlinear current-torque relationship so that the defined smooth trajectory
can be accurately tracked by angle sensing only. Experiments verified the effectiveness
of the method. Çolak et al. [17] researched the LATM mathematical modeling and con-
trol methods in the Simulink simulation environment and verified the dual closed-loop
control method of angle loop + current loop and the triple closed-loop control method
of angle loop + angle velocity loop + current loop, respectively. The experimental results
met the design criteria, but the mathematical models established in the above methods
could hardly visualize an LATM’s features. Besides, the controller parameters were mainly
tuned based on experience technology, and whether the LATM was loaded is still not
considered. Zhou et al. [18] established a simulation model of an LATM for a marine diesel
engine’s governor based on Simulink software through the identification method, and
devised a triple closed-loop PID controller based on genetic algorithm. The experimen-
tal results proved the method’s effectiveness and disturbance rejection, but the genetic
algorithm [19,20] is easy to confuse researchers by the local optimum, and the method’s
real-time performance is not satisfactory. Besides, due to the computational complexity of
genetic algorithm and the local prematurity of the optimal solution, it is more used in the
parameter tuning of single loop PID controller and is not competent for the multi parameter
tuning brought by multiple control loops [21].

Therefore, a Simscape-based LATM integrative physical modeling method is firstly
proposed in this paper, targeting shortcomings of the current technology by taking 38LXJ01-
Z LATMs as the research objects, which can intuitively demonstrate the actual operational
characteristics of a motor. Secondly, a PID parameter self-tuning method based on a
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constriction factor particle swarm optimization (CPSO) algorithm was broached since it is
difficult to tune due to a large number of multi-loop cascade PID controller parameters.
A set of controller parameters that satisfy indicator requirements are obtained after a
closed-loop PID controller composed of angle loop + angle velocity loop + current loop
is rapidly and globally studied for the optimal parameters based on the target where the
system’s response speed, overshoot and stability are ensured to be the best. The method
is simpler, faster, and specifically better in load resistance compared with the previous
empirical tuning method.

The structure of this paper is as follows. The LATM physical modeling is displayed
in Section 2. CPSO-PID-based controller design is presented in Section 3. Results and
discussion are demonstrated in Section 4, and conclusion is in Section 5.

2. Integrated Physical Modeling of Limited-Angle Torque Motor
2.1. Structure and Principle

A 38LXJ01-Z LATM is deemed as the research object in this paper, which is specialized
motors converting electrical signals into angular displacement at a certain angle with a
certain torque output as presented in Figure 1. Such a LATM has no commutator and brush
but has limited-angle physical module to confine the motor’s angle range. The motor stator
magnetic slot number is 2, ±θ is the rotation angle range, 0-0′ is the motor reference/zero
line and I-I’ and II-II’ are ±θ’s boundary lines where there is a baffle plate. The rotor will
be blocked by the plate when reaching a boundary line, thus enabling the motor to rotate
within the range of ±θ. The rotor is a two-pole structure consisting of permanent magnets.
The stator and rotor magnetic fields of the motor are equally orthogonal, generating
maximum electromagnetic torque with a demagnetizing or magnetizing potential within
the operating range of ±θ. The motor will rotate in the reverse direction if a reverse current
is applied to the stator coil; it will rotate in the forward direction if a forward current is
applied to the stator coil [7].
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Figure 1. (a) 38LXJ01−Z limited-angle torque motor object; (b) Schematic diagram of motor
structure section.

