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Summary 

 

Feyaerts et al. demonstrate that an integrated analysis of plasma and single-cell 

proteomics differentiates COVID-19 severity and reveals severity-specific biological 

signatures associated with the dysregulation of the JAK/STAT, MAPK/mTOR, and NF-κB 
immune signaling networks and the mobilization of the renin-angiotensin and hemostasis 

systems. 

 

 

Abstract 

 

The biological determinants of the wide spectrum of COVID-19 clinical manifestations are 

not fully understood. Here, over 1400 plasma proteins and 2600 single-cell immune 

features comprising cell phenotype, basal signaling activity, and signaling responses to 

inflammatory ligands were assessed in peripheral blood from patients with mild, 

moderate, and severe COVID-19, at the time of diagnosis. Using an integrated 

computational approach to analyze the combined plasma and single-cell proteomic data, 

we identified and independently validated a multivariate model classifying COVID-19 

severity (multi-class AUCtraining = 0.799, p-value = 4.2e-6; multi-class AUCvalidation = 0.773, 

p-value = 7.7e-6). Features of this high-dimensional model recapitulated recent COVID-

19 related observations of immune perturbations, and revealed novel biological 

signatures of severity, including the mobilization of elements of the renin-angiotensin 

system and primary hemostasis, as well as dysregulation of JAK/STAT, MAPK/mTOR, 

and NF-κB immune signaling networks. These results provide a set of early determinants 

of COVID-19 severity that may point to therapeutic targets for the prevention of COVID-

19 progression.  
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Introduction 

 

The ongoing Coronavirus Disease 2019 (COVID-19) pandemic, caused by the novel and 

highly contagious Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) (Lu 

et al., 2020b) has affected more than 105 million patients worldwide as of early 2021 

(Dong et al., 2020). A wide range of clinical manifestations exists for COVID-19, which 

require different intervention strategies. While the majority of patients with COVID-19 

experience mild or asymptomatic infections, nearly 20% of patients develop severe 

disease requiring hospitalization (Wu and McGoogan, 2020). A substantial portion (8%-

30%) of those hospitalized patients ultimately succumbs to the disease, leading to a 

devastating global tally of COVID-19 fatalities (CDC, 2021; Horwitz et al., 2021; Piroth et 

al., 2020; Rosenthal et al., 2020; Wu and McGoogan, 2020). 

Varying outcomes for COVID-19 depend on a set of risk factors and the interplay 

between viral replication, tissue damage, as well as a balance of beneficial and 

detrimental host immune responses. Several studies have provided evidence for 

profoundly altered immune responses caused by SARS-CoV-2 infection, including 

sustained functional changes in circulating immune cells. Lymphopenia (Cao, 2020; 

Rodriguez et al., 2020), increased inflammatory plasma cytokine levels (Del Valle et al., 

2020), dysregulated innate immune cell function (Arunachalam et al., 2020; Schulte-

Schrepping et al., 2020; Wilk et al., 2020), and abnormal T cell activation (Mathew et al., 

2020) have been observed, particularly in hospitalized patients with severe COVID-19. 

However, prior studies have primarily focused on patients with severe COVID-19, while 

fewer studies have included non-hospitalized patients with mild and moderate COVID-19 

(Chevrier et al., 2021; Silvin et al., 2020; Su et al., 2020). In addition, while prior studies 

have reported on the distribution, phenotype, and transcriptional profile of peripheral 

immune cells, how SARS-CoV-2 infection alters immune cell signaling responses to 

inflammatory challenges (or immune signaling networks) has not been determined. As 

such, the immunological mechanisms that differentiate patients with mild, moderate, and 

severe COVID-19 are poorly understood. Unraveling the underlying immune 

pathogenesis across the spectrum of COVID-19 presentations is important to both 

understand the drivers of disease severity as well as to identify clinically relevant 

biomarkers that can inform therapeutic interventions. 

High-dimensional mass cytometry immunoassays are uniquely adapted to the 

analysis of immune cell signaling networks as multiple intracellular signaling events (e.g. 

post-translational protein modifications) are simultaneously quantified in precisely 

phenotyped immune cells, at baseline and in response to ex vivo stimulations. The 

approach has previously enabled the identification of clinically-relevant biological 

signatures predictive of patient outcomes in several clinical contexts, including infection, 

malignancies, stroke, and traumatic injury (Ganio et al., 2020; Gaudilliere et al., 2014; 
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Good et al., 2018; Irish and Doxie, 2014; Myklebust et al., 2017; Rahil et al., 2020; Tsai 

et al., 2019).  

In this study, we combined the mass-cytometry analysis of immune cell signaling 

responses with the high-content proteomic analysis of plasma analytes in blood samples 

from patients with mild, moderate, and severe COVID-19 to identify biological signatures 

that demarcate COVID-19 clinical manifestations. The integrated single-cell and plasma 

proteomic analysis allowed including an additional dimension in the characterization of 

immune signaling networks by accounting for the plasma environment of circulating 

immune cells. 

 

Results 

 

Combined plasma and single-cell proteomic analysis of peripheral blood samples from 

patients with mild, moderate, and severe COVID-19 

97 SARS-CoV-2 positive patients with mild, moderate or severe COVID-19 were enrolled 

in this study at Stanford University Medical Center in California, USA (Figure 1A). Patient 

characteristics can be found in Table 1. COVID-19 severity was determined using 

previously defined clinical criteria ((Chen et al., 2020); see Methods). For each patient a 

peripheral blood sample was collected at the time of COVID-19 diagnosis. Samples from 

SARS-CoV-2 positive patients were examined alongside those from 40 healthy controls 

collected at Stanford in 2019, before the detection of SARS-CoV-2 in the geographic 

region. Blood samples were used to isolate both plasma and peripheral blood 

mononuclear cells (PBMC). PBMC were stimulated ex vivo to trigger pathogen sensing 

and cytokine signaling response pathways in innate and adaptive immune cells relevant 

during infection (TLR4 stimulant LPS and TLR7/8 agonist CL097; IFN𝛼, IL-2, IL-4, and 

IL-6 cytokine cocktail; and cell stimulation cocktail consisting of phorbol 12-myristate 13-

acetate (PMA) and Ionomycin (I) (PI)) (Figure 1B). The frequencies of 44 manually-gated 

immune cell subsets representing major circulating innate and adaptive immune cells 

were determined using a 42-parameter single-cell phospho-mass cytometry 

immunoassay (Figure S1). For each immune cell subset, the frequency was determined, 

alongside baseline signaling activity (unstimulated condition) and signaling response 

capacity of cells to ex vivo stimulation with inflammatory reagents, which were measured 

by examining the phosphorylation state of 15 intracellular signaling proteins. The mass 

cytometry analysis resulted in a total of 2662 immune cell response features per PBMC 

sample. To complement this single-cell analysis, 1472 circulating plasma proteins were 

measured using the proximity extension assay (PEA) platform from Olink Proteomics. 

