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Esophageal adenocarcinoma (EAC) is a deadly cancer with high mortality rate, especially

in economically advanced countries, while Barrett's esophagus (BE) is reported to be a

precursor that strongly increases the risk of EAC. Due to the complexity of these diseases,

their molecular mechanisms have not been revealed clearly. This study aims to explore the

gene signatures shared between BE and EAC based on integrated network analysis. We

obtained EAC- and BE-associated microarray datasets GSE26886, GSE1420,

GSE37200, and GSE37203 from the Gene Expression Omnibus and ArrayExpress

using systematic meta-analysis. These data were accompanied by clinical data and

RNAseq data from The Cancer Genome Atlas (TCGA). Weighted gene co-expression

network analysis (WGCNA) and differentially expressed gene (DEG) analysis were

conducted to explore the relationship between gene sets and clinical traits as well as to

discover the key relationships behind the co-expression modules. A differentially

expressed gene-based protein–protein interaction (PPI) complex was used to extract

hub genes through Cytoscape plugins. As a result, 403 DEGs were excavated,

comprising 236 upregulated and 167 downregulated genes, which are involved in the

cell cycle and replication pathways. Forty key genes were identified using modules of

MCODE, CytoHubba, and CytoNCA with different algorithms. A dark-gray module with

207 genes was identified which having a high correlation with phenotype (gender) in the

WGCNA. Furthermore, five shared hub gene signatures (SHGS), namely, pre-mRNA

processing factor 4 (PRPF4), serine and arginine-rich splicing factor 1 (SRSF1),

heterogeneous nuclear ribonucleoprotein M (HNRNPM), DExH-Box Helicase 9 (DHX9),

and origin recognition complex subunit 2 (ORC2), were identified between BE and EAC.

SHGS enrichment denotes that RNA metabolism and splicosomes play a key role in
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esophageal cancer development and progress. We conclude that the PPI complex and

WGCNA co-expression network highlight the importance of phenotypic identifying hub

gene signatures for BE and EAC.

Keywords: bioinformatics analysis, Barrett's esophagus, hub gene signature, esophageal adenocarcinoma,

weighted gene co-expression network analysis, protein–protein interaction

INTRODUCTION

Esophageal cancer is a deadly cancer considering its high

mortality rate, with 572,034 newly diagnosed cases and 508,585
deaths in 2018 (Bray et al., 2018). Esophageal cancer is classified

into two subcategories: esophageal adenocarcinoma (EAC; distal

esophagus) and esophageal squamous cell carcinoma (ESCC;

proximal esophagus). It starts from the esophageal epithelium,

the innermost layer of the esophagus (Rustgi and El-Serag, 2014).

Esophageal cancer is a very complex disease, as its various

subtypes have different risk factors, time trends, and
geographic patterns (Analysis et al., 2017) (Montgomery et al.,

2014; Lordick et al., 2016). According to the geographic

variation, EAC is more common in economically advanced

regions than in low-income countries (Chai et al., 2019). The

common risk factors of EAC are age, male sex, obese,

gastroesophageal reflux disease (GERD), cigarette smoking,
and diet (low in vegetables and fruits). Cook et al. (2014)

report some common symptoms like vomiting/nausea and

heartburn in EAC and GERD. Besides, Barrett's esophagus

(BE) is considered as a precursor for EAC. BE is a metaplastic

transformation from the normal squamous mucosa of the

esophagus to a columnar lining; its presence conveys a 30–40-

fold increased risk of EAC (Schneider and Corley, 2015). The
tumor development is a step-by-step process that comprises

constant changes from erosive esophagitis to non-dysplastic

BE, low-grade dysplasia, high-grade dysplasia, adenocarcinoma

in situ, and finally invasive adenocarcinoma (Anaparthy and

Sharma, 2014). Due to poor prognosis, over 40% of patients are

diagnosed with high-grade dysplasia. Additionally, the 5-year
survival rate is less than 20% despite the advances in diagnosis

and treatment (Tramontano et al., 2017). Certainly, surgical

therapy has improved the patient's survival yet it is not suitable

for advanced-stage cancer patients (Davies et al., 2014).

Thus, it is essential to discover biomarkers that can lead to the

discovery of medication. Microarray analysis of gene expression

profiles is a common practice for identifying key hub genes and
key pathways (Wei et al., 2018; Sadhu and Bhattacharyya, 2019).