2.2. Mathematical Model

A mathematical model specifically presented as follows is developed based on the
working principle of LATMs [15]:

(1) Voltage balance equation
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An LATM’s excitation system can be regarded as two excitation coils: one is a wound
electric excitation coil, and the other is a permanent magnet excitation coil. The coils form
circuits with the power supply, respectively, to obtain the voltage equation as:

Ri1 +
dψ1

dt
= u1 (1)

dψ2

dt
= u2 (2)

where u1 and u2 are voltages of the two excitation coils respectively; ψ1 and ψ2 are flux
linkages, and the resistance R is the equivalent resistance of the wound coil. The magnetic
potential generated by the permanent magnet of magnetic steel is set to be F2, and the
number of turns of the permanent magnet coil is the same as that of electric excitation coils
as n, so the current through the permanent magnet excitation coil is:

i2 =
F2

n
(3)

Expressions of the flux linkages are:

ψ1 = L11i1 + L12i2 (4)

ψ2 = L21i1 + L22i2 (5)

where L11 and L22 are the self-inductance of coil 1 and coil 2, respectively. There is mutual
inductance between the two coils, so L12 = L21. The voltage balance equation is as follows:

Ri1 +
d
dt
(L11i1 + L12i2) = u1 (6)

d
dt
(L21i1 + L22i2) = u2 (7)

The permanent magnet coil of magnetic steel can be deemed as a virtual electric coil, so
this coil’s voltage equation can be ignored, but the flux it generates on the wound armature
coil should be considered. Equations (6) and (7) can be simplified as follows when L11 is
a constant:

R·i + L· di
dt

+ e = u (8)

where Ke = pN
2πa · φ, φ = Bτl, and e is the counter-electromotive force (CEMF). Ke is

the motor’s CEMF coefficient, φ is the flux per pole, N is the total number of armature
conductors, a is the number of branch pairs, p is the number of pole pairs, B is the average
flux density per pole, l is the effective length of the conductors, and τ is the effective width
of each pole on the armature core’s surface.

(2) Torque balance equation
The torque generated when the motor is working includes the electromagnetic torque

output by the motor, the resistance torque produced by the motor’s mechanical damping,
the load torque borne on the motor’s rotating shaft, and the resistance torque when the rotor
reaches the angle boundary and collides with the motor’s physical baffle plate. The LATM’s
torque balance equations are established according to the laws related to kinematics, as
demonstrated in Equations (9)–(11):

J
d2θ

dt2 = M− D
dθ

dt
−Ml (9)

J
d2θ

dt2 = M− D
dθ

dt
−Ml −Mx1 (10)



Micromachines 2022, 13, 949 5 of 19

J
d2θ

dt2 = M− D
dθ

dt
−Ml −Mx2 (11)

where J is the torque inertia, D is the viscous damping coefficient, M is the electromagnetic
torque and M = KT · i, Ml is the load torque, KT is the electromagnetic torque coefficient,
Mx1 is the baffle plate’s instantaneous torque where Mx1 = ∞ at the contact moment, and
Mx2 the baffle plate’s steady-state torque whose expression is Mx2 = M−Ml . The torque
balance equation is as shown in Equation (9) when the LATM rotates; the torque balance
equation in the transient state is as presented in Equation (10) when the motor reaches the
baffle plate, i.e., the maximum angular displacement, and the motor immediately stops;
the LATM’s torque balance equation is as demonstrated in Equation (11) when the motor
reaches the baffle plate and is in the steady-state, and the reverse torque generated by the
plate should be equal to the forward torque imposed by the motor’s rotor on the plate, i.e.,
the interaction torque. The output torque is zero at that time.

The voltage-related transfer function of the motor’s angle could be obtained as follows
according to the voltage balance equation and the torque balance equations, when the
LATM operates without load within the angle range:

θ(S)
U(S)

=
1

JL
KT

S3 + RJ + LD
KT

S2 +
(

RD
KT

+ Ke

)
S

(12)

Based on ω = dθ
dt , Equation (9) among the torque balance equations can be transformed to:

J
dω

dt
= M− Dω−Ml (13)

The voltage-related transfer function of the motor’s angle velocity could be solved
combined with the voltage balance equation. The expression is presented as follows:

W(S)
U(S)

=
1

JL
KT

S2 + RJ + LD
KT

S +
(

RD
KT

+ Ke

) (14)

2.3. Integrated Physical Model

Building a physical model of the LATM is conducive to further demonstrating its real
operating characteristics, so a Simscape-based [22] LATM integrative physical model is
established in this paper, where motor components mainly include a motor angle measuring
sensor, a motor driver, and loads.