Five mass cytometry (cell frequency, baseline signaling, IFN𝛼/IL-2/IL-4/IL-6 signaling 

response, LPS/CL097 signaling response, and PI signaling response) and one plasma 

proteomic data layer(s) were collected, resulting in six data layers in total. Correlation 
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networks demonstrate the existence of strong inter- and intra-layer correlations between 

features (Figure 1C-D).  

 

 

 
 

Figure 1 - Combined plasma and single-cell proteomic profiling of patients with mild, moderate, and severe 

COVID-19. 

A Patients with mild (50), moderate (21), and severe (26) COVID-19 were examined together with 40 healthy controls. 

B Schematic representation of the experimental workflow. Plasma proteins were measured using the Olink Explore 

1536 assay, while PBMC were stimulated with either LPS+CL097, IFN𝛼+IL-2+IL-4+IL-6, PMA+ionomycin (PI), or left 

unstimulated (Unstim) before barcoding, antibody staining, and analysis by single-cell mass cytometry. C-D Correlation 

networks of single-cell mass cytometry and proteome dataset. Each node represents a feature, with edges representing 

the correlation between features (cor > 0.9). Node size reflects -𝑙𝑜𝑔10 of p-value of the correlation with severity 

(Spearman) and node color represents the different data layers. E Bivariate scatterplot of patients with COVID-19 and 

healthy controls plotted along factors 3 and 10 identified by multi-omic factor analysis (MOFA; see Figure S2). 
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Table 1 – Patient characteristics. Data are shown as a number and a percentage. Age 
is reported in median years (minimum to maximum).   

Total (N =137) Control (N=40) COVID+ (N=97) 

Age 45 (19-78) 48 (23-73) 44 (19-78) 

       

Sex N % N % N % 

M 59 43.07 16 40 43 44.33 

F 78 56.93 24 60 54 55.67 
       

Ethnicity N % N % N % 

Asian 34 24.82 11 27.5 23 23.71 

Hispanic/Latino 33 24.09 0 0 33 34.02 

Caucasian 49 35.77 15 37.5 34 35.05 

Black 6 4.38 1 2.5 5 5.15 

Multiracial 5 3.65 3 7.5 2 2.06 

Middle Eastern 1 0.73 1 2.5 0 0 

Not reported 9 6.57 9 22.5 0 0 
       

Disease Status N % N % N % 

Healthy 40 29.2 40 100 0 0 

Asymptomatic 2 1.46 0 0 2 2.06 

Mild 48 35.04 0 0 48 49.48 

Moderate 21 15.33 0 0 21 21.65 

Severe 26 18.98 0 0 26 26.8 
       

Comorbidities        

Diabetes N % N % N % 

Yes 13 9.49 0 0 13 13.4 

Prediabetic 5 3.65 1 2.5 4 4.12 

No 96 70.07 32 80 64 65.98 

Not reported 23 16.79 7 17.5 16 16.5 
       

Asthma N % N % N % 

Yes 24 17.52 4 10 20 20.62 

No 85 62.04 29 72.5 56 57.73 

Not reported 28 20.44 7 17.5 21 21.65 
       

CV Condition N % N % N % 

Yes 15 10.95 5 12.5 10 10.31 

No 115 83.94 28 70 87 89.69 

Not reported 7 5.11 7 17.5 0 0 
       

Obesity N % N % N % 

Yes 18 13.14 0 0 18 18.6 

No 89 64.96 33 82.5 56 57.7 

Not reported 30 21.9 7 17.5 23 23.7 
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To understand the relationships between the different data layers and COVID-19 

severity, we first applied unsupervised dimensionality reduction with multi-omics factor 

analysis (MOFA; (Argelaguet et al., 2018)), which infers a set of factors that capture 

shared sources of variability across different datasets. We supplied all six data layers for 

the analysis, resulting in a MOFA model with 17 factors (Figure S2A). Both single-cell 

immune response (baseline signaling and signaling response to IFN𝛼/IL-2/IL-4/IL-6 and 

LPS/CL097; factor 10) and plasma proteome (factor 3) data contributed strongly to the 

variance observed in our samples (Figure S2B) and were significantly associated with 

COVID-19 severity (Figure S2C). A gradient with increasing disease severity across 

factors 3 and 10 (Figure 1E) was also observed, suggesting that single-cell immune 

response and plasma proteome data both contain clinically important biological events. 

The results prompted us to perform an integrated analysis to determine whether a 

classifier of COVID-19 severity could be derived from the combined plasma and single-

cell proteomics data. 

 

Integrated modeling of plasma and single-cell proteome differentiates COVID-19 severity 

A high-dimensional computational analysis pipeline was applied to train and 

independently validate (training cohort: n=74; 25 control, 20 mild, 10 moderate, and 19 

severe patients; validation cohort: n=63; 15 control, 30 mild, 11 moderate, and 7 severe 

patients) an integrated model of COVID-19 severity based on the combined proteomic 

and single-cell immune response data (Ghaemi et al., 2019). In this approach, the six 

data layers were considered separately and a two-step process was used to combine 

these data layers in a multi-omic fashion (Figure 2A). Cross-validated multivariate Least 

Absolute Shrinkage and Selection Operator (LASSO) linear regression models 

(Tibshirani, 1996) were first trained for each individual data layer of the training cohort, 

with disease severity used as a ranked order variable (i.e., control classed as 1 to severe 

classed as 4), and second, the individual prediction models were integrated into a single 

model by stacked generalization (SG) (Ghaemi et al., 2019) (Figure 2A). The second 

step uses the estimations of disease severity of each LASSO model as predictors for a 

constrained regression model.  

The analysis identified a predictive SG model (“severity model”) that classified 

COVID-19 severity categories at time of sampling for patients in the training cohort (R = 

0.61, p-value = 4.2e-6, n=74). The generalizability of the severity model was 

independently tested in patients from the validation cohort (R = 0.69, p-value = 7.7e-6, 

n=63) (Figure 2B-C). The contribution of individual data layers to the overall severity 

model was highest for the plasma proteome and lowest for the signaling responses to 

LPS/CL097 stimulation, according to severity model coefficients (Table S1).  

To estimate the performance of the severity model, a multi-class area under the 

curve receiver operating characteristic (ROC) analysis was performed for the training and 

validation cohort (Figure 2D-E). The multi-class ROC analysis showed that the severity 
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model performed well at classifying patients across disease severity categories (multi-

class AUCtraining = 0.799; multi-class AUCvalidation = 0.773). The most accurate classification 

was achieved when classifying severe patients from the other patient groups (Table S2).  

Results from the severity model indicate that mild, moderate, and severe COVID-

19 manifestations can be differentiated from the measurement of plasma proteins and 

single-cell immune signaling events in patient’s peripheral blood. A confounder analysis 

further showed that the severity model remained significant when accounting for clinical 

or demographic variables that have previously been associated with COVID-19 severity, 

including age, sex, BMI, and time between symptom onset and blood collection (Table 

S3).  