In the current era of integrated bioinformatics, acquiring data is

not an issue; rather, normalization seems to be a tough job

(Campain and Yang, 2010). Considering all of these notions, we

designed an integrated study to find key hub genes associated

with BE and EAC. First, we extracted BE- and EAC-associated
microarray datasets from the Gene Expression Omnibus (GEO)

and ArrayExpress using systematic meta-analysis as well as

RNA-seq data from TCGA. Preprocessing and normalization

were conducted for further analysis. DEGs were identified using

linear models for microarray data (LIMMA) algorithm. Meta-

analysis was performed using a network analysis tool. We

analyzed functional and pathway enrichment of DEGs.

Additionally, a protein–protein interaction (PPI) network was
constructed to study the associations between the DEGs and to

recognize target genes using different modules of Cytoscape

software. Weighted gene co-expression network analysis

(WGCNA) was conducted by the construction of the co-

expression network to find a correlation between modules and

clinical traits. Furthermore, clinically significant modules were

identified. Finally, key hub genes were identified and validated
using immunohistochemistry and survival analysis.

MATERIALS AND METHODS

Data acquisition, Preprocessing, and
Normalization
The microarray datasets were systematically extracted from the

GEO1 (Edgar et al., 2002) and the ArrayExpress2 database (Brazma

et al., 2003). The gene expression profiles based on RNA-sequencing
were additionally obtained from The Cancer Genome Atlas

(TCGA)3 (Zhu et al., 2014). The framework of this study is

shown in Figure 1. For microarray profiles, we selected four

datasets (GSE26886, GSE1420, GSE37200, and GSE37201)

available by October 2019 (Kimchi et al., 2005; Silvers et al., 2010;

Wang et al., 2013; Lin et al., 2015). The GEO accession number,

sample size, description, platform, expression data, and references
are extracted from each identified dataset (Table 1). The TCGA

portal was accessed in October 2019, 184 esophageal cancer samples

were retrieved. The tab-delimited text (.txt) files of microarray

datasets were obtained from the GEO database. The Network

Analyst (NA) web interface for integrative biological network

analysis was employed for background correction preprocessing,
normalization, probe identification, and meta-analysis of the

datasets (Xia et al., 2015). The input files were prepared as per the

description of the tool (first line #Name (sample ID); second line

#class (sample type); genes in the rows and samples in the columns).

We applied two different methods to normalize the datasets: first,

variance stabilizing normalization (VSN), which improves DEG

detection and reduces false-positive errors (Konishi, 1985), and
second, quantile normalization, which can make two distributions

equal in statistical methods (Hansen et al., 2012). The processed

datasets were used for subsequent microarray meta-analysis.

1http://www.ncbi.nlm.nih.gov/geo
2https://www.ebi.ac.uk/arrayexpress/
3https://portal.gdc.cancer.gov/
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DEG Identification and Meta-Analysis
Differential gene expression analysis was performed with the R

package LIMMA (linear models for microarray data), which is

embedded in NA (Ritchie et al., 2015). Each gene expression was

calculated based on the false discovery rate (FDR; p < 0.05) using the

Benjamini–Hochberg method and t-test. In addition, the microarray

meta-analysis between EAC and BE samples was performed using

combined effect size (ES). The combined ES is the difference between

two group means divided by standard deviation, which is

comparable across different studies. It can be calculated by two
types of models, namely fixed-effect models (FEM) and random-

effect models (REM). In FEM, the calculated effect size in each study

FIGURE 1 | Schematic flow diagram of the study. GEO, Gene Expression Omnibus; IHC, Immunohistochemistry; WGCNA, weighted gene co-expression network

analysis; TCGA, The Cancer Genome Atlas; PPI, Protein-protein interaction.

TABLE 1 | Relevant information about selected microarray datasets.

GSE Acc.

No.