2.3.1. Motor

Firstly, the LATM-related parameters listed in Table 1 are accurately identified ac-
cording to the established mathematical model and the measurement data. Secondly, a
Simscape-based LATM ontology physical model is established as demonstrated in Figure 2
according to the parameters.

Table 1. Parameters of 38LXJ01-Z limited-angle torque motor.

Parameters R (Ω) L (H) Ke (V/(rad/s)) J (kg·m2) KT (N·m/A) D (N·m(rad/s)) Angle Range (◦)

Value 81.15 1.5 0.12 2 × 10−8 0.12 5 × 10−4 ±100
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Figure 2. Physical model of limited-angle torque motor.

In order to verify the accuracy and validity of the designed physical model, 5 V, 15 V,
and 25 V forward driving voltages were input to the LATM and the Simscape-based motor
model under the same conditions, respectively. The comparison results are displayed
in Figure 3. In Figure 3a, the maximum rotational speed output by the motor model is
10.986 rad/s, and the rotational speed measured in the motor test is 10.890 rad/s when
5 V voltage is set as input, so the matching precision between the model and the motor
is 99.13%, and their boundary reaching times are 0.172 s and 0.175 s, respectively; the
maximum rotational speed output by the motor model is 32.788 rad/s, and the rotational
speed measured in the motor test is 32.062 rad/s when 15 V voltage is set as input, so
the matching precision between the model and the motor is 97.78%, and their boundary
reaching times are 0.066 s and 0.069 s, respectively; the maximum rotational speed output
by the motor model is 52.996 rad/s, and the rotational speed measured in the motor test
is 52.273 rad/s when 25 V voltage is set as input, so the matching precision between the
model and the motor is 98.64%, and their boundary reaching times are 0.045 s and 0.047 s,
respectively. It is obvious that the model simulated rotational speed is slightly faster than
the motor’s actual speed. Measured angles of the model and the motor corresponding to
different input voltages are demonstrated in Figure 3b. The motor angles slightly deviated
from 100◦ due to practical measurement errors. The Simscape-based physical model’s
simulation accuracy is over 97% according to motor tests under typical operating voltages,
which has proved the accuracy and validity of the Simscape-based model. Thus, the model
can be adopted in designing and verifying control methods.

Meanwhile, as shown in Figure 3, the LATM is a non-linear object, and the response
characteristics of the LATM do not change linearly when the driving voltage changes
linearly at equal intervals of 5 V, 15 V, and 25 V. When the driving voltage is 5 V, the
magnetic field is weak. This caused a small angle velocity to drive angle to the maximum
value; when the driving voltage is 15 V, the magnetic field is strong. This caused a large
angle velocity to drive angle to the maximum value; when the driving voltage is 25 V, the
magnetic field is stronger. This caused a larger angle velocity to drive angle quickly to the
maximum value. Therefore, this feature needs to be considered.
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2.3.2. Angle Measuring Sensor

Common motor angle and angle velocity measuring transducers mainly include Hall
sensor, photoelectric sensor, and rotary variable differential transformer (RVDT). Fuel
metering apparatus in aviation often uses an RVDT as its motor angle velocity and angle
measuring transducer. Generally, an RVDT is connected coaxially with a motor, converts the
motor’s position signals into electrical signals, and realizes higher measurement accuracy
according to angle signals calculated by a solver. Therefore, an RVDT is selected as the
angle measuring transducer in this paper.

In principle, an RVDT is equivalent to a rotatable transformer and is similar with
a two-stage two-phase wound induction motor in structure, whose stator and rotor are
generally laminated with silicon steel or iron-nickel alloy sheets, and the angle between
two secondary coil windings is 90◦. Primary coil windings are AC excitation windings.
As the rotor angle changes, the relative coupling between the primary and secondary
windings also varies. Each of the two secondary coil windings produces corresponding
induced electromotive force (EMF). The number of turns and the wire diameter of the stator
windings of coils X and Y are the same in Figure 4. The two secondary windings X and
Y will output induced voltages when excitation windings p1 and p2 are excited with a
certain frequency of AC voltages, the amplitude of which is associated with the rotor’s
rotational angle. A solver can obtain values of angle and angle velocity from electrical
signals according to the output voltages at both ends of coils X and Y [23,24].