 

 
 

Figure 2 - Integrated modeling of plasma and single-cell proteomic events categorizes COVID-19 severity  

A Integration of all six data layers (proteome, frequency, baseline signaling, LPS/CL097 signaling response, IFN𝛼/IL-

2/IL-4/IL-6 signaling response, and PI signaling response) using a stacked generalization (SG) method. B-C Outcome 

of predicted vs true disease severity derived from SG model for the B training (R = 0.61, p-value = 4.2e-6, n = 74) and 

C validation cohort (R = 0.69, p-value = 7.7e-6, n = 73). D-E Multi-class area under the curve receiver operating 

characteristic (ROC) analysis of D the training (AUC = 0.799, n = 74) and E validation (AUC = 0.773, n = 73) severity 

model (see Table S2 for individual AUCs). 1 = control, 2 = mild, 3 = moderate, and 4 = severe. 
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Biological signatures of COVID-19 severity 

To facilitate the biological interpretation of the high-dimensional severity model and to 

identify potential biomarker targets, the contribution of individual plasma and single-cell 

proteomic features to the severity model performance was quantified by measuring 

repeated selection during a 1,000-iteration bootstrap procedure (Figure 3A; (Bach, 2008; 

Chatterjee and Lahiri, 2011)). We examined in detail the set of features that were within 

the top 10% selected by the bootstrap procedure, and that thus contributed strongly to 

the overall model (Figure 3B-C and supplemental data file S1). Single-cell (Figure 3B) 

and plasma (Figure 3C) proteomic features were visualized with two correlation 

networks, highlighting the interconnectivity of the proteomic datasets (edges), and the 

correlation between individual features and COVID-19 severity (node size/color). 

Features within the top 10% of bootstrap selection segregated into correlated 

communities. Single-cell immune response features were annotated according to the 

cellular attribute (immune cell frequency or signaling response) most commonly 

represented within each community (Figure 3B), while plasma proteomic features were 

annotated by protein name (Figure 3C). These communities of informative features are 

discussed below in relation to disease severity. 

 

 
Figure 3 - An iterative bootstrapping method identifies robust informative features for the differentiation of 

mild, moderate, and severe COVID-19. 

A Workflow of the iterative bootstrap method used to identify informative features in the six data layers of the severity 

model. A LASSO regression model was run 1,000 times on random sub-samples with replacement for each data layer, 

Xi, then the number of times an individual feature was selected in one of the bootstrap iterations was counted and the 

features were ranked according to the frequency of selection in the bootstrap models. B-C Correlation network depicting 

single-cell (B) or plasma (C) proteomic features. Edges represent the correlation between features (Spearman cor > 

0.9). Blue/orange nodes highlight positive/negative correlation with disease severity. Node size reflects -𝑙𝑜𝑔10 of p-
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value (Spearman). Communities containing the bootstrap-selected informative single-cell (B) or plasma (C) proteomic 

features are highlighted and annotated.  

 

 

Cell frequency features prominent in the correlation network and contributing to 

the severity model revealed changes in immune cell distribution that are reminiscent of 

recent immunophenotyping studies in patients with severe COVID-19. For instance, in 

our study and prior reports, plasmacytoid dendritic cells (pDC) and CD161+CD8+ T cell 

frequencies were negatively correlated, while Ki67+CD8+ T cell and granulocyte 

frequencies were positively correlated with COVID-19 severity (Arunachalam et al., 2020; 

Chevrier et al., 2021; Kuri-Cervantes et al., 2020; Mathew et al., 2020; Parrot et al., 2020) 

(Figure 4A). Furthermore, a positive correlation of plasmablast frequency with severity 

was evident in our data, complementing prior reports (Kuri-Cervantes et al., 2020; 

Mathew et al., 2020) (Figure S3A).  

Assays examining baseline and stimulation dependent cell signaling markers 

revealed alterations in cell states associated with varying disease severity. A negative 

correlation was observed between baseline signaling in CD8+ T cell subsets and NKT 

cells, and COVID-19 severity, notably for the phosphorylated (p) S6, total IkB𝛼, and 

pCREB signals (Figure 4B and S3B). Negative correlations with COVID-19 severity were 

also observed for the p4EBP1 and total IkB𝛼 signals at baseline in granulocytes, while 

granulocyte pERK1/2 signal at baseline was positively correlated with disease severity 

(Figure S3B). Overall, this data suggests that alterations in immune cell signaling 

markers at baseline exist between COVID-19 severity categories. In particular, baseline 

signaling activities of key elements of the mTOR, MAPK, and NF-κB pathway (pS6, 

pERK1/2, pCREB, and total IkB𝛼) were diminished with increasing disease severity in 

immune cell populations that play important roles in the defense against viral pathogens, 

such as CD8+ T, NKT, and granulocyte cell subsets.  

Additionally, immune cell signaling responses to PI stimulation were largely 

diminished with increasing disease severity, especially for innate immune cell 

populations. Specifically, PI-stimulated signaling responses in granulocytes (pS6, 

pERK1/2, and pP38), mDCs (pERK1/2 and pSTAT3), and CD56brightCD16- NK cells 

(pP38) were negatively correlated with disease severity (Figure 4C and S3C). Negative 

correlations with disease severity were also observed for the pSTAT3 signal in Treg and 

pMAPKAPK2 signal in CD161+ CD8+ T cells in response to PI stimulation (Figure 4C and 

S3C). Decreased responsiveness to PI stimulation may be an indication of reduced 

effector function of circulating innate and adaptive immune cells during severe COVID-

19, driven by cell-intrinsic effects and/or changes in cytokines and other modulating 

factors present in the circulation.  

For immune cell signaling responses to IFN𝛼/IL-2/IL-4/IL-6 stimulation, we also 

observed a negative correlation with disease severity for the pSTAT4/5/6 signals in both 

adaptive and innate immune cells (Figure 4D and S3D), suggestive of an impaired 
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signaling response to interferon and cytokines in those individuals with more severe 

COVID-19. Indeed, others have also observed an impaired type I interferon activity in 

peripheral immune cells of patients critically ill with COVID-19, shown by downregulation 

of interferon-stimulated genes upon whole blood IFN𝛼 stimulation (Hadjadj et al., 2020).  

Among the most robust plasma proteomic features used by the severity model 

were several features that positively correlated with disease severity and which 

overlapped with prior descriptions of the cytokine storm syndrome described in patients 

with severe COVID-19 (Cao, 2020). For instance, plasma levels of the cytokines IFNɣ, 
IL-1β, and IL-33, showed a positive correlation with disease severity (Figure 4E). IL-6, 

one of the first plasma cytokines recognized as elevated during COVID-19 (Ruan et al., 

2020), also exhibited a positive correlation with disease severity in our cohort (Figure 

S4). Although this feature contributed to the severity model, it ranked well below the top 

10% of bootstrap selected informative features (see supplemental data file S1). A 

similar positive correlation was observed for lung-related proteins in circulation, such as 

pulmonary surfactant-associated protein A2 (SFTPA2) and Cathepsin H (CTSH), which 

are involved in surfactant homeostasis (Figure S4) (Buhling et al., 2011; Thorenoor et 

al., 2018).  

