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Asphalt endurance limit is a strain value if experienced by asphalt pavement layer, no 26 

accumulated damage will occur and is directly related to asphalt healing. Therefore, if the 27 

pavement experiences this value of strain, or lower, no fatigue damage would accumulate within 28 

that pavement section. Beam fatigue test data conducted under the NCHRP Project 9-44A were 29 

extracted and utilized to create an Artificial Neural Network predictive model (ANN) to 30 

determine the endurance limit strain values for conventional asphalt concrete pavements. The 31 

developed ANN model architecture as well as how to utilize it to predict the endurance limit 32 

were demonstrated and discussed in detail. Also, a stand-alone equation that is capable in the 33 

prediction of the endurance limit strain value, separate from the ANN model environment, was 34 

derived utilizing the eclectic extraction approach. The model training and validation data 35 

included 934 beam fatigue laboratory data points, as extracted from NCHRP Project 9-44A 36 

report. The developed model was able to determine the endurance limit strain value as a function 37 

of the stiffness ratio, number of cycles to failure, initial stiffness and rest period, and had a 38 

reasonable coefficient of determination (R
2
) value, which indicates the reliability of both the 39 

developed ANN model and the stand-alone equation. Furthermore, a correlation between the 40 

endurance limit strain values, as predicted utilizing the generated regression model under the 41 

NCHRP project 944-A, and the endurance limit strain values predicted utilizing the stand-alone 42 

ANN derived equation was found with a high coefficient of determination (R
2
) value.  43 

 44 

&� �����'	Endurance limit, healing, fatigue, artificial neural network, rest period. 45 

 46 

 47 

 48 

 49 

 50 

 51 
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("� ������������	52 

Fatigue cracking is one of the major challenges in the flexible pavement design. Fatigue cracking 53 

is defined as the longitudinal or interconnect cracks that propagates from the bottom to the top of 54 

the asphalt layers under repeated traffic loading cycles. Those cracks usually appear in the outer 55 

wheel path for thin Hot Mix Asphalt (HMA) layer and in the inner wheel path for the thick HMA 56 

layers (Abojaradeh 2003). The endurance limit is a strain value, below which no accumulated 57 

damage will occur to the pavement. Thus, a pavement with a design strain value at the bottom of 58 

the HMA layer that is equal to or lower than the endurance limit will never experience fatigue 59 

cracking, which classifies it as perpetual pavement (Newcomb 2001). Therefore, the endurance 60 

limit is directly related to asphalt healing. Asphalt healing is the ability of the HMA layer to 61 

regain its structural initial condition before the loading damage if given enough rest period time 62 

between two consecutive loading cycles (Peterson 1984).  63 

Current mechanistic design approach assumes that there is an amount of damage 64 

associated to each loading cycle the HMA layer is subjected to, and that accumulated damage is 65 

consuming a portion of the total fatigue life of the pavement section. However, recent studies 66 

demonstrated that a well-constructed pavement section will not examine a fatigue cracking even 67 

if it was subjected to large numbers of loading cycles (Willis and Timm 2009; Thompson and 68 

Carpenter 2006; Prowell et al. 2010). The above statement drives the need to have a reliable 69 

prediction model for the endurance limit values for pavement design process consideration.   70 

 Growing number of researchers are utilizing the Artificial Neural Network (ANN) as a 71 

data mining approach due to its high classification and prediction accuracy. ANN is utilized to 72 

solve variety of problems such as pattern classification and function approximation (Setiono et 73 
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al. 2002). Therefore, ANN modeling was utilized to create the endurance limit prediction model 74 

in this research paper.     75 

)"� *%+�����	76 

The study aims to provide a reliable ANN model that has the ability to predict the fatigue 77 

endurance limit. To achieve the goal, the previously conducted beam fatigue tests under project 78 

NCHRP 944-A were utilized to create the desired model, which classifies strain value as the 79 

dependent variable, while the rest period, initial stiffness, number of cycles to failure, and the 80 

stiffness ratio are defined as the independent variables. The model was statistically validated and 81 

evaluated. Also, a stand-alone correlation equation was extracted via the eclectic extraction 82 

approach to be utilized outside the model environment.  83 

,"� ����������	-����	84 

,"(	-���	
�����	���	.������	��	.��	85 

Rest period is defined as the time between two consecutive loading cycles. The amount of the 86 

damage associated with testing during a rest period is lower than the amount of damage related 87 

to the continuous testing  due to the healing that occurred during the rest period (Souliman 88 

