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Abstract

Precision Medicine involves the delivery of a targeted, personalized treatment for a given patient. 

By harnessing the power of electronic health records (EHR), we are increasingly able to practice 

precision medicine to improve patient outcomes. In this article, we introduce the scientific 

community at large to important building blocks for personalized treatment, such as terminology 

standards that are the foundation of the EHR and allow for exchange of health information across 

systems. We briefly review different types of clinical decision support (CDS) and present the 

current state of CDS, which is already improving the care patients receive with genetic profile-

based tailored recommendations regarding diagnostic and treatment plans. We also report on 
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limitations of current systems, which are slowly beginning to integrate new genomic data into 

patient records but still present many challenges. Finally, we discuss future directions and how the 

EHR can evolve to increase the capacity of the healthcare system in delivering Precision Medicine 

at the point of care.

Graphical Abstract

Building blocks of personalized healthcare delivery

PRECISION MEDICINE, ELECTRONIC HEALTH RECORDS, AND CLINICAL 

DECISION SUPPORT

In an era where the complexity of medicine grows exponentially, we face an acute need to 

develop systems that will integrate disparate data sources, provide real-time decision 

support, and enhance our ability to positively impact patient outcomes. The full spectrum of 

Precision Medicine spans the discovery of a patient-specific pattern of disease progression, 

determination of the precise therapy for that pattern, and the corresponding personalized 

delivery of care. EHRs are instrumental across this spectrum, but in this article we will focus 

on personalized healthcare delivery based on the rapidly evolving knowledge base brought 

about by advances in genomic medicine. Integration of implementation science with basic 

and translational sciences is essential to fully realize the potential of therapeutic discoveries. 

The landscape of the electronic health record has substantially evolved over the course of the 

past decade from basic adoption to sophisticated decision support. The evolution of complex 

terminologies that serve to electronically communicate shared data is a critical component. 

We explain here key terms and contextual applications of EHRs (Appendix 1). The 

following two example cases highlight current opportunities and challenges in personalized 

treatment given the current state of EHR systems.

Personalized treatment: example use cases

Case 1: N.M. is a 72 years old man with a history of atrial fibrillation and prior 

stroke who had been taking anticoagulant medication (warfarin) for 1 year. He 

presented with 7 days of runny nose, fever, and a new onset of pain in the left ear. On 

exam, he was noted to have otitis media, and his doctor was planning to start him on 

penicillin. He was aware of an increased risk of minor bleeding due to this drug 

combination (warfarin and penicillin), but felt that the risks were small. Three days 

later, the patient presented with sudden onset headache, weakness of the right arm, 

and difficulty with speech and vision. He was transported via ambulance to the 
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hospital due to concern for stroke. On CT imaging of the brain, he was noted to have 

an acute stroke due to a subarachnoid hemorrhage, and underwent emergent 

neurosurgery. On further lab work, his INR was noted to be 8.4, significantly 

increased from a value of 2.1 three days before (the target INR range on warfarin is 

between 2 and 3). A potential explanation was that the interaction between warfarin 

and penicillin contributed to this increase in INR. As the patient was recovering in the 

ICU, his family brought in reports of a commercial genotyping assay that the patient 

had performed recently as part of a research study in another facility. That testing 

revealed the patient carried a specific CYP2C9 variant, which significantly increases 

the risk of life-threatening bleeding in patients taking warfarin and penicillin together.

This bad outcome could have been averted if the genetic testing result had been available via 

health information exchange between the two organizations, and a point-of-care clinical 

decision support (CDS) system was in place to alert the prescribing physician of this 

potentially significant drug-drug interaction.1

Case 2: C.P. is a 68 years old female diagnosed with breast cancer that was 

discovered by screening mammography. As with many breast cancer patients, C.P. 

has been asked to make a variety of treatment decisions. After much deliberation, she 

settled on lumpectomy and radiation. Her surgery went smoothly, as did radiation. 

She was found to have a 1 cm low-grade tumor and a negative lymph node biopsy. 