Angiotensin-converting enzyme 2 (ACE2) is used as a viral entry receptor by 

SARS-CoV-2 and is released from the epithelial cell surface upon viral binding (Mortaz et 

al., 2020). ACE2 ranked within the top 10% of informative features, and levels showed a 

positive correlation with severity (Figure S4). The severity model also identified the 

protease MME (neprilysin), another key player of the Renin-Angiotensin System (RAS) 

(Chappell, 2019), as a positive correlate of COVID-19 severity (Figure S4). MME is also 

implicated in neutrophil degranulation (Didangelos, 2020) and our list of informative model 

features contained multiple other proteins involved in neutrophil degranulation (protein 

pathway identified by Reactome, see methods; Reactome gene set identifier R-HSA-

6798695.2; Figure S5A), which were mainly positively correlated with severity as well. 

This dysregulation of neutrophil degranulation in severe patients is in agreement with 

recent plasma proteome findings (Overmyer et al., 2020). 

Our analysis revealed tyrosine-protein kinase Mer (MERTK) as the most robust 

feature in the proteome dataset contributing to the severity model (supplemental data 

file S1). Levels of MERTK, an immunosuppressive tyrosine kinase receptor (Lemke and 

Silverman, 2020), were positively correlated with disease severity (Figure 4E). MERTK 

is found on the surface of macrophages where it mediates phagocytosis of apoptotic cells 

(Cai et al., 2018). Activation of MERTK has an immunosuppressive effect by 

downregulating the production of cytokines and type I interferons (Cai et al., 2018; Lemke 

and Silverman, 2020). Increased MERTK shedding could result in reduced surface 

expression and loss of MERTK signaling (Sather et al., 2007), which could play a central 

role in the hyper inflammation observed in severe COVID-19. MERTK also plays a role in 

platelet aggregation (Sather et al., 2007) and endothelial barrier integrity (Li et al., 2019). 
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Plasma levels of several other proteins involved in primary hemostasis (Reactome gene 

set identifier R-HSA-109582) were found to be informative in our model of disease 

severity (Figure S5B), with the majority of them displaying positive correlations with 

disease severity.  

In summary, informative features of the severity model revealed biological 

signatures that progressed from mild to moderate and severe COVID-19. Salient 

characteristics of this biological progression included cellular elements of immune 

signaling networks implicated in defensive immunity against viral pathogens (such as the 

progressive dampening of NF-κB, MAPK/mTOR, and JAK/STAT signaling in multiple 

innate and adaptive immune cell subsets) and sentinel proteomic pathways involved in 

lung and RAS homeostasis, primary hemostasis, neutrophil degranulation, and 

inflammation.  
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Figure 4 - Severity model features reveal biological signatures that demarcate patients with mild, moderate, 

and severe COVID-19.  

Boxplots, classified by disease severity, showing features informative to the model, including the correlation of the 

feature with disease severity (Spearman coefficient). A Frequency features are shown as a percentage of mononuclear 

cells. Granulocytes are shown as a percentage of singlets. pDC and granulocyte frequency are plotted on a log-scale. 

B Immune cell signaling at baseline (arcsinh transformed values; see methods). C Immune cell signaling response to 

PI stimulation is reported as the arcsinh transformed ratio over the baseline signaling response (see methods). D 

Immune cell signaling responses to IFN𝛼/IL-2/IL-4/IL-6 (IFN/IL) stimulation are reported as the arcsinh transformed 

ratio over the baseline signaling response (see methods). E Plasma protein levels are reported as the normalized 

protein expression, an arbitrary unit provided by the Olink assay. Tmem = memory T cell; MERTK = tyrosine-protein 

kinase Mer.  
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Discussion 

 

This study combined high-content plasma proteomics with the single-cell analysis of 

immune signaling responses to identify biological determinants of severity across the 

spectrum of COVID-19 manifestations. Using a two-step analytical approach that 

accounts for the dimensionality of different data layers, we built and independently 

validated an integrated model that classifies COVID-19 severity. The biological 

underpinnings of the severity model consisted of co-regulated plasma and single-cell 

proteomic elements that progressed with COVID-19 severity, including the inflammatory 

cytokine response to SARS-CoV-2, the mobilization of the Renin-Angiotensin (RAS) and 

primary hemostasis systems, and the dysregulation of the JAK/STAT, NF-κB and 

MAPK/mTOR immune signaling responses. The identification of biological signatures 

progressing with COVID-19 severity provides a set of sentinel events detectable in the 

early phase of infection that may be targeted therapeutically for the prevention of severe 

COVID-19.  

 The ongoing pandemic has fueled major research efforts towards understanding 

the host immune response against SARS-CoV-2 infection (Arunachalam et al., 2020; 

Cao, 2020; Del Valle et al., 2020; Mathew et al., 2020; Schulte-Schrepping et al., 2020; 

Wilk et al., 2020). Previous efforts have been particularly focused on hospitalized patients 

with severe COVID-19, which, while of paramount importance, excludes the majority of 

SARS-CoV-2-infected patients who suffer from mild or moderate COVID-19 and do not 

require hospitalization. The comparative analysis of samples from patients with mild, 

moderate, and severe disease afforded a more exhaustive characterization of immune 

responses related to COVID-19 severity. Our approach dovetails with prior studies 

identifying an immunological shift distinguishing the spectrum of COVID-19 infection 

states (Chevrier et al., 2021; Su et al., 2020). Consistent with our results, this switch 

included an increase in inflammation, the emergence of CD4 and CD8 T cells with a 

proliferative-exhausted phenotype, and a distinct activated myeloid signature (Chevrier 

et al., 2021; Su et al., 2020). In previous work, immune cell function and responses are 

indirectly inferred through either phenotype or baseline single-cell mRNA transcriptomics 

changes, while our approach provided a direct assessment of baseline intracellular 

signaling responses of multiple immune cell subsets as well as their capacity to respond 

to inflammatory stimulation.  