The voltage balance equation of coils and the induced EMF equation of secondary
coils are as follows, according to the electromagnetism and Kirchhoff’s voltage law:

Kirchhoff’s voltage law:
u + e + eσ = K · i (15)

u = K · i + (−eσ) + (−e) = K · i + Lσ
di
dt

+ (−e) (16)

where u is the excitation voltage, e is the primary magnetic induced EMF, eσ is the flux
leakage voltage, Lσ is the coil inductance, K is the transformer ratio.

Transformer’s working principle:

e ≈ u (17)

U1

U2
≈ E1

E2
=

n1

n2
= K (18)

Equations of RVDT mathematical principles:

vx = K · cos(Np · θ) · vp (19)
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vy = K · sin(Np · θ) · vp (20)

where Np is the number of an RVDT’s pole pairs, vx is the voltage at both ends of the
secondary coil X, vp is the primary coil’s excitation voltage, vy is the voltage at the both
ends of the secondary coil Y, and θ is the motor rotor’s rotational angle. The primary
magnetic field was decomposed on the two secondary coils which formed an angle of
90◦, and the induced EMF was generated on coils X and Y according to the transformer’s
working principle. Electrical signals were transmitted to the solver unit through the voltage
output ports of x1x2 and y1y2.
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Figure 4. RVDT structure.

RVDT’s solver acquired the rotor’s current rotational angle (θ) by calculating the
coupled voltage signals of the two stator coils. The principal block diagram of the PID
loop-based angle solver adopted in this paper is presented in Figure 5, and the architecture
can be divided into two parts, namely analog signals and digital signals. The analog front-
end consists of a programmable gain amplifier and a comparator, and the analog front-end
mainly realizes noise removal and provision of correct DC bias; the digital feedback loop is
comprised of a filter and a PID controller. The digital angle information is firstly assumed
and digitally processed by the sine and cosine table stored in the storage, then calculated
by the sine and cosine digital-to-analog converter (DAC), and finally multiplied with the
RVDT’s signals. The solving principle of the RVDT’s solver is to obtain the coupling signal
(K· sin θ· sin ωt, K · cos θ· sin ωt) of the excitation signal (sin ωt) on the stator winding,
which is differentially compared, rectified and demodulated to obtain the PID controller’s
error signal K · sin (θ − ϕ). At the end, errors are eliminated by PID regulation, thus
obtaining the RVDT’s angle.
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2.3.3. Motor Driver

The classical “H-Bridge” and “PWM (Pulse Width Modulation)” drive circuits are
often employed to control the motor’s rotation direction and speed in the LATM control
system [25]. The “H-Bridge” consists of four field-effect tubes, namely two PMOS (Positive
channel Metal Oxide Semiconductor) in the upper arm and two NMOS (N-Metal-Oxide-
Semiconductor) in the lower arm, and the control of motor’s rotation direction and speed
is realized by controlling the sequence of the four MOS tubes to connect input signals and
PWM values. The motor rotates clockwise when MOS tubes at Q1 and Q4 connect input
signals as presented in Figure 6; it rotates anticlockwise when MOS tubes at Q2 and Q3
connect input signals; the motor’s speed can be controlled by changing the PWM signal’s
duty cycle when the control signal is PWM signal [26].
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2.3.4. Load

A LATM directly controls the metering valve angle by levers and gears to meter fuel.
The valve components and the effect of fuel pressure on the motor’s rotating shaft can
be equivalently regarded as a certain load disturbance. A motor’s load model is often
established with an ideal torque source module + mathematical signal source or mechanical
spring module + gear set module in the motor’s integrative component models.