2012).  89 

McElvane and Pell (1973) had conducted a research study utilizing the rotating bending 90 

fatigue testing technique. The testing was conducted utilizing multi-level loading and random 91 

duration of rest periods. The improvement occurred to the fatigue life was not quantified.  92 

However, it was concluded that the rest period will improve the fatigue life of the tested 93 

specimen.  94 

Castro et al (2006) conducted a research study to examine the effect of the rest period on 95 

the fatigue life, which concluded that the introduction of 1-second rest period between two .1-96 
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second loading times will increase the fatigue life of the tested specimen 10 times. This was 97 

completed in comparison to a test result of a specimen that was tested without a rest period.  98 

The material self-recovery to its initial status and properties if given enough time to rest 99 

is defined as healing. This phenomenon was examined in the literature for many years and 100 

various engineering materials (metallic and nonmetallic) were found to have this ability (Suresh 101 

1998; Souliman 2012). 102 

 The three-major mechanisms that prevent the growth of fatigue cracking and induce the 103 

crack healing for the non-metallic material such as cement concrete, asphalt concrete, and 104 

polymers can be summarized as follows: 1) Crack deflection, 2) Crack-bridging or trapping, and 105 

3) Crack-shielding due to micro cracking or phase transformations (Suresh 1998).  106 

Lytton (2000) has conducted a research study to evaluate the effect of the healing on the 107 

fatigue life and to explain the fracture and healing mechanisms. The fracture-healing 108 

mechanisms for the asphalt concrete were classified under two main categories, the surface 109 

energy storage and the surface energy release. It was concluded that the surface energy depends 110 

mainly on the chemical composition of the binder, while also concluding that the energy balance 111 

between the stored and released energy controls the fracture and healing mechanism of the 112 

asphalt aggregate mixture.  113 

,")	.��	���������	�����	114 

Wöhler (1860) first introduced the concept of endurance limit in the literature for the metallic 115 

materials by the generation of the classical S/N curves. His findings also presented the fact that 116 

there is a load level below which the number of cycles to failure will remain constant and will 117 

not  increase by decreasing the load. This load was defined as the Fatigue Endurance Limit 118 

(FEL) for metallic materials.   119 
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Although the endurance limit concept has been extensively addressed and examined for 120 

metallic and other materials, less work was done to study and understand this concept in 121 

viscoelastic material, such as asphalt (Souliman 2012).  122 

Monismith and McLean (1972) had observed that the relationship between the strain and 123 

the loading cycles had converged at approximately 70 micro strains when the loading cycles 124 

were around 5 million cycles. Thus, a 70-micro strain was proposed by them as the endurance 125 

limit value for the asphalt pavements. Also, Maupin and Freeman (1976) had arrived to the same 126 

results and found that the 70-micro strain is the endurance limit for the asphalt pavements.  127 

Carpenter (2006) demonstrated in his study that there is an endurance limit for the asphalt 128 

pavements and concluded that the endurance limit is dependent on the binder type and its values 129 

are limited between 70 to 100-micro strains in some cases. The drawn conclusion by this study 130 

matched the previous studies’ conclusions in terms of endurance limits values.  131 

,",	.��	���������	�����	���	.������	��������	/�������	0����	��.-
	
��+���	122�	132 

Souliman (2012) has developed a mathematical procedure to determine the value of the 133 

endurance limit based on the asphalt healing under the NCHRP project 944A. The asphalt 134 

healing index was defined as the difference in the stiffness ratio between the tests done with rest 135 

period and without rest period at the number of cycles to failure for test without rest period as 136 

shown in Figure 1.   137 

A general stiffness ratio model was generated and utilized to determine the healing index 138 

values at different test combinations. The relationship between the healing index and the stiffness 139 

ratio at different temperatures is shown in Figure 2. From the endurance limit definition, it is 140 

clear that this limit occurs when no damage accumulation occurs in the pavement. Thus, it was 141 

defined as the strain value at the value of 0.5 HI. The value of 0.5 HI is equivalent to 0.5 stiffness 142 
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ratio for tests without rest period, and 1 stiffness ratio for tests with rest period. Three different 143 

generations of SR prediction models were developed under this project. The third-generation 144 

model was utilized to predict the endurance limit by substituting a stiffness ratio value of 1 (no 145 

damage) and a number of cycles to failure of 20,000. 146 

It was concluded by this project that the endurance limit is a function of the mixture 147 

initial stiffness (referring to the binder type, binder content, air voids, and mix temperature), rest 148 

periods between different loading cycles, stiffness ratio, and the number of loading cycles to 149 

failure. Furthermore, and due to the endurance limit being a function of all the previous 150 

variables, it was stated that there is no single value that represents the endurance limit. The 151 

developed models estimated the endurance limit values in a range of 22 to 223-micro strains. 152 