 Two major biological signatures associated with the progression from mild to 

moderate and severe disease emerged from our integrated analysis: 1) the dampening 

of NF-κB, MAPK/mTOR and JAK/STAT intracellular signaling responses in multiple 

innate and adaptive immune cell subsets; and 2) the mobilization of a proteomic network 

enriched for elements of the RAS, lung homeostasis and hemostasis pathways, alongside 

canonical elements of the cytokine storm signature of severe COVID-19.  
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 Several of the features informative to our severity model resonate with previous 

findings in patients suffering from severe COVID-19. For example, plasma levels of 

cytokines such as IFNɣ, IL-1β, IL-33, and IL-6 increased with increasing severity, 

consistent with the cytokine storm observed in severe patients with COVID-19 (Cao, 

2020), and with circulating IL-33 levels as a potential indicator of damaged lung tissue 

(Liew et al., 2010; Martin and Martin, 2016; Zizzo and Cohen, 2020). In addition, changing 

frequencies of circulating immune cells also aligned with prior reports in severe patients 

(Arunachalam et al., 2020; Kuri-Cervantes et al., 2020; Mathew et al., 2020; Parrot et al., 

2020; Wilk et al., 2020). Interestingly, an increased percentage of granulocytes was 

observed in the PBMC fraction of patients with severe COVID-19 (Chevrier et al., 2021; 

Schulte-Schrepping et al., 2020; Wilk et al., 2020). Low-density granulocytes also appear 

in the PBMC fraction of patients with inflammatory diseases and severe infection (Hassani 

et al., 2020; Silvestre-Roig et al., 2019).  

 The functional analysis of intracellular signaling events in this study revealed 

intriguing new biology associated with COVID-19 severity, notably with respect to immune 

cell responses to inflammatory ligands. The aforementioned low-density granulocytes can 

display dysfunctional immune responses (Hassani et al., 2020; Silvestre-Roig et al., 

2019), which dovetails with our observation of decreased immune cell signaling response 

by the granulocytes present in the PBMC fraction of patients with severe disease. In 

addition, in agreement with Overmyer et al. (Overmyer et al., 2020), increasing plasma 

levels of several proteins involved in neutrophil degranulation were correlated with 

disease severity. Excessive release of granules can result in tissue damage and is a 

feature of acute lung injury and septic shock (Lacy, 2006). In addition to granulocytes, 

other cell types such as mDCs, NK cells, NKT cells, Tregs, and CD4 and CD8 T cells also 

showed an inverse relationship between capacity to respond to cytokine stimulation and 

disease severity, suggestive of overall diminished effector functions of circulating innate 

and adaptive immune cells with increasing severity. Indeed, others have shown 

decreased functional responses and exhausted phenotypes in peripheral innate and 

adaptive immune cells in severe patients as well (Arunachalam et al., 2020; Hadjadj et 

al., 2020; Kusnadi et al., 2021; Remy et al., 2020b; Wilk et al., 2020). As such, restoring 

the effector responses of circulating immune cells by immune potentiators (e.g. immune 

checkpoint inhibitors) to enhance host immunity while simultaneously controlling the 

cytokine storm (e.g. corticosteroids) may be beneficial in preventing severe disease and 

overcoming infection (Florindo et al., 2020; Remy et al., 2020a; Tang et al., 2020).  

 In addition to dysregulated immune signaling responses, the examination of the 

severity model features revealed several key proteomic pathways that were mobilized 

with disease severity, including pathways related to lung homeostasis, RAS homeostasis, 

and hemostasis. Notably the plasma levels of two proteins implicated in the production of 

lung surfactant (SFTPA2 and CTSH; (Buhling et al., 2011; Thorenoor et al., 2018)), 

markedly increased with disease severity. Both SFTPA2 and CTSH are synthesized in 
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type II pneumocytes (Buhling et al., 2011; Thorenoor et al., 2018), which are primary 

targets for SARS-CoV-2 infiltration. As such, these proteins may be early markers of type 

II pneumocyte dysfunction, impaired surfactant synthesis and lung damage as SFTPA2 

plasma levels have been shown to be elevated in patients suffering from acute respiratory 

failure (Doyle et al., 1997). These results are consistent with recent transcriptomics 

analyses of lung biopsies showing impaired surfactant production in patients with severe 

COVID-19 (Islam and Khan, 2020).  

 Key proteomic features of the COVID-19 severity model also included two 

components of the RAS (ACE2 and MME), a complex hormonal system that regulates 

blood pressure, fluid homeostasis as well as pulmonary inflammation (Chappell, 2019). 

The involvement of the RAS in the pathogenesis of SARS-CoV-2 infection is well-

established since the interaction between the viral Spike protein and ACE2 is a primary 

mechanism of viral entry into host cells (Mortaz et al., 2020). High ACE2 and MME plasma 

levels in severe patients suggest increased shedding from the cell surface which may 

result in loss of function of these proteins (Ni et al., 2020). A loss of function of ACE2 and 

MME will likely result in a decrease of angiotensin I (Ang-I) and angiotensin II (Ang II) 

degradation, which aligns with the multi-organ injuries observed in severe patients (Liu et 

al., 2020; Ni et al., 2020). Interestingly, increased plasma ACE2 concentration has 

recently been associated with an increased risk for subsequent cardiovascular events in 

patients with COVID-19 (Narula et al., 2020). As such, our analysis points at mechanistic 

markers of disease severity that may also be implicated in the clinical manifestations of 

patients recovering from COVID-19, such as cardiovascular or neurological 

complications.   

 The most informative protein feature in our severity model was MERTK, a 

membrane-bound receptor tyrosine kinase that plays a role in immunoregulation, 

hemostasis, and endothelial barrier integrity (Cai et al., 2018; Lemke and Silverman, 

2020; Li et al., 2019), whose levels in plasma substantially increased with severity. Loss 

of endothelial MERTK expression in the lung can result in enhanced permeability and 

leukocyte transendothelial migration, thereby aggravating inflammation at the site of 

infection and contributing to acute respiratory distress syndrome (Li et al., 2019). In 

addition, soluble MERTK can hinder activation of membrane-bound MERTK, resulting in 

the inhibition of macrophage-mediated clearance of apoptotic cells and the loss of its 

immunosuppressive effect (Cai et al., 2018; Lemke and Silverman, 2020; Sather et al., 

2007). Through its role in both endothelial integrity in the lung and immunoregulation, 

dysregulated MERTK could potentially be a central player in the development of severe 

COVID-19. In addition, MERTK also plays a role in platelet aggregation (Sather et al., 

2007), and its observed higher plasma levels in patients with the severe disease together 

with increased plasma levels of other proteins involved in hemostasis (Hrycek and Cieslik, 

2012; Ikeda et al., 2018; Lu et al., 2020a) suggests an increased risk for coagulation and 
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thrombosis. Coagulopathy and thrombosis have been observed in many patients that 

presented with severe COVID-19 (Gao et al., 2020; Levi et al., 2020).      

 This study has certain limitations. First, in this cohort, we only assessed peripheral 

blood samples of patients affected by COVID-19. It would be of great interest to assess 

the local immune and proteome perturbations in parallel by analyzing lung biopsies or 

bronchoalveolar lavage fluid to investigate whether the same trends and dampened 

immune cell responses are observed locally in the lung as well. Second, this is a single-

center study with samples collected from patients at Stanford University Medical Center. 

Most of the patients that were encountered during the study period had mild symptoms. 

Future studies including patients with different ethnicity, socio-economic status, and co-

morbidities will be important to test the boundary of generalizability of our findings. 