Therefore, the LATM integrative physical simulation model of fuel metering apparatus
established according to the method is demonstrated in Figure 7.
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3. CPSO-PID Controller Design

The LATMs are characterized by high rotational inertia ratio, fast dynamic response,
outstanding linearity, compact structure, low steady-state power, and bidirectional con-
trollability. However, the position control system composed of an LATM has severe
nonlinearity, and it is arduous for the traditional series correction, speed feedback, and
compound control methods to achieve the ideal control effect. Therefore, a triple closed-
loop cascade PID controller (angle loop + angle velocity loop + current loop) is established
in this paper to achieve high-precision position control of an LATM. The more cascade PID
controllers are, the more parameters are to be adjusted. Poor effect and huge workloads will
be seen if parameters are adjusted by totally relying on professional experience. Therefore,
a CPSO-based PID parameter quick self-tuning method is proposed in this paper. The
PID parameters are automatically adjusted by the CPSO algorithm, which not only greatly
reduces the workloads, but also obtains better control effect.

3.1. CPSO Algorithm

The particle swarm optimization algorithm is a simple and effective swarm intelligence
optimization algorithm. The traditional particle swarm algorithm depends largely on
its parameters, and improper setting of parameters is easy to confuse researchers by
local optimal solutions with poor results [27], while CPSO algorithm can address this
problem [28]. Details are as follows:

The fitness value corresponding to each particle’s position xi can be calculated accord-
ing to the objective function if the ith particle of a swarm x = (x1, x2, . . . , xn) consisting
of n particles in a D-dimensional search space is represented as a D-dimensional vector
xi = (xi1, xi2, xi3, . . . , xiD)T, which demonstrates not only the ith particle’s position in the
search space but also a potential optimal solution to the original problem. The ith particle’s
velocity can be denoted as vi = (v1, v2, . . . , vD)T, whose individual extremum, i.e., the best
position experienced by the ith particle in the D-dimensional space, has the best fitness at
pbi = (pi1, pi2, . . . , piD). The swarm’s global extremum, i.e., the best position experienced by
all its particles, can be presented as pg = (pg1, pg2, . . . , pgD)T.

The mathematical model for each particle’s movement and position update in the
CPSO algorithm is shown as follows:

vi(k + 1) = χ[vi(k) + r1c1(pbi(k)− pi(k)) + r2c2(pg(k)− pi(k))] (21)

pi(k + 1) = pi(k) + vi(k + 1) (22)

where i is the particle index; k is the number of the algorithm’s iterations; pi(k) and vi(k) are
the ith particle’s position and velocity in the search space at the kth iteration, respectively;
r1 and r2 are random numbers between zero and one. c1 and c2 are acceleration factors, the
sum of which is greater than 4, i.e., C = c1 + c2 > 4; χ is the compressibility factor, which is
calculated as follows:

χ =
2∣∣∣2− C−
√

C2 − 4C
∣∣∣ (23)

It decreases each particle’s velocity as the number of iterations increases.
pbi and pg are updated as follows during each iteration.

pbi(k + 1) =

{
pbi(k) if J(pi(k+1)) ≥ J(pbi(k))
pi(k + 1) if J(pi(k+1)) < J(pbi(k))

(24)

pg(k + 1) =

{
pg(k) if J(pbi(k+1)) ≥ J(pg(k))
pbi(k + 1) if J(pbi(k+1)) < J(pg(k))

(25)

where J(pi(k+1)) is CPSO’s fitness function.
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Therefore, a CPSO algorithm concrete realization flow is displayed in Figure 8. Firstly,
it requires the following parameters such as fitness function, particle dimension (Dim),
population size (PopSize), the maximum iteration number (MaxIter), c1, c2, and k. Then, it
is essential to initialize the position and velocity of particles as well as evaluate particles
and find the global optimum (pg0). Next, it will enter the loop iteration process and the
position and velocity of particles via Equations (21) and (22) is updated. Subsequently,
these particles need to be evaluated and find the global optimum (pgk) again by comparing
it with the previous global optimal value. Finally, the optimal particle is obtained when the
termination condition (iter > MatIter) is satisfied.
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3.2. Design of Multi-Loop Cascade PID Controller