No. of

Samples

Platform Description Country PMID

GSE26886 21 vs 20 AHG-U133 Plus

2.0 Array

Gene expression profiling of Barrett's esophagus, adenocarcinoma, esophageal squamous

epithelium, and squamous cell carcinoma

Germany 23514407

GSE1420 8 vs 8 AHG-U133A Array Barrett's esophagus, Barrett's-associated adenocarcinomas and normal esophageal epithelium USA 15833844

GSE37200 15 vs 31 AHG-U133A Array Gene expression profiling of Barrett's esophageal tissues and esophageal adenocarcinoma USA 26068949

GSE37201 22 AHG-U133A Array Barrett's esophageal tissues and esophageal adenocarcinoma USA 20332323

AHG, Affymetrix Human Genome.
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is supposed to arise from an original true effect size plus

measurement error. In REM, each study further contains a

random effect that can incorporate unknown cross-study (different

platforms) heterogeneities in the model. The FEM or REM can be

chosen based on statistical heterogeneity estimated using Cochran's

Q tests (Cochran, 1950). The method typically gives a lower number
of DEGs but more confidence (Selvaraj et al., 2018).

Cochran's Q test equation:

Cochran0s Q test equation :  T = k(k� 1)

o
k

j=1

(X ·j −
N

K= )2

o
b

i−1

Xi·(k − Xi · )

where k is the number of samples; X · j is the column total for the

jth sample; b is the number of genes; Xi · is the row total for the ith

gene; N is the grand total.

Gene Ontology and Pathway Enrichment
Analysis
We used ClueGO v2.5.3, a Cytoscape4 plugin, for function and

pathway enrichment analysis of DEGs (Bindea et al., 2009; Kohl

et al., 2011). A list of DEGs or hub genes were provided as input

into ClueGO with select specific parameters, for example,

species, such as Homo sapiens, ID type—Entrez gene ID,
different enrichment functions—biological process or cellular

component or molecular function or KEGG pathways, for the

analysis. Each enrichment was calculated based on the

Bonferroni method (kappa score 0.96; cutoff value p < 0.005).

PPI Network Construction and Module
Extraction
The search tool for retrieval of interacting genes/proteins

(STRING)5 (Szklarczyk et al., 2017) is a database that is used to

construct the PPI network. Currently, the database consists of

18,838 human proteins with 25,914,693 core network interactions.

In this study, we constructed the PPI network from identified DEGs
using the STRING interactome. The highest confidence interaction

score was set to 0.9, which reduces the number of false-positive

interactions (Bozhilova et al., 2019). Molecular complex detection

(MCODE) is a Cytoscape plugin used to identify the finest clusters.

MCODE calculates accurate correlation levels as well as identifying

essential PPI network modules (Shannon et al., 2003). In addition,
other add-ins of Cytoscape, namely, CytoHubba and CytoNCA,

were employed to discover the highest linkage hub genes in the

network (Chen et al., 2009; Tang et al., 2015).

WGCNA Analysis
The WGCNA package was employed to construct a gene co-

expression network using a variant set of genes (12,701 genes).

The analysis was performed based on the package instructions
(Langfelder and Horvath, 2008). The connection strength between

each pair of nodes was calculated using the adjacency matrix aij.

Zij = cor bi, bj
� �� �

aij = Zijb

While vectors (bi and bj) were expression values for genes,

Pearson's correlation coefficient of gene i and j and aij were
represented as the connection strength between genes. The soft-

thresholding power of b = 9 was used to ensure scale-free

topology. The hierarchical clustering of the weighting

coefficient matrix was used to define the modules. The

functional modules in the co-expression network with defined

genes, the topological measure (TOM) indicating the

concurrence in shared adjacent genes, was calculated as

TOMi, j =
SN
K=1Ai,j :Ak,j + Ai,j

min Ki,Kj

� �

+ 1 − Ai,j

where A is the weighted adjacency matrix described in the above

formula. TOM-based dissimilarity measures with a minimum

size of 100 for the gene dendrogram and average linkage

hierarchical clustering were performed, and similar expression
profiles were divided into the same gene modules using the

dynamic tree cut package.

Identification of Clinically Significant
Modules
Eigengene and gene significance methods were used to identify

modules that were correlated with clinical traits of the GSE37200

microarray data set. The first principal component of each gene

module and the expression of the module eigengene were defined

as representative of the whole gene set and were described in the
first eigengene module. The association between module

eigengenes and clinical trait was used to calculate and identify

the significant clinical module. Second, the gene significance was

described as a mediated p-value of each gene in the linear

regression between expression and clinical traits. Furthermore,

the module significance was described as the average the gene

significance of all genes associated with the module. The average
absolute gene significance was defined as module significance. It

was calculated to incorporate clinical traits into a co-expression

network (Langfelder and Horvath, 2008).

