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ABSTRACT

This paper proposes an integrated speech front-end for both

speech recognition and speech reconstruction applications.

Speech is first decomposed into a set of frequency bands by an

auditory model. The output of this is then used to extract both

robust pitch estimates and MFCC vectors. Initial tests used a

128 channel auditory model, but results show that this can be

reduced significantly to between 23 and 32 channels.

A detailed analysis of the pitch classification accuracy and the

RMS pitch error shows the system to be more robust than both

comb function and LPC-based pitch extraction. Speech

recognition results show that the auditory-based cepstral

coefficients give very similar performance to conventional

MFCCs. Spectrograms and informal listening tests also reveal

that speech reconstructed from the auditory-based cepstral

coefficients and pitch has similar quality to that reconstructed

from conventional MFCCs and pitch.

1. INTRODUCTION

Speech communication from mobile devices has traditionally

been made using low bit-rate speech codecs. The low bit-rates

at which these codecs operate introduce a slight distortion of

the speech signal which becomes more severe in noisy

conditions. When input into a speech recogniser, this distortion

causes a noticeable reduction in accuracy. To overcome this

problem the technique of distributed speech recognition (DSR)

[1] has been proposed by the ETSI Aurora group.

DSR replaces the codec on the terminal device with the feature

extraction component of the speech recogniser and so removes

codec-based distortion from the speech recogniser input. This

results in a significant improvement in speech recognition

accuracy. However, because speech feature vectors are

designed to be a compact representation, optimized for

discriminating between different speech sounds, they do not

contain sufficient information to enable reconstruction of the

original speech signal. In particular, valuable speaker

information, such as pitch, is lost. However, several schemes

have been proposed recently for reconstructing speech from a

combination of MFCC vectors and pitch. These have been

based on either a sinusoidal model [2] or a source-filter model

[3] of speech production. An extension of this work also

considered the reconstruction of clean speech from noise

contaminated MFCC vectors and a robust pitch estimate [4].

In these systems, the MFCC vectors and pitch are extracted

using separate speech processors. For example in [4] a 128-

channel auditory model [11] provided robust estimates of the

pitch. The aim of this work is to integrate the MFCC extraction

and pitch estimation components into a single speech front-

end. For both pitch estimation and MFCC extraction, the

speech signal is decomposed into a number of discrete

frequency bands either by an auditory model or mel-filterbank.

It is therefore reasonable to combine this into a single system

and this is described in section 2. A detailed evaluation of the

pitch extraction component is described in section 3 and a

comparison made with alternative pitch extraction methods.

Speech recognition and speech reconstruction results are

presented in section 4 and a conclusion is given in section 5.

2. INTEGRATED FRONT-END

This section describes the proposed integrated speech front-end

and back-end systems, which are illustrated in figure 1. The

front-end comprises three main parts; auditory model, MFCC

extraction and pitch estimation. Three features are output

across the communication channel; MFCC vectors, pitch and

energy. At the remote back-end the MFCC vectors and pitch

estimates are used for speech reconstruction. For speech

recognition the MFCC vectors and energy are used together

with their temporal derivatives.
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Figure 1: Integrated front-end and back-end systems



Decomposition of the input speech signal into frequency bands

is performed by the auditory model. The output of this is used

by both the MFCC extraction and pitch estimation

components. The original pitch estimation system proposed in

[7] used a 128 channel auditory model. However most MFCC

extraction algorithms use significantly fewer channels (e.g. 23

for the Aurora standard). One of the aims of this work is to

vary the size of the auditory filterbank to produce a

compromise that gives both robust pitch estimates and MFCCs

which result in accurate speech recognition.

2.1. Auditory Model

The auditory model upon which the speech is decomposed into

frequency bands was proposed in [11]. Auditory models have

been successfully used for robust pitch estimation [6][7] and

therefore form the first stage of this integrated front-end.

Decomposition of the speech signal into a number of frequency

bands is achieved using a series of non-linearly spaced and

overlapping bandpass filters. The spacing of these bandpass

filters is determined by an equivalent rectangular bandwidth

(ERB) scale [10] and is similar to mel-scale spacing.

In the original system a set of 128 channels was used. These

give sufficient frequency response detail which the subsequent

pitch estimation component uses. However for MFCC

extraction, the Aurora standard defines just 23 channels. Work

shown in later sections examines the effect of reducing the

number of channels from 128 to 23 in terms of the resulting

speech recognition performance and pitch estimation accuracy.

2.2. Feature Extraction

The output of the auditory model takes the form of a series of

time-domain samples from each of the bandpass filters. In

conventional MFCC feature extraction a windowing function

captures a short-time frame of speech. From this a Fourier

transform determines the magnitude spectrum and this is then

quantised in frequency using a mel-spaced filterbank. To

generate a filterbank vector from the time-domain filter outputs

of the auditory model a mean amplitude (MA) filter is

employed. This outputs the root mean square amplitude, ck,

from each bandpass filter, k, at 10ms intervals from a 25ms

buffer of time-domain samples, where
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xk(n) is the nth time-domain sample from the kth bandpass filter

in the 25ms buffer, N is the buffer length (N=200 samples for

the 8kHz sampling frequency). This is consistent with the

frame width and frame rate used in the Aurora MFCC standard.