Her tumor was positive for estrogen and progesterone receptors. The next step along 

her treatment pathway would be chemotherapy. Like many patients her age, C.P. was 

hesitant about undergoing chemotherapy.2 Chemotherapy is one of the riskiest 

components of the breast cancer treatment, exposing patients to an increased risk of 

serious infections, cardiopulmonary complications and poorly tolerated side effects 

including nausea and hair loss.3 It has been shown to decrease risk of metastasis in 

many trials.4 Small tumors (<.5 cm) in patients with negative lymph nodes do not 

require chemotherapy but, given the size of C.P.’s tumor, there was no clear 

recommendation.5 Without a precision medicine approach, clinicians would attempt 

to integrate information about C.P.’s health status, personal preferences and data from 

large studies to decide about chemotherapy. Instead, C.P.’s oncologist employed a 21-

gene recurrence score (RS) assay to predict the likelihood of distant metastasis and 

assess the benefit she would get from chemotherapy.6 C.P.’s score indicated high risk 

of recurrence and chemotherapy was recommended.

The RS has been shown to alter treatment recommendations for breast cancer patients, such 

as in this case.7 Its incorporation into the EHR is a clear example of CDS.

BUILDING BLOCKS: STANDARDIZING AND EXCHANGING DATA TO DRIVE 

CLINICAL DECISION SUPPORT

Adoption of EHR and order entry systems has continued to increase, spurred by federal 

incentives and mandates.8 These electronic systems facilitate increasingly effective CDS, 

defined by (healthit.gov) as systems or processes that “[provide] clinicians, staff, patients or 

other individuals with knowledge and person-specific information, intelligently filtered or 

presented at appropriate times, to enhance health and health care.”9
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A number of accurate data sources are required to drive appropriate opportunities for CDS. 

As illustrated in the two cases above, a substantial amount of data needs to be present at the 

time of care delivery in order to optimize opportunities for improved outcomes and 

treatment. The respective data sources include different types, such as diagnoses, ordered 

medications, completed procedures, and completed lab tests. Appendix 1 provides a glossary 

of key terms related to the use and sharing of clinical data as contextualized by the preceding 

cases.

Data Models and Terminology Standards

Each type of data has an associated terminology that enables the vocabulary to be 

operationalized within the context of the EHR. These terminology systems have unique data 

formatting, coding, domain coverages, and hierarchical relationships between a specific 

instantiation, such as amoxicillin capsule 250 mg, and a concept, such as penicillin. 

Terminology standards have the ability to influence design and utilization of the respective 

data. For example, a medication such as warfarin (Case 1) in the National Drug Code (NDC) 

file will include not only the medication itself, but also the type and strength of the product 

(e.g., 5 mg tablet) and the quantity included in the product (e.g., 100 tablets).10, 11

In order to facilitate common data formatting and structure that enables effective 

communication between healthcare organizations, the use of standardized medical 

terminologies is critical. Current opportunities and challenges with the use and exchange of 

health data are listed in Table 1. Often, new data types have complexity that is not 

adequately represented or matured in the standard vocabulary of its domain. In addition, 

non-automated processes such as specimen interpretation by a pathologist or image 

interpretation by a radiologist are dictated and archived as free text in an unstructured, non-

standardized format. Relevant data need to be identified and parsed from the unstructured 

narrative texts using natural language processing (NLP) techniques so that they can be used 

by a CDS tool.

Causality and association are often inferred from context. Some EHR systems do not 

accurately code the time of many events. Additionally, many variables lack intensity 

qualifiers. For instance, most symptoms are coded as present or absent and are not scaled 

(pain is an exception).

Precision Medicine is developing a new vocabulary related to genetic conditions, which has 

yet to be standardized in the EHR. Genetic test results should follow relevant data standards, 

such as LOINC, HL7 Genomics, HGVS, etc., that contain information about test findings 

and potential risk; yet, this a challenge since these standards are not adopted by all 

laboratories. The rapid evolution of tests makes this challenging for the field of genetics, 

posing challenges for discrete data retrieval of this information in the EHR. Precision 

medicine also relies on other types of data that were not traditionally recorded in EHRs. 