In the design of a triple closed-loop controller, from outside to inside are the angle
loop, the angle velocity loop, and the current loop. The angle velocity loop can play a role
in suppressing the fluctuation of the angle position, improving the steady-state accuracy,
response speed, and enhancing disturbance rejection. In addition, the angle velocity loop
also uses a PI controller, and the system will be instable if the differential link D is added.
The triple closed-loop control strategy of the angle loop + angle velocity loop + current
loop adopted by the LATM is presented in Figure 9.

In this paper, the CPSO algorithm is adopted for PID controller parameter self-tuning.
The more optimization variables exist, the more efforts are paid in computation, and the
longer time is consumed. Thus, the angle loop uses a PID controller with the proportional,
the integral and the differential coefficients of Kp1, Ki1, and Kd1. The angle velocity loop
employs a PI controller with the proportional and the integral coefficients of Kp2 and Ki2.
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The current loop adopts a PI controller with the proportional and the integral coefficients
of Kp3 and Ki3. Therefore, the optimization variable is selected as:

x =
[
Kp1 Ki1 Kd1 Kp2 Ki2 Kp3 Ki3

]
(26)

The integral of time and absolute error (ITAE) is adopted in this paper as the perfor-
mance index to establish an optimization seeking objective function in order to ensure the
response speed, overshoot, and stability of the system, whose expression is:

JITAE =
∫ ∞

0
t|e(t)|dt (27)

where JITAE is the fitness evaluation function of the CPSO algorithm.
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Finally, a CPSO-PID controller design method is obtained according to the LATM
optimal control method proposed in this paper, as shown in Algorithm 1. It mainly includes
two parts: Offline Parameters Self-tuning and Online PID Control.

Algorithm 1: CPSO-PID Controller Design

Micromachines 2022, 13, x FOR PEER REVIEW 13 of 20 
 

 

 

Algorithm 1: CPSO-PID Controller Design 
 
 
 
Set Parameters: PopSize, c1, c2, MaxIter 
Definition Paramers: fitness function, Dim 
/* Offline Parameters Self-tuning Module */ 
Initialization: k = 0. 

/* CPSO Algorithm */ 
1. Initialize the position and velocity of particles. 
2. Evaluate particles and find the global optimum (pg). 
3. Global optimization: 

for k = 1 to MaxIter do 
(1) Update position and velocity of particles via Equations (21) and (22); 
(2) Evaluate particles and find the global optimum (pg); 
(3) k→k + 1; 

end 
Output: get the optimal particle. 
/* Online PID Controller Module */ 
Input: optimal particle, Angle Command 
4. Run LATM model. 
Output: Actual angle 
 
 
 

4. Results and Discussion 
A Simscape-based LATM multi-loop cascade PID control system is established in this 

paper, as demonstrated in Figure 10, mainly including a cascade PID controller and a mo-
tor’s integrative physical model consisting of the LATM, load, a RVDT sensor, a driver, 
and other modules. 



Micromachines 2022, 13, 949 13 of 19

4. Results and Discussion

A Simscape-based LATM multi-loop cascade PID control system is established in
this paper, as demonstrated in Figure 10, mainly including a cascade PID controller and a
motor’s integrative physical model consisting of the LATM, load, a RVDT sensor, a driver,
and other modules.
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Figure 10. Simulation model of limited-angle torque motor control system based on Simscape.