The final three stages are logarithm, discrete cosine transform

and truncation. These are identical to the last three stages in

conventional MFCC extraction. It should be noted that the

positioning of the auditory filters is close to, but not exactly,

mel-scaled. Therefore the features extracted by this system are

not strictly MFCCs. However, for the purpose of this work

they are referred to as auditory model-based MFCCs.

2.3. Robust Pitch Estimation

Auditory models have been demonstrated as being one of the

most successful methods for accurately estimating pitch [6][7].

For speech reconstruction, especially in noisy conditions, it is

vital to have a robust pitch estimate. Previous work in this area

successfully used a 128 channel auditory model to achieve this

[4]. To estimate pitch, the bandpass filter outputs from the

auditory model are divided into two components; a high

frequency part, where center frequencies are greater than

800Hz, and a low frequency part. An energy envelope is then

extracted from the high frequency part using a Teager energy

operator (TEO) [6]. An auto-correlogram is obtained from the

energy envelope of the high frequency component and the

remaining low frequency signals. Channels contaminated by

noise are removed by discriminative algorithms [6][7] which

analyse the structure of the auto-correlogram. Finally the pitch

contour is extracted using a pseudo-periodic histogram (PPH)

from the summation of the remaining clean channels [6]. This

is subsequently smoothed to produce a robust pitch estimate.

3. EVALUATION OF PITCH ESTIMATION

The aim of this section is to examine the effect of reducing the

number of channels in the auditory model in terms of pitch

estimation accuracy. In particular the number of channels is

reduced from 128 to 23 to be comparable with the number of

filterbank channels used in conventional MFCC extraction.

3.1. Method of Pitch Evaluation

The pitch extraction system is required to produce two outputs;

a flag indicating whether the speech is voiced or unvoiced and,

for voiced speech, an estimate of the pitch frequency. It is

therefore appropriate to measure the effectiveness of the pitch

extraction system using these two criteria.

Before defining these measures it is useful to examine the types

of error made in pitch extraction. One form of error is a mis-

classification, such as a voiced frame being classified as

unvoiced or an unvoiced frame being classified as voiced.

Another type of error is a correct classification but a wrong

pitch frequency value. To illustrate the second kind of error, a

histogram showing the percentage pitch frequency error is

shown in figure 2, taken across 75 Messiah sentences. The

reference pitch value has been provided by a hand-checked

laryngograph signal. For clarity the figure also shows an

expanded section of the lower portion of the histogram.

Figure 2: Distribution of percentage pitch errors

The majority of pitch estimates are very close to the measured

pitch and apparently have a Gaussian distribution. In fact the

dotted vertical line shows the range of pitch estimates that are

within +/-20% of the reference pitch - over 97% of pitch

estimates are within this range. However a number of errors are

concentrated around the –50% and +100% points. These

correspond to pitch halving errors and pitch doubling errors

which are fairly common mistakes made in pitch estimation.

After consideration of these results, it was decided to label

pitch estimation errors of more than 20% as being incorrectly

classified [8]. This also means that when calculating the root



mean square (RMS) pitch error, the effect of pitch halving and

pitch doubling in the estimation does not dominate the result.

Therefore pitch classification error, Ec, is expressed as
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where NV|U is the number of voiced frames classified as

unvoiced, NU|V is the number of unvoiced frames classified as

voiced and N>20% is the number of frames in which the pitch

error is greater than 20%. NTotal is the total number of frames.

For frames correctly classified as voiced, the RMS pitch error

provides a measure of the accuracy of estimation. The overall

RMS error, Ep, is computed as
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where )(ˆ
0 if is the pitch frequency estimate from the ith frame

and )(0 if is the pitch for the ith frame measured from the

laryngograph signal. N is the total number of voiced frames in

the test, which is around 23,000 frames for the 75 utterances.

3.2. Assessment of Pitch Estimation

This section evaluates the effectiveness of the pitch estimation

scheme using the two performance measures described in the

previous section. In particular the effect of reducing the

number of channels in the auditory model from 128 down to 23

is examined. The test data used in these experiments is

composed of 75 utterances from a set of Messiah sentences. To

observe the effect of noise on pitch estimation, examples of

office noise from the Aurora database have been artificially

added to the speech at a range of signal-to-noise ratios (SNRs)

from 30dB to 0dB. Reference pitch measurements come from a

laryngograph signal which has been manually checked for

accuracy.

The aim of the first experiment is to examine the effect of

reducing the number of channels in the auditory model. Tests

begin with the original 128 channels and go down to 23

channels (the same number used in the Aurora MFCC

standard). Figure 3-a shows the frame classification error, Ec,

for 128, 64, 32 and 23 channel auditory models across a range

of noise levels. Figure 3-b illustrates the RMS pitch error, Ep,

for the different number of channels and noise levels.