Patient reported outcomes (PROs) are still early in standardization and the reporting is 

highly variant according to race, ethnicity, and literacy. PROs are vital to enhance our 

understanding of the value of healthcare to its primary “customers”. Patient preferences, for 

example, are not universally standardized today but this is necessary because they are 

intimately connected with the definition of “value”.
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The process of translating clinical information across terminologies is called “data 

harmonization”. Mapping between terminology systems makes this possible, but increases 

complexity and the risk of introducing errors. Yet, this mapping across standard 

terminologies is essential for clinical decision support, quality measurement, research, and 

information exchange across healthcare systems.

Health Information exchange

The Health Information Technology for Economics and Clinical Health (HITECH) Act of 

2009 was proposed to promote interoperable health information.12, 13 Meaningful Use of 

EHR is an incentive program put forth by the Medicare and Medicaid programs in response 

to HITECH to promote effective use of EHR systems.14, 15 The receipt of the incentive 

payment requires hospitals and providers to prove their “meaningful use” of EHR by 

satisfying a set of requirements such as recording patient information in a structured format, 

ordering medications using a computerized order entry system, and sharing test results with 

patients using personal health records tethered to the EHR system. Health information 

exchange (HIE) initiatives aim at realizing timely and appropriate level of access to the 

patient level of health information stored in the EHR by healthcare providers through a 

secure means to exchanging health data among healthcare organizations.16 Having complete 

information about disease progression and treatment data at the point of care helps 

healthcare providers make better treatment decisions and achieve better patient outcomes. 

Utilizing information collected from different healthcare systems is an important step 

towards this goal. The Nationwide Health Information Network (NwHIN) specifies data and 

messaging standards, services, and policies required realizing secure exchange of health 

information on Internet.17

HIE covers three types of data exchange: (1) Directed exchange that occurs between 

healthcare providers to complete the planned healthcare services such as sending and 

receiving laboratory test orders and results, exchanging patient referral documents, etc. (2) 

Query-based exchange that occurs when a healthcare provider delivers unplanned services 

and requires accessing necessary health information about the patient. For example, when an 

emergency room physician needs to access patient’s disease history, current medications, 

allergies, etc. (3) Consumer-mediated exchange that lets patients control their health 

information. In this model, patients grant access to their health information to healthcare 

providers.18

However, establishing a sustainable HIE is not a trivial task; there are a number of technical 

and non-technical barriers that need to be addressed first. For example, lack of business 

incentives, specifically concerns on losing patients to other hospitals by making their health 

data available anywhere, has long been recognized as a factor that makes some healthcare 

systems hesitant to embrace HIEs.8, 19 Patients and providers sometimes opt out from HIEs 

due to privacy concerns.20 Other recognized challenges are poor data standardization,19 

inefficient processes of sorting through overloaded unselective information of a patient,21 

and difficulties in understanding the shared data in the absence of context when detailed 

clinical notes are withheld due to privacy concerns.22
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DELIVERING PERSONALIZED CARE WITH CDS SYSTEMS

CDS systems help providers and patients answer certain types of questions in the course of 

care, such as what the most likely diagnosis is, what tests are most appropriate to arrive at 

the diagnosis, and what treatment would be best. In addition, CDS can help optimize the 

effectiveness and efficiency of care delivery, and can highlight when patients’ conditions do 

not follow expected trajectories. (Appendix 2)

Effective CDS can be constructed in various ways. Some tools, such as Infobuttons, provide 

individuals ready access to relevant clinical guidelines when actively sought out or 

“pulled.”23 Other systems, including alerts, reminders, and event detectors, will proactively 

“push” information to individuals with varying levels of interruption and urgency. Certain 

CDS tools can straddle the “push” or “pull” approaches depending on how well they can be 

integrated into the EHR. For example, risk calculators or differential diagnosis generators 

can be automatically engaged if all the required data elements are available; otherwise, they 

can be made available for individuals to enter the data manually. Another class of CDS 

systems is designed to provide clinicians guidance on the appropriate evidence-based care 

for certain disease states, and to reduce variation in delivery of that care. These systems 

include order sets, care pathways, and documentation templates. Finally, data summarization 

and visualization tools address the growing issue of “information overload” facing patients 

and clinicians and provide CDS by displaying a filtered version of clinical data in a manner 

better aligned with human cognition and decision-making.