Survival Analysis and Validation of SHGS
The SHGS were identified from the modules of WGCNA and the

PPI network using an interactive Venn diagram. The R package

survival was employed to calculate Kaplan–Meier (KM) survival
plots with hazard ratio (HR) and log-rank tests of hubs, which was

implemented in the OSeac6 (consensus survival analysis for EAC)

web interface. OSeac retrieved the gene expression profiles and

clinical data including TNM (Stage I, II, III, and IV), gender (male

and female), race (White, Black, and African American), and grade

(G1, G2, G3, and GX) of 198 patients from TCGA and GEO. We
analyzed the overall survival rate of the shared gene signature as an

input and obtained the plot from the tool (Wang et al., 2020). The

Human Protein Atlas7was used to validate the immunohistochemistry

of SHGS (Uhlén et al., 2005; Uhlen et al., 2017).

4https://cytoscape.org/
5https://string-db.org/

6http://bioinfo.henu.edu.cn/EAC/EACList.jsp
7https://www.proteinatlas.org/
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RESULTS

Physiognomies of Selected Studies
We collected a total of 682 studies from the GEO and

ArrayExpress database up to October 2019. In all, 678 datasets/

studies that did not satisfy the inclusion criteria were excluded.

Finally, four potential studies were selected (Supplementary

Figure 1). Among the four selected studies, three were
conducted on the Affymetrix human genome U133A platform

and one was performed on the Affymetrix human genome U133

plus 2.0 platform, which included 125 samples in total chosen in

this study. In each study, EAC samples were compared with the

adjacent BE samples. The dataset GSE37200 was used to

construct a co-expression network with the relevant clinical
trait information. After preprocessing and normalization, the

GSE37200 dataset with 22,284 genes was further processed, and

variant genes (12,701) were selected for WGCNA studies.

Identification of DEGs and Enrichment
Analysis
In total, 403 DEGs were obtained through microarray meta-

analysis, which include 169 downregulated and 234 upregulated

genes. A heatmap is a simple yet effective way to compare the

content of multiple major gene lists. Major DEGs across all the

datasets were represented in red, orange, and yellow in a

heatmap. Gray indicates that the respective gene is not present
in the gene list (Supplementary Figure 2). Table 2 illustrates the

top 10 upregulated and downregulated DEGs. Monocyte

differentiation antigen CD14 (CD14), ribose 5-phosphate

isomerase A (RPIA), tumor necrosis factor superfamily

member 11 (TNFSF11), plexin D1 (PLXND1), major histo-

compatibility complex, class II DM beta (HLA-DMB), and

spliceosome-associated factor 3, and U4/U6 recycling protein

(SART3) were highly expressed upregulated genes, whereas

fucosyltransferase 2 (FUT2), SECIS binding protein 2 like

(SECISBP2L), COP9 signalosome subunit 4 (COPS4), gelsolin

(GSN), and glutathione peroxidase 3 (GPX3) were highly

expressed downregulated genes. According to the gene
ontology (GO) terms BP, MF, and CC, downregulated genes

were significantly enriched in the mitotic cell cycle process, sister

chromatid segregation, antigen processing, presentation of

peptide antigen via MHC class I, chromosomal region, and

MHC class I protein binding, whereas retinol dehydrogenase

activity and fucosyltransferase activity were highly enriched in
upregulated genes associated with EAC (Figures 2A–C). In

KEGG, pathway enrichment demonstrated that the

upregulated genes were enriched for viral myocarditis, cell

cycle, DNA replication, and AGE-RAGE signaling pathways in

diabetic complications. Downregulated genes were associated

with pathways involved in fatty acid degradation,
glycosphingolipid biosynthesis, and amino sugar and

nucleotide sugar metabolism (Figure 2D).

WGCNA and Clinically Significant Module
Identification
A dendrogram of samples (GSE37200) with clinical trait was
clustered using the average linkage method and Pearson's

correlation method (Figure 3A). Co-expression analysis was

carried out to construct the co-expression network. In this study,

the power of b = 9 (scale-free R2 = 0.95) was selected as the soft-

thresholding parameter to ensure a scale-free network (Figure 3B).