0

5

1 0

1 5

2 0

2 5

3 0

c le a n 3 0 d B 2 0 d B 1 0 d B 5 d B 0 d B

S N R s

U
/

V
 E

rr
o

r 
%

2 3  c h a n n e ls

3 2  c h a n n e ls

6 4 c ha n ne ls

1 2 8  c h a n ne ls

Figure 3-a: Frame classification error, Ec
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Figure 3-b: RMS pitch error, Ep

The result shows that errors for both frame classification and

pitch measurement increase as the SNR decreases, as expected.

Pitch measurements from the 128, 64 and 32 channel auditory

model give almost identical performance. Reducing the number

of channels to 23 causes a slight reduction in performance for

more noisy speech.

A second set of tests were performed to compare the

performance of the 32-channel auditory model-based pitch

measurements with those obtained by alternative algorithms.

These were the comb-function [5] and LPC-based pitch

estimation through inverse filtering [9]. Figure 4 shows

comparative results for both frame classification and RMS

pitch error.
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Figure 4-a: Comparative frame classification error, Ec
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Figure 4-b: Comparative RMS pitch error, Ep

The pitch estimate from the LPC algorithm is the most accurate

measurement for voiced frames under 20dB but deteriorates at

SNRs below this. However, frame classification error from the

LPC algorithm is the worst of the three algorithms. The comb

function algorithm gives the best frame classification above

SNRs of 20dB but gives the most inaccurate pitch estimates of

the three algorithms. The auditory-based algorithm gives close

to best performance for clean speech and is significantly more

accurate for noisy speech.

4. EXPERIMENTAL RESULTS

The experimental results in this section test both the

recognition accuracy of the auditory model-based MFCC

vectors and the resultant speech quality after reconstruction.

4.1. Speech recognition performance

Speech recognition accuracy has been evaluated on the Aurora

TI digits database which comprises 28000 digit strings for

testing and 8440 for training. The digits are modeled using 16-

state, 3-mode, diagonal covariance matrix HMMs, trained

from 8440 digits strings. The training data covers a range of

noises and from clean to an SNR of 0dB (as outlined in the

Aurora test specification).

Three feature vector configurations have been tested;

conventional MFCC vectors [1], MFCCs extracted from a 23-

channel auditory model and MFCCs extracted from a 32-

channel auditory model. In each case the final speech vector

comprised static MFCCs 1 to 12 and log energy together with

velocity and acceleration derivatives. Figure 5 shows



recognition accuracy for the three configurations for both

clean and noisy speech.
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Figure 5: Comparative speech recognition accuracy

For clean speech, the recognition rate from the auditory-based

features is slightly higher than that with conventional MFCCs

- 98.72% to 98.57%. At lower SNRs the performance of the

auditory-based MFCCs falls slightly below that of

conventional MFCCs. For example at an SNR of 0dB the

MFCCs derived from the 23-channel auditory model attain

59.03% while conventional MFCCs attain 60.69%. Changing

from a 23-channel auditory filterbank to a 32-channel

filterbank had negligible effect on accuracy.

4.2. Speech reconstruction

To examine the quality of reconstructed speech a set of

Messiah sentences has been used. These are sampled at 8kHz

and have then been contaminated by wideband noise from the

Aurora database. Speech is reconstructed using a sinusoidal

model of speech, with MFCC vectors being inverted to the

filterbank domain and then interpolated to provide an estimate

of the speech spectral envelope [2]. The pitch estimate is used

to provide the finer harmonic detail. Spectral subtraction has

also been applied to provide a clean speech spectral estimate

from noise contaminated MFCCs [4].

Figure 6-a shows the spectrogram of the sentence “Look out of

the window and see if it’s raining” spoken by a female speaker

and contaminated by wideband noise at an SNR of 10dB.

Figure 6-b illustrates the spectrogram of speech reconstructed

from conventional MFCC vectors [4]. Figures 6-c and 6-d

show spectrograms of speech reconstructed from 23 and 32

channel auditory-based MFCCs respectively.

Figure 6-a: Original noisy signal (10dB SNR)

Figure 6-b: Reconstructed speech from MFCCs

Figure 6-c: Speech from 23 channel auditory-MFCCs

Figure 6-d: Speech from 32 channel auditory-MFCCs

The spectrograms show that speech reconstructed from the

auditory-based MFCCs is almost identical to speech

reconstructed from conventional MFCCs. A series of informal

listening tests revealed this to be true across the range of

Messiah sentences.

5. CONCLUSION AND DISCUSSION

This work has proposed an integrated speech front-end

capable of generating features for both speech recognition and

speech reconstruction. Evaluation of pitch estimation has

shown that good performance can be obtained using

significantly fewer filterbank channels than the original

auditory model used. In combination with this, speech

recognition tests have shown that auditory model-based

MFCC vectors attain performance almost identical to

conventional MFCCs. Using either a 23-channel or 32-

channel filterbank has little effect on performance. In addition,

speech reconstruction from the auditory model-based MFCCs

gives very similar speech quality. Using a 32-channel auditory

model gave slightly better pitch estimation, which is more

important for speech reconstruction. These results conclude

that a single front-end, based on an auditory model using

either 23 or 32 channels, is feasible for both speech

recognition and speech reconstruction.
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