Similarly, we recognize that the severity model is independently validated as a high-

dimensional model. Additional testing in larger and more diverse patient cohorts is 

necessary to determine whether individual model features can serve as clinical 

biomarkers of disease severity. Finally, this is a cross-sectional study --longitudinal 

monitoring of plasma and single-cell proteomic features will give increased insight into 

the fluctuation of these features over time and lead to new insights into patients with 

COVID-19 “long-hauler” status.  
 Determining the underlying immune pathogenesis across the spectrum of COVID-

19 severity remains an important clinical challenge. Our integrated analysis of plasma 

and single-cell proteomics in patients with mild, moderate, and severe COVID-19 

identified a multivariate model that differentiates COVID-19 severity. The observations 

identified by this model contribute clinically relevant insights into the status of patient’s 
immune responses during SARS-CoV-2 infection and provide promising severity-specific 

biological markers for future validation that may inform decision-making on potential 

therapeutic targets for the prevention of disease progression. 
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Materials and methods 

 

Study design and sample collection 

Design 

We conducted this study at Stanford University Medical Center, where the samples were 

collected at the Stanford Occupational Health Clinic under an IRB approved protocol 

(55689; Protocol Director Dr. Nadeau). We obtained samples from adults with positive 

test results for SARS-CoV-2 from analysis of nasopharyngeal swab specimens obtained 

at any point from March to June 2020. Follow-up continued through October 5, 2020. 

Testing was accomplished using Stanford Health Care clinical laboratory developed 

internal testing capability with a quantitative reverse-transcriptase–polymerase-chain-

reaction (qRT-PCR) assay. Informed consent was obtained from each patient prior to 

enrolling in the study or from the patient’s legally authorized representative if the patient 
was unable to provide consent. Participants were excluded if they were taking any 

experimental medications (i.e. those medications not approved by a regulatory agency 

for use in COVID-19). Healthy controls were collected prior to the detection of SARS-

CoV-2 in the region (historical controls) and were consented using a separate IRB-

approved protocol (Protocol Director Dr. Nadeau). 

 

Data sources and clinical definitions 

We obtained data from self-reported surveys and from Stanford clinical data electronic 

medical record system as per consented participant permission. This database contains 

all the clinical data available on all inpatient and outpatient visits to Stanford facilities. The 

data obtained included patients’ demographic details, vital signs, laboratory test results, 

medication administration data, historical and current medication lists, historical and 

current diagnoses, clinical notes, radiological results, biopsy results as appropriate, 

historical discharge disposition for previous inpatient hospitalizations, and ventilator use 

data. Patient data were collected and definitions and diagnosis of disease were used 

according to previously defined criteria (Chen et al., 2020) with the clinical classification 

of COVID-19 as followed; Mild disease: mild to no symptoms, and no manifestation of 

pneumonia; Moderate disease: fever and respiratory tract symptoms; Severe disease: 

hospitalization with respiratory distress. 

 

Phlebotomy and initial blood processing 

Blood was analyzed from samples collected from 97 patients with COVID-19 and 40 

controls via venipuncture. Anticoagulated blood was processed into peripheral blood 

mononuclear cells (PBMC) by density gradient centrifugation using published methods 

(Syed et al., 2014). PBMC were stored in 10% DMSO and frozen in liquid nitrogen until 

thawing and staining. Plasma was obtained from blood collected in EDTA tubes using 

standard procedures and stored at -80°C. 
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Mass cytometry analysis of single-cell immune cell responses in PBMC 

In vitro PBMC stimulation 

Cryopreserved PBMC were quickly thawed, washed two times with supplemented 

medium, and rested for 1h at 37°C in RPMI 1640 medium supplemented with 10% fetal 

bovine serum, 1% Penicillin-Streptomycin, and 1% L-Glutamine. PBMC were counted 

and checked for viability. 0.5-1x106 cells were either stimulated with lipopolysaccharide 

(LPS; 1𝜇g/ml) and CL097 (TLR7/8 agonist; 1𝜇g/ml), interleukin-2 (IL-2), IL-4, IL-6 and 

interferon-𝛼 (IFN𝛼; all 100 ng/ml), a cocktail of phorbol 12-myristate 13-acetate (PMA), 

ionomycin, brefeldin A and monensin (1x; PI cocktail), or left unstimulated for 15 minutes 

at 37°C. After stimulation, samples were fixed with Proteomic Stabilizer (SmartTube) and 

stored at -80°C until further processing for mass cytometry analysis.  

 

Barcoding and antibody staining 

The 42-marker mass cytometry antibody panel included 25 cell surface antibodies and 

17 intracellular antibodies recognizing primarily phospho-specific signaling epitopes 

(Supplemental data file S2). In brief, following in vitro stimulation, fixed PBMCs were 

thawed, reconstituted in cell staining medium, and arranged in a 96-well block. 

Subsequent steps were performed using a previously described robotics platform 

(Bjornson-Hooper et al., 2019). Sets of 16 samples were barcoded with palladium metal 

(Zunder et al., 2015) and pooled into a single well. Pooled barcoded samples were treated 

with FC-block (Human TruStain FcX, Biolegend) for 10 minutes then surface antibody 

stained for 30 minutes in cell staining medium (PBS with 0.5% BSA and 0.02% sodium 

azide). After surface staining, cells were permeabilized in ice-cold 100% methanol, 

washed, and stained for 60 minutes with intracellular antibodies in cell staining medium. 

Following intracellular staining, cells were washed and resuspended in an iridium 

intercalator (Fluidigm) solution containing 1.6% paraformaldehyde. Finally, samples were 

washed, resuspended in 1X five-element normalization beads (La, Pr, Tb, Tm, Lu) 

(Fluidigm), and analyzed on a freshly cleaned and tuned CyTOF instrument. The resulting 

mass cytometry data were bead-normalized across all runs and debarcoded as previously 

described (Finck et al., 2013).  

 

Cell frequency, baseline intracellular signaling, and intracellular signaling responses 

Mass cytometry data was examined using CellEngine (Primity Bio) to define cell 

populations using manual gates and quantify differential expression of signaling markers 

in response to stimulation. The gating strategy can be found in supplemental figure S1. 

Cell frequencies were expressed as a percentage of gated singlet mononuclear cells 

(DNA+CD235a-CD61-CD66-), except for granulocyte frequency which was expressed as 

a percentage of singlet leukocytes (DNA+CD235a-CD61-). Phospho-signal intensity was 

quantified per single cell for each signaling protein (pSTAT1, pSTAT3, pSTAT4, pSTAT5, 
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pSTAT6, pMAPKAPK2, pCREB, pPLCᵧ2, pS6, pERK1/2, pP38, pZAP70/Syk, pTBK1, 

p4EBP1, and total IkB𝛼) using an arcsinh transformed value (arcsinh(x/5)) from the 

median signal intensity. Endogenous or baseline intracellular signaling activity was 

derived from the analysis of unstimulated cells, while intracellular signaling responses to 

stimulation were reported as the arcsinh transformed ratio over the baseline signaling, 

i.e., the difference in arcsinh transformed signal intensity between the stimulated and 

unstimulated condition. For cell subsets in a given sample that had an event count below 

20 events, that cell subset and related phospho-signal were excluded from downstream 

analysis. A penalization matrix, based on mechanistic immunological knowledge, was 

applied to the immune cell response data (Culos et al., 2020; Ghaemi et al., 2019).  