The Simscape-based motor model is deemed as the object in this paper to tune PID
parameters according to the CPSO algorithm’s principle. CPSO related setting’s parameters
are the number of particle swarms is: PopSize = 30, Dim = 7, MaxIter = 30, c1 = 3.5,
and c2 = 2. The optimization seeking results are presented in Figure 11. The CPSO’s
ITAE convergence is demonstrated in Figure 11a, where it is obvious that the asymptotic
convergence remains constant after reaching a certain value within the set number of
iterations. The corresponding global optimal particle finally obtained from optimization
will be applied to the motor control as the cascade PID parameter. The global optimal
particle is:

x =
[
4.88016 1.20065 0.03159 0.001337 0.01889 63.77460 4091.44024

]
(28)

As in Figure 11b,c, CPSO−PID’s performance index is better than PID’s. The CPSO−PID
can respond more quickly with more accurate steady-state control (as shown in Table 2).
The control performance increases by 40% by virtue of PID parameters tuned by the CPSO
algorithm other than those tuned by professional experience. Moreover, the calculation
is simpler.

Table 2. Comparison of CPSO-PID and PID performance indexes.

Performance Index PID CPSO−PID

Rise time 0.2281 s 0.1386 s
Overshoot 1.5% 1.5%

Setting time 1.1 s 0.3 s
Steady-state accuracy 0.29% 0.19%

The control effect of CPSO−PID is compared with that of PID as shown in Figure 12
if the angle command input is a standard sine wave signal with a given frequency of
2 rad/s and an amplitude of 35◦. From the angle relative error graph (Figure 12b), it is
conspicuous that the control accuracy of CPSO−PID is higher. A step load of 0.5 N·cm
is added at the 8th second and continuously acts. The motor’s angle, angle velocity, and
current change abruptly as presented in Figure 12a,c,d, but recover quickly and maintain
favorable control effect.
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To verify the effectiveness and robustness of CPSO−PID controller, a sine wave with a
frequency of 8 rad/s was set as an input signal of angle command. The simulation result is
illustrated in Figure 13. Figure 13a shows that control effect of the CPSO−PID is superior to
the PID. When adding a step load at t = 8 s, the CPSO−PID has a stronger anti-disturbance
ability. Figure 13a displays that the CPSO−PID has better controller accuracy than PID.
Figure 13c,d demonstrated that the angle velocity and current loop are also well controlled.
Therefore, The CPSO−PID controller designed in this paper has good robustness.

The control effect of CPSO−PID is compared with that of PID, as shown in Figure 14,
if the angle command input is a standard square wave signal with a given frequency of
0.2 Hz and an amplitude of 35◦. From the angle relative error graph (Figure 14b), it is
conspicuous that the control accuracy of CPSO−PID is higher. A step load of 0.5 N·cm is
added at the 8th second and continuously acts. The motor’s position, angle velocity, and
current change abruptly as presented in Figure 14a,c,d, but recover quickly and maintain
favorable control effect.
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Therefore, the PID control performance increases by 40% by virtue of parameters auto-
matically tuned by the CPSO algorithm other than those tuned by professional experience
according to the comparative simulation results, having better dynamic and steady-state
performance. Moreover, the design method is simpler and consumes less time.

Finally, a hardware experimental test environment is also built, as presented in
Figure 15 in this paper, to further verify the effectiveness of the designed optimal con-
troller, which mainly includes a motor, sensor, hardware and driver, control programs, the
display interface, DC power, and other devices. The experimental results are consistent
with the simulation results, and the time to regulate the motor is short. There is almost
no overshoot, and the steady-state error is less than 0.2%. The optimal control is proved
effective, further guiding the engineering design.
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5. Conclusions

The Simscape-based fuel metering apparatus’ LATM integrative physical modeling
method was studied in this paper, which was compared with a real motor for verification.
The modeling accuracy reaches 97%, which can intuitively demonstrate the motor’s op-
erating characteristics. In the end, a CPSO-based PID parameter self-tuning method was
proposed in this paper to study globally for the optimal parameters since parameters of the
triple closed-loop cascade PID controller can hardly be tuned via experience. According
to the comparative simulation and experiment results, the system control performance
increases by 40% because of parameters tuned by the proposed method other than those
tuned by professional experience. The control system has better disturbance rejection when
sine wave and square wave signals were used as input commands of angle, respectively.
Besides, the method put forward in this paper is smarter, simpler, and faster during the
entire design.
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