Early leaders in CDS have provided valuable lessons and best practices to maximize the 

impact of these systems.24, 25 One framework developed by Osheroff and colleagues is 

known as the “five rights”—that effective CDS requires that the right information be 

provided to the right person in the right format and communication channel at the right time 

in the workflow.24 This framework highlights many of the challenges faced when designing 

CDS systems for use in clinical settings. Often, such systems have failed to demonstrate 

tangible improvements when the five rights are not appropriately addressed; even if they are, 

the rigidity of the support tools or the phenomenon of alert fatigue may limit the 

effectiveness of CDS.26 Another significant challenge is the ongoing maintenance of the 

knowledge base underlying CDS systems, as new clinical research informing these tools is 

being constantly generated.

There are some published examples of CDS solutions which overcome these challenges. 

Two of the most successful and widely used applications of computerized clinical decision 

support have been evidence-based order sets and alerts (for minimizing medication alerts, 

especially of drug-drug interactions and drug dose adjustment). For example, Ballard and 

colleagues observed that implementation of a standardized heart failure order set resulted in 

reduced inpatient mortality (odds ratio [OR], 0.49; 95% confidence intervals [CI], 0.28–

0.88), and improved compliance with core measures (OR, 1.51; 95% CI, 1.08–2.12).27 

Similarly, with the use of a smart order set on evidence-based, risk-appropriate venous 

thromboembolism prophylaxis, Zeidan and colleagues observed a significant decline in 90-d 

risk of venous thromboembolism after hospital discharge (pre- vs. post: 2.5% vs. 0.7%, 

p=0.002) and complete elimination of preventable harm (1.1% vs. 0%, p<0.001), paralleling 
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an increase in prescription of risk-appropriate venous thromboembolism prophylaxis (65.6% 

vs. 90.1%, p<0.001).28 To evaluate the impact of clinical decision support on medication 

prescription patterns in patients with kidney disease (who often require dose adjustment or 

drug discontinuation of certain medications based on dynamic renal function), Awdishu and 

colleagues designed a cluster-randomized trial comparing clinical decision support through 

real-time alerts generated based on dynamic and integrated monitoring of renal function vs. 

usual workflow in patients with kidney disease. Over a course of 1 year, 4068 alerts were 

generated recommending either dose adjustment (n=827) or drug discontinuation (n=3241). 

The investigators observed that physicians randomized to CDS were significantly more 

likely to make drug adjustments, as compared to physicians in usual workflow (17.0% vs. 

5.7%, p<0.001).29

In our examples, Case 1 showed that the CYP2C9 variant could explain why the co-

administration of both penicillin and warfarin resulted in the higher than intended level of 

anticoagulation and the subsequent development of a hemorrhagic stroke. It illustrates 

several requirements for effective CDS. First, the CYP2C9 test occurred at an outside 

hospital – mechanisms for health information exchange between the hospitals would have 

been needed to bring the test information to the clinician at the point of care. Second, the 

provider had to agree that this variant implied an increased risk for a dangerous interaction 

between these two medications. An alert would have needed to be in place to notify the 

clinician at the time penicillin was ordered, and to outline the risks of giving penicillin and 

warfarin together for this patient. Such a CDS tool could have guided the clinician toward 

better treatment by suggesting an alternative medication.

Case 2 highlights the potential ways by which CDS systems can improve the quality, safety 

and efficiency of the care delivered by our health care system. A risk assessment tool, such 

as OncotypeDx,30 indicated the risk of cancer recurrence and clarified the risk-benefit 

tradeoff of undergoing chemotherapy. To get to that point, her clinician needed to be aware 

of the appropriateness of this test for her particular scenario as well as be able to accurately 

interpret the test results. Different CDS systems (Table 2) might make this process more 

reliable, including: 1) order sets or care pathways that guide clinicians caring for similar 

patients down a step-wise decision-making process that includes this specific tumor genome 

panel; 2) alerts or reminders for the clinician to order the tumor genome panel, if 

appropriate; and 3) Infobuttons that provide the patient and clinician access to current 

guidelines and test interpretation.