 

Plasma Protein Profiling Using Olink Multiplex Panel 

Plasma protein levels were quantified using Olink multiplex proximity extension assay 

(PEA) panels (Olink Proteomics; www.olink.com) according to the manufacturer’s 
instructions and as described before (Assarsson et al., 2014). The basis of PEA is a dual-

recognition immunoassay, where two matched antibodies labeled with unique DNA 

oligonucleotides simultaneously bind to a target protein in solution. This brings the two 

antibodies into proximity, allowing their DNA oligonucleotides to hybridize, serving as a 

template for a DNA polymerase-dependent extension step. This double-stranded DNA 

which is unique for a specific antigen will get amplified using P5/P7 Illumina adapters 

along with sample indexing, which is quantitatively proportional to the initial concentration 

of target protein. These amplified targets will finally get quantified by Next Generation 

Sequencing using Illumina Nova Seq 6000 (Illumina Corporation. San Diego, California). 

In this study, we have used the Explore 1536 panel which measures 1,472 proteins using 

3ul plasma samples, which were treated with 1% Triton X-100 and incubated at room 

temperature for 2 hours to inactivate the virus. The raw expression values obtained with 

the Olink assay are provided in the arbitrary unit Normalized Protein Expression (NPX), 

where high NPX values represent high protein concentration. Values were log2-

transformed to account for heteroskedasticity. Proteins close to the limit of detection are 

flagged in the raw data.  

 

Statistical analysis 

Univariate analysis 

We used the R environment (http://www.r-project.org/) for statistical analysis. We chose 

to apply a ranked regression analysis for each feature relative to the severity of the patient 

at the time of sampling. Multiple comparison corrections were performed using the 

Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995). For each statistic, we 

report both p-values, the associated FDR corrected “q-values,” and regression estimates. 
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Multi-omic factor analysis 

Multi-omic factor analysis (MOFA) was applied simultaneously across plasma (Olink) and 

the single-cell proteomics data (cell frequency, baseline signaling, IFN𝛼/IL-2/IL-4/IL-6 

signaling response, LPS/CL097 signaling response, and PI signaling response). MOFA 

infers a set of factors that capture both biological and technical sources of variability that 

are shared across different datasets. MOFA models were constructed using the six data 

layers which were supplied as a list of matrices. We followed the developers’ directions 
for model selection and downstream analysis (Argelaguet et al., 2018). Since MOFA is 

not guaranteed to find a global optimum, 10 model trials were performed using different 

random initializations. For each trial, the number of factors was calculated by requiring at 

least 2% variance explained for any single dataset. The model with the highest evidence 

lower bound was selected out of these 10 trials (model 6, Figure S2A). The factors 

calculated by model 6 of our 10 trials were extracted for downstream analysis. MOFA 

enables variance decomposition of the calculated factors and uses a coefficient of 

determination (R2) to quantify the fraction of variance explained by each factor for each 

dataset, which we examined first to determine how each dataset contributes to each 

factor (Figure S2B). Next, we regressed the 17 factors on COVID-19 severity, which was 

dummy encoded as follows: Control = 1, Mild = 2, Moderate = 3, Severe = 4. Regression 

estimates, 95% confidence intervals, and p-values were examined (Figure S2C). Factors 

3, 8, and 10 were significantly associated with COVID-19 severity. To assess the 

robustness of factors across model trials, we calculated Pearson correlation coefficients 

between every pair of factors across all trials. Factors 3 and 10 were consistently 

discovered in all model instances (data not shown). Finally, we visualized our samples 

across factors 3 and 10 using a bivariate scatterplot (Figure 1D).  

 

Multivariate analysis and stacked generalization 

For the multivariate analysis, a LASSO model was trained independently on each omics 

dataset independently. For a matrix X of all biological features from a given -omic data 

set, and a vector of disease severity Y, the LASSO algorithm (Tibshirani, 1996) calculates 

coefficients β to minimize the error term L(β)=||Y−Xβ||2. The L1 regularization is used to 
increase model sparsity for the sake of biological interpretation and model robustness. 

Once a LASSO model is trained for each omics modality (individual model performance 

Table S2), the multi-omics analysis can be carried out by performing stacked 

generalization (Ghaemi et al., 2019) on the new representation of the data by using the 

outputs of the previous layer of models as predictors with the constraint that their 

participation should be a non-negative coefficient. Particularly, a LASSO model is first 

constructed on each omics modality, then all estimations of disease severity are used as 

predictors for a second-layer constrained regression model. Intrinsically, this is equivalent 

to a weighted average of the individual models with the coefficients of the LASSO model 

as desired weights. 
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Cross-validation 

An underlying assumption of the LASSO algorithm is statistical independence between 

all observations. In this analysis, subjects are independent, and, in this regime, a model 

is trained on all available samples from all subjects. However, at each iteration, one 

sample is kept for independent validation. The reported results are exclusively based on 

the blinded subject. For stacked generalization, a two-layer cross-validation strategy was 

implemented where the inner layer selects the best values of λ and reports the 
intermediate prediction. Then, the outer layer optimizes the constrained regression of all 

predictors for the stacked generalization step. Cross-validation folds are carefully 

synchronized between the individual models from each omics. 

 

Bootstrap analysis for feature selection 

For each omics dataset, we performed a bootstrap analysis where we repeat a 

bootstrapping procedure on the dataset and train a cross-validated model. At each 

iteration, we keep the non-zero coefficients selected by the LASSO procedure on the 

bootstrapped dataset and we repeat the procedure 1,000 times (Bach, 2008; Chatterjee 

and Lahiri, 2011). We report the frequency of selection of the features as well as their 

median coefficient in all the bootstrap models. This method selected 44 frequency, 599 

baseline, 536 PI-response, 492 IFN𝛼/IL-2/IL-4/IL-6, and 783 proteome features that were 

informative in at least one iteration of the bootstrap procedure (see supplemental file 

S1). To assess the relative importance of each feature to the model, we ranked features 

in each data layer based on their frequency of selection.  

 

Correlation network 

The features are visualized using a correlation graph structure to identify correlated 

feature populations. Each biological feature is denoted by a node whose size is 

dependent on the -𝑙𝑜𝑔10 of p-value of correlation with disease severity (Spearman). The 

correlation network between the features is represented by an edge where the width of 

the edges is proportional to the Spearman p-value of the correlation between a pair of 

nodes on a log 10 scale. The graph is visualized using the t-SNE layout. 