2"� 3��	/�����	��	���	�4����������	#��� 	/���	0����	
��+���	��.-
	1225�		153 

 154 

A factorial experiment was designed to study the effect of six factors on the endurance limit of 155 

the asphalt concrete: 1) Binder type, 2) Binder content, 3) Air voids, 4) Nf for a stress-controlled 156 

tests 5) Temperature, and 6) Rest periods.   157 

The experiment conditions were as follows: 158 

•� Binder types: PG 58-28, PG 64-22, and PG 76-16. 159 

•� Binder content: optimum +5% and optimum - 5%. 160 

•� Air voids: 4.5% and 9.5%. 161 

•� Nf for a strain-controlled test: 2 levels L and H. 162 

•� Temperature: 40, 70, and 100 
o
F. 163 

•� Rest period: 0 and 5 sec.  164 
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The full factorial design, if used, would results in a total of 432 tests (3 binder types x 2 165 

binder content x 2 air voids x 2 NF x 3 temperature x 2 rest periods x 3 replicates). Due to the 166 

huge number of tests required, the factorial design was reduced from 432 tests to 288 tests, 167 

utilizing a well-known design optimizing criteria named D-optimality.  168 

Furthermore, at a later stage of the project, due to the need to check the relationship 169 

between the endurance limit, rest period, and strain level, an additional study was performed. 170 

This study introduced two new rest periods (5 and 10 sec.), and one new strain level (M level) to 171 

the previously used experiment conditions with a total number of 180 new tests. 172 

Due to the extensive duration of the test, it was decided to run all tests with rest periods 173 

up to 20,000 cycles only. Extrapolation were utilized to find the values of SR for the tests with 174 

rest period at the number of cycles bigger than 20,000. The primary measurable variable for each 175 

test was the stiffness ratio (SR) at the end of the loading cycles. 176 

6"� �����	7���������	0����!���	����������	������	�������	177 

6"(	����������			178 

Neural networks are highly interconnected networks that have a very strong computational and 179 

pattern recognition capabilities. The strength of those networks is in the simulation of the brain 180 

working mechanism (Kustrin et al 2000). Figure 3 demonstrates the similarity between nerve 181 

neuron cell and an artificial neuron in a network. 182 

Ceylan (2014) indicated that “neural networks are information processing computational 183 

tools in which highly interconnected neurals work in harmony to solve complex problems in a 184 

nontraditional manner. This power of NNs, emulating the biological nerves system, lies in the 185 

tremendous numbers of interconnections”. The study concluded that there is a growing usage of 186 

the ANN in the engineering filed for traditional numerical and statistical methods such as 187 
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regression analysis. The grown usage is due to its ability to provide engineers with a 188 

sophisticated real-time analysis and results without the need for complex analysis procedures for 189 

the input values nor to a large computational power similar to other analysis methods such as 190 

finite element solution techniques. 191 

6")	0����!��	�����	������������			192 

A three-layer feed-forward backpropagation neural network with a sigmoid activation function 193 

and one hidden layer are the most common types of neural networks. Also, one hidden layer is 194 

typically sufficient for solving most of the non-linear problems without network overfitting 195 

(Chan and Chan 2016). For the purpose of this study, a three-layer feed-forward neural network, 196 

with a backpropagation-error calculation algorithm and two neurons in the hidden layer, was 197 

utilized.  198 

Figure 4 demonstrates the utilized network architecture for the study, and its main 199 

components may be summarized as follows: 200 
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1)� Input layer (i) with four input neurons, one neuron for each independent variable. 201 

2)� Weight factors (Wih) between the input layer (i) and the hidden layer (h). The weight 202 

matrix contained eight different values, one value from each input to each neuron. 203 

3)� Hidden layer (h) with two hidden neurons having a tan-sigmoid activation function and 204 

two biases values (bh1 and bh2). 205 

4)� Weight factors (W’ho) between the hidden layer and the output layer. The weight matrix 206 

contained two values, one value from each hidden neuron to the output neuron.  207 