Simple CDS as described in the example cases is currently available. However, as the use of 

genetic tests based on whole genome sequences becomes more common, the evidence base 

will have to evolve to support their use in guiding clinical decisions. Since practicing 

clinicians will likely find it difficult to keep their knowledge up to date in this area, it is 

critical that interpretation and recommendations be done by more sophisticated CDS that 

operates “behind the scenes”. CDS systems will play a large role in Precision Medicine by 

incorporating the evidence base into clinical practice. However, maintaining the underlying 

knowledge base driving such systems will require significant effort.
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THE ROAD AHEAD

Realizing the goals envisioned that electronic health records will enable us to provide better, 

safer, and more effective care is an active pursuit for our healthcare systems. Through data 

integration and real-time decision support, we have the capacity to alter patient outcomes 

and drive value-driven care. Precision Medicine impresses the need to rapidly adopt an 

evolving knowledge base brought about by advances in genomic medicine and making it 

actionable by putting it at the hands of clinicians who can intervene. To get there, we need 

vision, a culture of sharing, commitment to standardized terminologies, and iterative 

learning. Our knowledge on the associations among gene, disease, and the effectiveness of 

various therapeutic approaches is still quite limited.44–48 Making new discoveries at the 

molecular or cell level is still much needed thus often the emphasis of articles describing 

Precision Medicine but it is actually one component in a vast spectrum of activities that are 

necessary to make it happen in practice. At the end of this spectrum lies implementation 

through guidance of actions by patients, caregivers, and healthcare providers. We focused 

this article at this less prominently but equally important component of Precision Medicine 

to help the scientific community at large understand why it is critical to “close the loop” 

(Figure 1).
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Appendix 1

Glossary of Key Terms including Reference and Case Context

Abbreviation Full name Reference Case Context

CDM49–52 Common Data
Model

http://mini-sentinel.org/data_activities/distributed_db_and_data/default.aspx Standardized 
data storage
Many 
Common Data 
Models exist 
for
various use 
cases

OMOP53 Observational
Medical
Outcomes
Partnership

http://www.ohdsi.org/data-standardization/the-common-data-model/ Standardized 
formatting of 
data

LOINC Logical
Observation
Identifiers
Names and
Codes

http://loinc.org Lab formatting 
and code for 
the INR test

NDC National Drug
Code

http://www.fda.gov/Drugs/InformationOnDrugs/ucm142438.htm Code to 
support 
identification 
of Warfarin
or 
chemotherapy 
medication
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Abbreviation Full name Reference Case Context

RxNorm Normalized
names for
clinical drug 
(Rx)

https://www.nlm.nih.gov/research/umls/rxnorm/ Normalized 
names to 
support 
warfarin in
system

ICD International
Classification of
Diseases

http://www.who.int/classifications/icd/en/ Classification 
of specific 
disease such 
as
intermittent 
atrial 
fibrillation

SNOMED-CT Systematized
Nomenclature of
Medicine –
Clinical Terms

http://www.ihtsdo.org/snomed-ct Groupings of 
clinical terms 
that enable
aggregation of 
concepts such 
as breast
cancer

RadLex Radiology
Lexicon

http://www.radlex.org Terms for 
identification 
of CT imaging 
or
mammography

DICOM Digital Imaging
and
Communication
in Medicine

http://dicom.nema.org Standard 
format for 
digital 
imaging
transmittal

HGVS Human Genome
Variation Society
code

http://www.hgvs.org Standardized 
name and 
syntax for
describing 
genetic 
variations

NACCR The North
American
Association of
Central Cancer
Registries

http://www.naaccr.org Centralized 
repository of 
cancer 
registries

CPT Current
Procedural
Terminology

http://www.ama-assn.org/ama/pub/physician-resources/solutions-managing-your-practice/
coding-billing-insurance/cpt/about-cpt.page?