A dendrogram of all differentially expressed genes was clustered
based on a dissimilarity measure (1-TOM) (Supplementary Figure

3). A total of 39 modules were identified through hierarchical

TABLE 2 | Top ten up- and downregulated genes.

S.No. Gene Gene name Combined ES P-value

Upregulated genes

1 CD14 Monocyte differentiation antigen CD14 1.2948 4.98E-08

2 RPIA Ribose 5-phosphate isomerase A 1.1376 4.63E-08

3 TNFSF11 Tumor necrosis factor super family member 11 1.1229 3.66E-08

4 PLXND1 Plexin D1 1.1223 3.60E-08

5 HLA-DMB Major histo-compatibility complex, class II, DM beta 1.1168 3.97E-08

6 SART3 Spliceosome associated factor 3, U4/U6 recycling protein 1.1142 4.06E-08

7 OSBPL3 Oxysterol binding protein like 3 1.1119 4.79E-08

8 PRAF2 PRA1 domain family member 2 1.1117 4.61E-08

9 PILRB Paired immunoglobin like type 2 receptor beta 1.1078 4.67E-08

10 RGS16 Regulator of G protein signaling 16 1.1064 4.79E-08

Downregulated genes

1 FUT2 Fucosyltransferase 2 -1.1095 4.67E-08

2 SECISBP2L SECIS binding protein 2 like -1.111 4.52E-08

3 COPS4 COP9 signalosome subunit 4 -1.1148 4.79E-08

4 GSN Gelsolin -1.117 4.04E-08

5 GPX3 Glutathione peroxidase 3 -1.1185 3.87E-08

6 ADH1A Alcohol dehydrogenase 1A (class I), alpha polypeptide -1.1271 4.39E-08

7 CORO2A Coronin 2A -1.2074 4.67E-08

8 ACADS Acyl-CoA dehydrogenase short chain -1.2157 3.57E-08

9 RCAN2 Regulator of calcineurin 2 -1.2172 5.07E-08

10 CLEC3B C-type lectin domain family 3 member B -1.2316 3.73E-08

*Combined ES, Cochran's combination test of random effect model (REM) or effect size (ES).
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clustering. Light green (eigengene value = 0.41), dark gray

(eigengene value = 0.62) and Sienna3 (eigengene value = 0.46)
modules appeared to have the highest association with age, gender,

and ethnicity. There was no module–trait relationship associated

with tumor stage, denoted as NA in Figure 3C. Therefore, the dark

graymodule having the highest association with gender was selected

as the clinically significant module for further analysis. There were

207 phenotypic genes identified in the dark-gray module (Figure
3D). In Supplementary Figure 4, the hierarchical clustering

dendrogram of the eigengene network represents the relationships

among the modules and the clinical trait weight.

Identification and Validation of Hub Genes
The PPI network was constructed with 403 DEGs using the

STRING database. The interactive relationships between the key

genes in the whole network were determined using the Cytoscape
plugins (MCODE, Cytoscape, and CytoHubba). There are two

clusters: 82 nodes and 938 edges in cluster 1, and 20 nodes and

168 edges in cluster 2, which were identified from MCODE based

on a scoring system (cutoff k-score = 12). In addition, the data were

imported into another plugin, CytoHubba, which helped to identify
104 key genes through five different calculation methods, namely,

EPC, MCC, DMNC, MNC, and Stress. Then, the two clusters were

imported into the CytoNCA plugin, which helped to identify 40 key

genes using five different algorithms, namely, betweeness, closeness,

degree, eigenvector, and subgraph. We securely conceive that the

key genes are the intersections between the PPI network and the
dark-gray module with 207 genes (Supplementary Table 1) highly

correlated with phenotype (gender) from the WGCNA analysis

(Figures 4A, B). Finally, five SHGS, namely, pre-mRNA processing

factor 4 (PRPF4), serine and arginine rich splicing factor 1 (SRSF1),

heterogeneous nuclear ribonucleoprotein M (HNRNPM), DExH-

box helicase 9 (DHX9), and origin recognition complex subunit 2

(ORC2), are identified between BE and EAC. Pathway enrichment
demonstrated that all the SHGS are involved in the metabolism of

RNA, and its molecular functional terms include cell cycle, DNA

binding, DNA topoisomerase binding, pre-mRNA splicing, and

RNA helicase activity (Figure 5).