 

Confounder analysis 

A linear regression analysis was used as a statistical method to exclude the likelihood 

that certain clinical or demographic variables confounded the predictive accuracy of the 

severity model.  

 

Multi-class receiver operating characteristics (AUC) 

To characterize our predictions' separability in a multi-class setting, we used a combined 

metric of the area under the receiver operating curve (AUC) in both the training and 
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validation model. This metric for multi-class analysis uses every combination of labels in 

one-to-one comparisons. Every subset of predictions on a pair of classes is considered 

independently, and the AUC is calculated for each specific pair. Once all the subset AUCs 

are computed, the generalizable AUC combines them, taking their mean across all 

comparisons, to give the multi-class model's overall performance (Hand and Till, 2001). 

 

Plasma proteomic pathway identifier 

To obtain pathway information of selected proteome features, we utilized Reactome 

(www.reactome.org), a web-based resource for identifying biological pathways, in which 

we used the list of the 10% bootstrap-selected proteins as an input. Reactome provided 

a list of pathways, identified by a Reactome gene set identifier, which we assessed for 

the proteins part of specific pathways.  

 

Data availability 

Raw data, processed data, and source code for the reproduction of the results will be 

made publicly available on Flowrepository (ID: FR-FCM-Z3G5) and Github. 

 

Supplemental material 

Supplemental file S1 lists the features informative of the severity model as selected by 

the bootstrap procedure (xlsx-file). Supplemental file S2 contains the mass cytometry 

antibody panel.  Figure S1 shows the manual gating strategy used to identify innate and 

adaptive immune cells. Figure S2 shows the MOFA analysis to identify shared sources 

of variability across the plasma and single-cell proteomics data. Figure S3 displays the 

frequency of plasmablasts, and the immune cell signaling features at baseline and after 

stimulation with inflammatory agents that are informative to the severity model. Figure S4 

shows plasma protein level features that are informative to the severity model. Figure S5 

shows plasma protein level features that are part of neutrophil degranulation and 

hemostasis, and informative to the severity model. Table S1 contains the model 

performance of the individual data layers, and the contribution of the individual data layers 

to the severity model (weighted average of model coefficients). Table S2 shows how well 

the severity classifies each patient group from the other. Table S3 contains the results of 

the confounder analysis.  
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Integrated plasma proteomic and single-cell immune signaling network signatures 
demarcate mild, moderate, and severe COVID-19  
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Figure S1. Hierarchical manual gating strategy used for mass cytometry analyses. 
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Figure S2. Multi-omic factor analysis (MOFA) identifies shared sources of variability across single-
cell cytometry and proteomic data that are associated with COVID-19 severity  
A Ten MOFA models were constructed with different random initializations. Shown are the number of 
factors calculated for each trial, and colored by the corresponding evidence lower bound (ELBO). B 
Portion of variance explained (R2) for each factor and for each dataset. IFN/IL = IFNα/IL-2/IL-4/IL-6 C 
Association of MOFA factors with COVID-19 severity (encoded as Control = 1, Mild = 2, Moderate = 3, 
Severe = 4) was performed with linear regression analysis. Estimates, 95% confidence intervals, and p-
values are shown (significant p-values highlighted red). 
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Figure S3 – Frequency and immune cell signaling response features  
Boxplots showing plasmablast frequency, immune cell signaling responses at baseline (reported as 
arcsinh transformed values), and signaling response after stimulation with inflammatory agents (reported 
as arcsinh transformed ratio over the baseline signaling response; see methods). A Plasmablast 
frequency (CD38+IgM-CD19+). B Baseline immune cell signaling response. C immune cell signaling 
response to PI stimulation, and D response to IFNα/IL-2/IL-4/IL-6 stimulation (IFN/IL) of features 
informative in the COVID-19 severity model. Boxplots classified by disease severity and including 
correlation of the feature with disease severity (Spearman coefficient). Tmem = memory T cell; Teff = 
effector T cell.
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Figure S4 - Plasma proteomic features informative to the model 
Boxplots showing plasma protein levels of features that are informative in the COVID-19 severity model. 
Boxplots are classified by disease severity and include the correlation of the feature with disease severity 
(Spearman coefficient). ACE2 = angiotensin-converting enzyme 2; MME = neprilysin; SFTPA2 = 
surfactant-associated protein A2; CTSH = cathepsin H. 
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Figure S5 – Informative plasma proteomic features involved in neutrophil degranulation and 
hemostasis 
Boxplots showing plasma protein levels of features that are informative in the COVID-19 severity model 
and that are part of A neutrophil degranulation (Reactome gene set identifier R-HSA-6798695.2) and B 
hemostasis (Reactome gene set identifier R-HSA-109582). Boxplots are classified by disease severity 
and include the correlation of the feature with disease severity (Spearman coefficient). GGH = Gamma-
glutamyl hydrolase; FCN2 = Ficolin-2; AZU1 = Azurocidin; FUCA1 = Tissue alpha-L-fucosidase; AOC1 = 
Amiloride-sensitive amine oxidase [copper-containing]; PADI2 = Protein-arginine deiminase type-2; VAT1 
= Synaptic vesicle membrane protein VAT-1 homolog; SIGLEC9 = Sialic acid-binding Ig-like lectin 9; 
CTSB = Cathepsin B; WFDC2 = WAP four-disulfide core domain protein 2; SDC1 = syndecan-1; COL1A1 
= Collagen alpha-1(I) chain; ACTN4 = Alpha-actinin-4; ITIH3 = Inter-alpha-trypsin inhibitor heavy chain 
H3; CEACAM5 = Carcinoembryonic antigen-related cell adhesion molecule 5; L1CAM = Neural cell 
adhesion molecule L1; ANXA5 = Annexin A5; TP53 = Cellular tumor antigen p53.  
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 training 
AUC 

validation 
AUC 

1vs2 0.71 0.6071 

1vs3 0.85 0.7697 

1vs4 0.90 0.9238 

2vs3 0.71 0.6623 

2vs4 0.82 0.8571 

3vs4 0.81 0.8182 

 

Table S2 – AUC of individual ROC analyses for performance of severity model to classify 
severity   

AUC shows how well the severity model is able to classify each patient group from the other. 1 = control, 
2 = mild, 3 = moderate, and 4 = severe. Results related to Figure 2 D-E 
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Variable Estimate Std.Error t value Pr(>|t|) 

Prediction model 0.441365 0.128161 3.444 0.00177 *** 

Days between 

symptom onset and 

sample collection 

-0.005135 0.006448 -0.796 0.43225 NS 

Age 0.010871 0.006316 1.721 0.09589 NS 

SexM -0.306411 0.199897 -1.533 0.13615 NS 

BMI 0.050989 0.016994 3.000 0.00550 ** 

  

Table S3 – Confounder analysis  

None of the potentially confounding variables significantly influenced the COVID-19 severity model. 

Related to Figure 2. SexM = male sex. BMI = body mass index. NS = not significant 
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