5)� Output layer (o) with one output neuron for the dependent variable having a linear 208 

transfer function and single bias value (Bo). 209 

6",	�����	3�������	���������� 	���	���������	210 

Beam fatigue test data set as extracted from NCHRP project 944-A described above contained 211 

five different variables: 1) The stiffness ratio at cycle number, 2) Initial stiffness, 3) Rest period, 212 

4) Cycles number, and 5) The applied strain. The model was developed and trained to predict the 213 

applied strain as a function of the stiffness ratio at cycle number, initial stiffness, rest period, and 214 

cycles number as shown in Equation 1.  215 

Applied Strain = f(Initial Stiffness, Rest Period, Stiffness Ratio, Cycles Number)       (1) 216 

The developed model was trained utilizing the extracted 934 data points in MATLAB 217 

(MATLAB R2015a, The Math Works Inc.) by feeding the logarithm of initial stiffness, tan 218 

hyperbolic of the rest period, stiffness ratio, and the logarithm of number of cycles to failure in 219 

the input layer. In addition, the logarithm value of the applied strain was assigned to the output 220 

layer. The training was conducted utilizing Levenberg-Marquardt backpropagation algorithm in 221 

MATLAB (MATLAB R2015a, The Math Works Inc.). This training algorithm divides the 222 

training data into three categories. The first 70% of the data was utilized for training the model, 223 

while the remaining 30% of the data was divided into model testing and validation data sets. As 224 

shown in Figure 5, as an effort to avoid overfitting and maintain network generalization, the 225 
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training was stopped when the validation data set error had stopped decreasing (Elbagalati et al. 226 

2017).  227 

The model performance was evaluated by MATLAB as shown in Figure 6 internally and 228 

externally by utilizing Analysis of Variance (ANOVA) in Excel as shown in Table 1. Figure 6 229 

demonstrates the ability of the model in the prediction of the strain for all data sets with a 230 

coefficient of determination (R
2
) value of 0.93, indicating a high model reliability. in addition, as 231 

shown within Table 1, the model has a significance F-value of 0 and reasonable value of 32.54 as 232 

a standard error; therefore, this model is statistically valid.  233 

6"2	-���	�4��������	����	���	7��������	���	�����	5	���	�8������		234 

Despite the fact that ANN is a reliable tool for analysis and data classification, many of the 235 

researchers considered it as a black box due to their inability to have a clear understanding for 236 

what is happening inside the model.  237 

Recently, researchers had attempted to open this black box and generate rules from the 238 

results of the trained ANN models (Augasta and Kathirvalavakumar 2012; Chan and Chan 239 

2016). There are three main approaches for ANN rule extraction as follows: 1) decompositional, 240 

2) Pedagogical, and 3) Eclectic. Decompositional is referring to when the network weights, bias, 241 

and activation function values are utilized to extract the rule. Pedagogical is when the 242 

relationship between the input and output of the trained ANN network is studied to generate a 243 

rule that has the ability to replicate the results of the trained ANN network without the need of 244 

the exploration of the ANN network structure. Finally, eclectic, which is considered as a hybrid 245 

approach of the two previous approaches, is when the relationship between the input and output 246 

as well as the weights and bias values for the trained ANN network are utilized for rule 247 
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extraction (Augasta and Kathirvalavakumar 2012; Chan and Chan 2016). For the purpose of rule 248 

extraction in this paper, the eclectic approach was utilized. 249 

From the utilized ANN structure, as shown in Figure 4, it can be concluded that the 250 

weights from the input layer to the hidden layer, the bias values in the hidden layer, the weights 251 

from the hidden layer to the output layer, and the bias values in the output layer are needed to 252 

extract the rule form the trained ANN network. The values of the weights and biases are 253 

emphasized below as extracted from MATLAB (MATLAB R2015a, The Math Works Inc.). 254 

9��=  �−1.1609
   0.1329  0.3925

0.0318  0.0476
0.0318  −0.3193

−0.2113�               9:��=  �−0.9741
−0.5039� 255 

%��=  �1.9361
0.0575  �                                                               ��=  �2.5883� 256 