A

B

D

C

FIGURE 2 | Gene ontology and pathway enrichment analysis. (A) Biological process analysis. (B) Cellular component analysis. (C) Molecular function analysis.

(D) KEGG pathway analysis.
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Survival Analysis and
Immunohistochemistry
Kaplan–Meier plots demonstrated that the prognostic impact of the

SHGSwas identified frommodules of the PPI network complex and

WGCNA. The results revealed that high expression of HNRNPM

and SRSF1 was associated with poor overall survival of BE and EAC

patients (p < 0.05). Moreover, high expression of PRPF4, DHX9,
and ORC2 was correlated with longer overall survival of BE and

EAC patients (Figure 6). In addition, we plotted a gender-based

survival curve to determine the correlation of WGCNA modules.

The hazard ratio (HR) and 95% confidence interval were as follows

in males: PRPF4 (HR =1.08; 95%CI – 0.46 ± 2.48; p = 0.865); SRSF1

(HR =3.08; 95%CI – 1.49 ± 6.37; p = 0.002); HNRNPM (HR =3.295;

95%CI – 1.54 ± 7.02; p = 0.002); DHX9 (HR =1.39; 95%CI – 0.64 ±
2.48; p = 0.404); ORC2 (HR =1.25; 95%CI – 0.58 ± 2.72; p = 0.564).

Further, in female cases PRPF4 (HR =0.39; 95%CI – 0.03 ± 3.89; p =

0.421); SRSF1 (HR =1.49; 95%CI – 0.20 ± 10.79; p = 0.689);

HNRNPM (HR =8.06; 95%CI – 0.82 ± 79.01; p = 0.073); DHX9

(HR =0.38; 95%CI – 0.04 ± 3.89; p = 0.424); ORC2 (HR =3.24; 95%

CI – 0.20 ± 51.91; p = 0.4061). The results clearly demonstrated that
the high expression of SHGS correlated to the poor prognosis of

male compared to female. Furthermore, immunohistochemical

slides of the Human Protein Atlas database indicated that the

protein expressions of SHGS were drastically higher in cancerous

tissues compared with in adjacent normal tissues, as shown in

Figure 7. Therefore, these SHGS were all key genes that play an

initiative role and might have a tendency to co-express.

DISCUSSION

EAC is an obstinate type of cancer, which has a high mortality

rate because of poor prognosis, metastatic rate, and treatment

resistance (Tatarian and Palazzo, 2019). EAC usually arises from

a premalignant variation in the lining of the esophagus known as

BE (Thrift, 2016). Unfortunately, the treatment and diagnosis of

EAC and BE are limited due to the lack of precise molecular
targets. Therefore, we designed this study to explore SHGS

between EAC and BE to improve the diagnosis and prognosis

status of the patients. There are numerous advanced technologies

that can quantify the enormous amount of transcripts in a

parallel manner. Microarray and data mining are well-known

approaches for cancer biomarker discovery (Selvaraj et al., 2019).
Nevertheless, a single microarray dataset is not enough to deal

with this obstinate disease. However, a comprehensive analysis of

a number of microarray datasets with different platforms can

assist with identifying the molecular mechanism of EAC and BE.

Therefore, we selected four different microarray datasets to

identify SHGS and the associated pathways between BE and

EAC. Moreover, WGCNA is a powerful tool for searching
effective biological mechanisms and key genes from gene

expression microarrays. It provides module construction and

correlation analysis within the gene expression data to determine

the associations between genes. It also elucidates the biological

significance of a gene module to provide insights into molecular

and pathological characteristics in many diseases. All these
characteristics make it a robust, reliable, and significant
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method for analysis of large-scale data. There is no prior research

employing WGCNA to do gene co-expression network analysis

with BE and EAC. To explore SHGS, we decided to construct a

gene co-expression network with relevant clinical trait
information from the GSE37200 dataset.