Standardized 
terms that 
describe 
procedure
such as 
lumpectomy, 
R breast with 
axillary
dissection

IMO Intelligent
Medical Objects

https://www.e-imo.com Intelligent 
Medical 
Objects is a 
privately held
company 
specializing in 
developing,
managing and 
licensing 
medical 
vocabularies
and 
terminology 
maps
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Abbreviation Full name Reference Case Context

PROMIS Patient –
Reported
Outcomes
Measurement
Information
System

http://www.healthmeasures.net/explore-measurement-systems/promis Validated sets 
of measures 
designed 
assess
physical, 
emotional, 
social aspects 
of health

Exchange of Health Information

HIE54 Health
Information
Exchange

https://www.healthit.gov/providers-professionals/health-information-exchange/what-hie Shared EMR 
based results 
between health
systems 
related to 
hospitalization 
from
hemorrhage

Communication Standards

HL7 Health Level 7 http://www.hl7.org Formatting 
that enables 
import of a file
about genetic 
test into the 
EHR

C-CDA55 Consolidated
Clinical
Document
Architecture

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=258 File formatting 
for data 
exchange

FHIR Fast Healthcare
Interoperability
Resource

http://www.hl7.org/fhir/?ref=learnmore Specifications 
that support 
complex 
record
exchange 
between 
organizations

Appendix 2

Purposes and methodologies of clinical decision support. Adapted from Greenes1

Purpose Potential methodologies

Answering questions Links to references
InfoButtons

Making decisions

  • Diagnosis Differential Diagnosis generators
Probability calculators
Alerts and reminders
Documentation templates

  • Test selection Evidence-based ordersets
Alerts and reminders
Documentation templates

  • Choice of treatment Evidence-based ordersets
Documentation templates

  • Prognosis Predictive modeling
Risk scoring systems

Optimizing workflow Care pathways and protocols
Evidence-based ordersets
Alerts and reminders
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Purpose Potential methodologies

Documentation templates

Monitoring actions Alerts and reminders
Rule-based event detection

Focusing attention and
enhancing visualization

Data visualization and
summarization techniques
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Figure 1. 
Key components of Precision Medicine
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Table 1

Data Sources for EHR relevant to drive Clinical Decision Support

Type of
Information

Standardization Opportunities Challenges

Laboratory LOINC, HGVS,
HL7 FHIR value
sets

Clinical laboratory tests
have a mature
standardization
capabilities via LOINC
LOINC and HL7
genomics groups have
started developing
standards for genetic
tests - that enable
standardized discrete
coding of some genetic
test information

• Not all clinical lab tests are encoded with LOINC (still in 
process in many institutions)

• Discussions on including genetic text in EHR in a structured 
way have only recently commenced

• Significant volumes of tests are performed at external 
laboratories with processes and results that lack 
standardization.

• Laboratory orders are frequently matched in the computer to 
component results.

• Genetic test results are not systematically incorporated into 
EMR in a searchable way. For example they are non-
discretely stored in the EMR as a scanned PDF document or 
image at the UCSD Medical Center

Medication RxNorm, NDC Clinical drug names
have been standardized
using these codes
Dictionaries provide
the opportunity to
include manufacturer,
dosing, and route
information

• Categorization is not clean as medications may have multiple 
indications both on and off label that skew groupings

• Combination drugs may not neatly fit into clinical groupings

• Deriving relevance related to effect over time, dosing 
intensity, or adherence are problematic

Diagnosis ICD 9, ICD 10,
SNOMED-CT

Most institutions adopt
ICD system to support
both active problem
lists and encounter
diagnoses
Diagnosis names are
interrelated; meaning
that terms encoded
with other one
terminology such as
SNOMED-CT, can be
converted to ICD
through cross-mapping
established between
the two systems

• Coding is frequently completed by a clinician with time 
constraints that may not search through the extensive terms 
for the true best fit (undercoding, miscoding)

• ICD9 and 10 contain level of detail that may deviate from 
clinical relevance

• ICD9 is historic and ICD10 current (codes expire and newly 
develop)

• Not all codes are billable (irrelevant)

• Some diagnoses are not encoded (missing)

• SNOMED concepts are frequently not parsed into terms that 
support clinically specific workflows

• IMO updates can impact term groupings and insert clinically 
mismatched concepts

Radiology RadLex,
SNOMED-CT
DICOM

Standards to capture
the key findings and
metadata about the
radiologic studies exist

• Radiology test related metadata may not be formatted in a 
structured way using a standard like DICOM

• Radiology reports are in an unstructured narrative text format. 
Processing the text to tease out the key findings and mapping 
them to the standardized codes requires additional efforts/
resources that involves Natural Language Processing (NLP)