The extracted weights, the network structure, and the relationship between the input and 257 

the output of the ANN network were utilized, along with statistical analysis techniques to extract 258 

the rule and generate a stand-alone equation from the trained ANN model. The extracted 259 

equation was as shown in Equation 2.  260 

Ɛ = 10���.����������ₒ)"�.#��� $%&'�())��.��*+,����-.)��.##��*�/()"+.,�+��)                     (2) 261 

where, 262 

ε = applied strain (microstrain) 263 

Eo = initial stiffness (ksi) 264 

RP = rest period (seconds) 265 

Nf = number of cycles to failure  266 

SR = stiffness ratio 267 

The generated stand-alone equation was tested utilizing all of the modeling data (934 data 268 

sets) and it was found to have an acceptable coefficient of determination (R
2
) value of 0.74 as 269 
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shown in Figure 7. In addition, the statistical analysis results for the developed equation as 270 

shown in Table 2 clearly demonstrates that it is statistically valid since that the model has a 271 

significance F-value much lower than 0.05. 272 

6"6	#���������	���	���������	�����	#����5�����	�8������		273 

The extracted equation as well as the generated ANN model may be utilized to calculate the 274 

endurance limit value for the HMA by the interpretation of endurance limit definition into 275 

numbers. As discussed under the literature review part, the endurance limit is the strain level at 276 

which no damage accumulation will occur in the HMA layer. Simply, this strain level maybe 277 

calculated by substituting a stiffness ratio value of 1 and number of cycles to failure of 20,000 in 278 

the equation or the developed ANN model. In other words, the calculated strain value when the 279 

final stiffness is equal to the initial stiffness is the endurance limit.  280 

Equation 3 was generated by substituting a stiffness ratio value of 1 and the numbers of cycles to 281 

failure value of 20,000 in Equation 2 to calculate the endurance limit directly for different initial 282 

stiffness and rest period values.  283 

 284 

EL = 10���.����������ₒ)"�.#��� $%&'�())"�.**,�����)                                 (3) 285 

where, 286 

EL = endurance limit strain (microstrain) 287 

Eo= initial flexural stiffness (ksi) 288 

RP = rest period (seconds), ≠ zero 289 

The ability of this equation to replicate the value of endurance limit as predicted by the 290 

generated ANN model was graphically evaluated as shown in Figure 8 and found to have a high 291 

coefficient of determination (R
2
) value of 0.98. Having this high coefficient of determination 292 
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(R
2
) value clearly demonstrates that the equation has a great ability to replicate the endurance 293 

limit values as calculated by the ANN model and may be utilized for endurance limit 294 

calculations.  295 

6";	���������	�����	<�����	����������		296 

The EL values as calculated utilizing the stand-alone equation were compared to the EL values 297 

as calculated utilizing the NCHRP 944-A generated equation: 298 

 SR = 2.0844 − 0.1386 × log�Eo) − 0.4846 × log�ε) − 0.2012 × log�N) +  1.4103 ×299 

tanh�0.8471 × RP) + 0.0320 × log�Eo) × log�ε) − 0.0954 × log�Eo)  × tanh�0.7154 ×300 

RP) − 0.4746 × log�ε) × tanh�0.6574 × RP) + 0.0041 × log�N) × log�Eo) + 0.0557 ×301 

log�N) × log�ε) + 0.0689 × log�N) × tanh�0.259 × RP)                                         (4) 302 

where, 303 

ε = strain (microstrain) 304 

Eo= initial flexural stiffness (ksi) 305 

RP = rest period (seconds) 306 

N = number of cycles 307 

The EL values were calculated as the strain values when the stiffness ratio is 1 and the 308 

number of cycles to failure is 20,000 cycles utilizing equation 4. However, strain values related 309 

to zero rest period tests were excluded from the comparison since that when the rest period is 310 

zero there will be no healing for the asphalt; therefore, there will be no EL strain values.  311 

Good correlation between both EL values was found with a coefficient of determination 312 

(R
2
) value of 0.8 as shown in Figure 9. However, there are considerable differences between both 313 

values, which is demonstrated by Figure 9 and Table 3, which shows the standard error value. 314 

 In this comparison, there are some important points to consider, such as what was done is 315 

comparing predicted to predicted values. All the compared values were predicted values, not 316 
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measured. Second, in the NCHRP 944-A project, no beam was tested on its endurance limit; 317 

therefore, there is no measured value of the EL strain. Third, when predicting the EL value 318 

utilizing the strain model developed under the NCHRP 944-A project, the relationship line 319 

between the stiffness ratio and the strain was extended linearly until reaching a SR of 1. In other 320 

words, a linear relationship (on the log scale) between the strain and the SR was assumed 321 

without having any data point in this area as shown in Figure 10. In fact, the newly developed 322 