Phenotype variants like age, gender, and ethnicity are factors that

are intensively involved in the prognosis and diagnosis of BE and

EAC (Ford et al., 2005; Runge et al., 2015). EAC usually appears at

the later stage of life, but it may start at a young age in the form of

BE. Earlier studies have reported that male patients with BE are at

low risk of malignant progression and predominantly die due to

causes other than EAC (Sikkema et al., 2010). There are studies
reported that there is a marked male prevalence of EAC with a

male-to-female ratio of 9:1 due to sex hormone factors. Androgen

exposure may increase the risk of EAC compared to estrogen (Xie

and Lagergren, 2016; Kim et al., 2016). Furthermore, geographically

A B

FIGURE 4 | (A) Venn diagram demonstrates overlapping genes of the DEG-PPI network and WGCNA. (B) DEG-PPI network complex (upregulated genes showed

in green; downregulated genes showed in red).

FIGURE 5 | Pathway enrichments of SHGS. PRPF4, SRSF1, HNRNPM, and DHX9 are keys genes in the RNA metabolic pathway. These genes especially are

involved in the preprocessing of capped intron-containing pre-mRNA and regulation of mRNA stability by proteins that bind AU-rich elements. (Image extracted from

the Reactome pathway analyzer).
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White people, especially White Americans, are at higher risk than
other ethnicities (Schneider and Corley, 2015). A comprehensive

study from January 2006 to December 2017 reported that high risk

of male patients with esophageal diseases in the province of

Madinah in Saudi Arabia is due to a variety of factors, including

inflammatory disorders, infection, and neoplastic condition (Albasri

et al., 2019). In addition, genomic analysis by restriction fragment

length polymorphism indicated that the highest frequencies of Y-
chromosomal haplogroups are associated with BE and EAC in

White males (Westra et al., 2020). Recent case–control studies

demonstrate that gastroesophageal reflux disease in male patients

is highly associated with the development of BE in Germany

(Schmidt et al., 2020). These reports supported the present results,

indicating that predicted dark gray modules with the highest
association with gender must have a clinically significant module.

Two types of biological materials, namely, GO and KEGG

pathway data, are key to understanding the disease mechanism.

CD14 acts as a co-receptor with toll-like receptors (TLRs) to

identify evading pathogens and improve the immune system. It

is reported that TLRs 1-10 are expressed in the normal

esophagus and that there is a high association of TLRs 4, 5,
and 9 with BE and EAC (Kauppila and Selander, 2014).

TNFSF11 is a key regulator of interactions between T cells and

dendritic cells, which regulate the T-cell-dependent immune

response and enhance bone-resorption in hypercalcemia of

malignancy (Luan et al., 2012). Somja et al. (2013) observed

that both metaplastic and malignant lesions of the esophagus are
infiltrated by regulatory T cells. They concluded that soluble

factors secreted by epithelial cells during the EAC or BE
influence tumor progression through tolerogenic dendritic

cells, which can be a potential therapeutic tool. In addition,

different cohort studies have reported that GSN is a serum

glycoprotein biomarker used as a diagnostic tool for EAC and

BE (Shah et al., 2015; Shah et al., 2018). Glycosphingolipid

biosynthesis is an important pathway that can produce cell-

surface glycans. These glycans are altered in the development
from BE into EAC, with specific changes in lectin binding

patterns. This binding is a key marker in endoscopic

visualization of high-grade dysplastic lesions (Bird-Lieberman

et al., 2012). These reports suggest that the predicted GO terms

and pathways of DEGs are highly associated with EAC and BE.

We have identified five different SHGS (PRPF4, SRSF1,
HNRNPM, DHX9, and ORC2) between EAC and BE. PRPF4,

SRSF1, and HNRNPM are U4/U6 small nuclear ribonucleoprotein

Prp4, serine and arginine-rich splicing factor 1, and heterogeneous

nuclear ribonucleoprotein M coding genes, respectively. These

genes play an important role in pre-mRNA splicing and

spliceosome assembly (Bertram et al., 2017). Pre-mRNA splicing

is key to the pathology and has a substantial role in generating
multiple oncogenic and tumor-suppressor proteins after the post-

transcriptional process. Splicing is of different types such as amino

acid addition, exon skipping, frame shift, intron retention, promoter

usage, truncated C-terminus, and 5′-SS, which have various clinical

applications including proliferation, metastasis, drug resistance, and

radiotherapy (Guo et al., 2015; Di et al., 2019). In addition, there are
studies reporting splicing signatures associated with the prognosis of