Pathology SNOMED-CT
HL7 (anatomic
pathology)

Standards to capture
the key findings and
metadata about the
pathology test exist
NAACCR is interested in
adopting standard for
cancer pathology
reporting

• Pathology reports are in a unstructured narrative text format or 
PDF. Processing the text to tease out the key findings and 
mapping them to the standardized codes requires additional 
efforts/resources (NLP)

• Pathology frequently utilizes standardized nomenclature but 
does not record data in structured format

Clinical
Evidence &
Outcomes

OMOP CDM and
all terminology
systems listed
above

EHR data stored in a
clinical data warehouse
serves a powerful
knowledge resource

• There are types of data that are not sufficiently represented by 
the OMOP CDM such as patient reported outcomes
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Type of
Information

Standardization Opportunities Challenges

OMOP CDM is
recognized as a de
facto standard and
adopted by many
institutions

• OMOP has not been universally adopted across organizations

Procedures Terms to
represent clinical
procedures

Standardized terms
that define common
clinical procedures and
their associated
charges

• Process for approving new procedural codes is onerous as a 
result the library may incompletely represent activity detail

• Many procedural codes are fairly generic and do not 
incorporate the level of details that impact outcomes
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Table 2

Types of clinical decision support. Adapted from Greenes1.

CDS type Prerequisites Strengths Weaknesses Example(s)

Links to
references
InfoButtons

Ability to link
patient context with
specific information
sources

Facilitates access to
current best evidence

Only engaged
proactively by
provider or patient
(pull-mode)

KnowledgeLink31

Diagnosis (Dx)
generators

Accurate
identification of
clinical features of
patient’s condition

Facilitates Bayesian
reasoning
May improve
effectiveness and
efficiency of
diagnostic testing
strategy

Dx algorithms may
rely on unstructured
data (needs manual
entry or NLP)
Have been difficult to
integrate into clinical
workflow

DxPlain32,
Isabel33,
VisualDx34

Probability
calculators/Risk
scoring systems

Access to
components of
model in
computable format

Provides
individualized
predictions for
prognosis or risk of
events

Often difficult to
obtain confidence
intervals of
predictions for
individuals.

Yale New Haven
Readmission
Risk Score35

Alerts,
reminders and
rule-based
event detection

Development of
reliably computable
definition of event
or condition

Can bring important
or urgent scenarios to
attention of decision-
makers

Patients and providers
can become
desensitized to alerts
(alert fatigue).

Alerts for
medications in
kidney disease36

and temporary
catheter use.37

Evidence-based
ordersets, care
pathways and
protocols

Careful review and
understanding of
ideal process

Facilitates evidence-
based care
May reduce variation
of care

Labor-intensive to
create
May increase steps to
placing orders

Ordersets for
heart failure38

and venous
thromboembolis
m prophylaxis.39

Documentation
templates

General agreement
of ideal
documentation

Can improve
efficiency and
completeness of
documentation
Can prompt
consideration of
diagnoses, treatments
or care coordination

In some
circumstances, may
increase time of
documentation
May be difficult to
document nuances of
clinical scenario

Templates for
documentation
for breast
cancer tumor
board40 and
palliative care
encounters.41

Data
visualization and
summarization
techniques

Reliable methods to
categorize and
condense
underlying data
elements

Highlights key
information for
decision-making
Reduces cognitive
load
Improves ability to
make causal
inferences from
disparate data

Labor-intensive to
create

Lifelines42 and
problem-
oriented display
of health
records.43

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2018 May 01.


	Abstract
	Graphical Abstract
	PRECISION MEDICINE, ELECTRONIC HEALTH RECORDS, AND CLINICAL DECISION
SUPPORT
	Personalized treatment: example use cases

	BUILDING BLOCKS: STANDARDIZING AND EXCHANGING DATA TO DRIVE CLINICAL DECISION
SUPPORT
	Data Models and Terminology Standards
	Health Information exchange

	DELIVERING PERSONALIZED CARE WITH CDS SYSTEMS
	THE ROAD AHEAD
	References
	Appendix 1
	Table T3
	Appendix 2
	Table T4
	Figure 1
	Table 1
	Table 2