Artificial Neural Network Model (ANN) maybe stronger in prediction when it comes to this 323 

point since that it drives the relationship between the data based on the nature and correlation 324 

existed within it, in a way to simulate the brain working mechanism. 325 

The newly developed ANN model had a higher value of the coefficient of determination 326 

(R
2
) when compared to the model developed under the NCHRP project 944-A, and that gives an 327 

indication about the ability of the model in the strain prediction, thus; it may be used for EL 328 

strain prediction. 329 

 330 

 331 

;"� #����� 	���	�����������	332 

The asphalt healing is directly related to the endurance limit; therefore, the endurance limit is not 333 

a single value. The importance of the endurance limit is in the design of the perpetual pavements, 334 

since that, if a pavement layer is experiencing a tensile strain equivalent to the endurance limit 335 

stain or lower, no damage will accumulate in the pavement layer and it will never fail under 336 

repeated loading cycles due to fatigue cracking.  337 

This paper amid to utilize ANN modeling to create a prediction model for the endurance 338 

limit and extract the rule (stand-alone equation) from it. The developed model was generated 339 

utilizing 934 beam fatigue test data points as extracted from NCHRP project 944-A and had a 340 
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good prediction accuracy with a coefficient of determination value (R
2
) value of 0.93. Eclectic 341 

extraction approach was utilized along with statistical analysis techniques to extract the rule from 342 

the generated ANN model and create a stand-alone equation that maybe utilized outside the 343 

MATLAB model environment. The extracted stand-alone equation had a reasonable prediction 344 

accuracy with a coefficient of determination value (R
2
) value of 0.74. In addition, the ANN 345 

model utilized architecture as well as the training techniques, utilized activation, and transfer 346 

functions were discussed in detail to provide a clear procedure that maybe utilized to model any 347 

other specific beam fatigue test data and create an ANN prediction model.  348 

The developed simplified endurance limit equation (Equation 3) was able to replicate the 349 

ANN model calculated endurance limit values with a high coefficient of determination value 350 

(R
2
) value of 0.97. Having the coefficient of determination value (R

2
) value indicates the 351 

reliability of the endurance limit derived equation and envision its high ability to simulate the 352 

endurance limit calculation utilizing the ANN model in MATLAB environment. 353 

The EL values as calculated utilizing the stand-alone equation were compared to the EL 354 

values as calculated utilizing the NCHRP 944-A generated equation. Both EL values founded to 355 

be well correlated with a coefficient of determination value (R
2
) of 0.8. However, there are 356 

considerable differences between both EL predicted values. The differences in the predicted 357 

values of the EL strain maybe due the nonlinearity of the relationships created within the ANN 358 

model to simulate the brain working mechanism. The strength of those relationships is that they 359 

were created for the given input output data (custom made based on the nature of the data); 360 

therefore, the ANN model is stronger in the prediction when compared to the regular regression 361 

models presented under the NCHRP 944-A project.  362 
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Further testing is required to create a new ANN predicting model and equations for non-363 

conventional asphalt mixtures. In addition, further field verification utilizing an actual pavement 364 

section for the developed model as well as the equation is highly recommended. 365 

="� -���������		366 
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SUMMARY OUTPUT           

  
    

  

Regression Statistics   
   

  

Multiple R 0.932172173 
   

  

R Square 0.868944959 
   

  

Adjusted R Square 0.868804342 
   

  

Standard Error 32.53500727 
   

  

Observations 934 
   

  

  
    

  

ANOVA 
    

  

  df SS MS F 
Significance 

F 

Regression 1 6541183 6541183 6179.516 0 

Residual 932 986546.9 1058.527 
 

  

Total 933 7527729       
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SUMMARY OUTPUT           

            

Regression Statistics         

Multiple R 0.85794261         

R Square 0.736065522         

Adjusted R Square 0.735782331         

Standard Error 0.076153751         

Observations 934         

            

ANOVA           

  df SS MS F 
Significance 

F 

Regression 1 15.07366 15.07366 2599.179 7.9558E-272 

Residual 932 5.405035 0.005799     

Total 933 20.4787       
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SUMMARY OUTPUT           

            

Regression Statistics         

Multiple R 0.895184         

R Square 0.801355         

Adjusted R Square 0.80107         

Standard Error 34.74031         

Observations 700         

            

ANOVA           

  df SS MS F 
Significance 

F 

Regression 1 3398362.431 3398362 2815.803 3.6058E-247 

Residual 698 842408.578 1206.889 
  

Total 699 4240771.009       
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