FIGURE 6 | The prognostic value of hub genes in BE and EAC patients (Kaplan–Meier plot).
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esophageal cancer (Lin et al., 2018; Mao et al., 2019). Through the

splicingmechanism, PRPF4, SRSF1, andHNRNPM regulate the cell

proliferation, migration, and invasion in different cancers, including

lung cancer (Choi, 2012; Chang and Lin, 2019), breast cancer

(Anczuków et al., 2015; Sun et al., 2017; Park et al., 2019),

cutaneous squamous cell carcinoma (Zhang et al., 2018),

hepatocellular carcinoma (Tu et al., 2019), esophagus dysplasia

(Varghese et al., 2015; Fitzgerald et al., 2018), gastric cancer (Wu

FIGURE 7 | Immunohistochemistry of the five hub genes based on the Human Protein Atlas. (A) Protein levels of PRPF4 in normal tissue (staining: high; intensity:

strong; quantity: >75%). (B) Protein levels of SRSF1 in normal tissue (staining: high; intensity: strong; quantity: >75%). (C) Protein levels of SRSF1 in tumor tissue

(staining: high; intensity: strong; quantity: >75%). (D) Protein levels of HNRNPM in normal tissue (staining: high; intensity: strong; quantity: >75%). (E) Protein levels of

DHX9 in normal tissue (staining: high; intensity: strong; quantity: >75%). (F) Protein levels of ORC2 in normal tissue (staining: not detected; intensity: low; quantity:

<25%).
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et al., 2019), cervical cancer (Dong et al., 2019), and Ewing's sarcoma

(Passacantilli et al., 2017).

DHX9 is an ATP-dependent RNA helicase A coding gene

involved in DNA replication, transcriptional activation, post-

transcriptional RNA regulation, mRNA translation, and RNA-

mediated gene silencing (Capitanio et al., 2017). Knockdown of
ATP-dependent RNA helicase inhibited the expression of b-
catenin, c-Myc, and cyclin D1 in esophageal cancer cells through

suppressing the Wnt/b-catenin signaling pathway (Ma et al.,

2017). In addition, ATP-dependent RNA helicase was reported

to dysregulate distinct steps of mRNA and pre-ribosomal RNA

metabolism in cancer cells (Awasthi et al., 2018). ORC2 is an
origin recognition complex subunit 2 coding gene binding

origins of replication (Shen et al., 2012). It can bind to

different histone trimethylation proteins and stabilize leucine-

rich repeat and WD repeat-containing protein 1 (LRWD1)

through protecting it from ubiquitin-mediated proteasomal

degradation (Chan and Zhang, 2012). Studies demonstrated
that increased expressions of certain histone-mediated proteins

correlate with advanced TNM stages, tumor grade, metastatic

potential, and decreased overall and disease-free survival of

patients with esophageal cancer (Schizas et al., 2018). This

supportive information enhances the understanding of why the

predicted DHX9, HNRNPM, ORC2, PRPF4, and SRSF1 genes

are highly correlated to EAC and BE progression and act as
potential biomarkers for diagnosis as well as prognosis.

CONCLUSION

This network pharmacology-based study provides new insights

into BE and EAC patients for their diagnosis and prognosis. The

results of microarray dataset-based PPI networks and WGCNA

exhibited that the dark-gray module had the maximum
association with EAC and BE, with the identification of five

SHGS, namely PRPF4, SRSF1, HNRNPM, DHX9, and ORC2.

The WGCNA-based gene co-expression network indicated that

the relationships between co-expressed genes and clinical trait

(gender of the patient) were associated with the progression of

esophageal cancer. SHGS enrichment denotes that the RNA
metabolic and spliceosome pathways play an essential role in

the development and progress of esophageal cancer. Survival

analysis demonstrates that the high expression of HNRNPM and

SRSF1 in esophageal cancer might be a poor prognostic marker.

The co-expression modules were established to preserve a

reliable expression relationship independent of phenotype and

may share similar biological functions. This approach shares the
limitations of other data mining methods: the results of WGCNA

can technically be biased due to tissue contamination or artifacts.

To enhance the reliability of the WGCNA results, immuno-

histochemical data from the Human Protein Atlas were used for

confirmation. However, we could not obtain all the related IHC

data of tumor and adjacent normal samples for each gene due to
the database constraint. These findings may support new

therapeutic targets and potential useful for the advancement of

prognostic biomarker evaluation.
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