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Abstract

The vulnerability of automatic speaker verification (ASV) sys-

tems to spoofing is widely acknowledged. Recent years have

seen an intensification in research efforts to develop spoofing

countermeasures, also known as presentation attack detection

(PAD) systems. Much of this work has involved the exploration

of features that discriminate reliably between bona fide and

spoofed speech. While there are grounds to use different front-

ends for ASV and PAD systems (they are different tasks) the

use of a single front-end has obvious benefits, not least conve-

nience and computational efficiency, especially when ASV and

PAD are combined. This paper investigates the performance of

a variety of different features used previously for both ASV and

PAD and assesses their performance when combined for both

tasks. The paper also presents a Gaussian back-end fusion ap-

proach to system combination. In contrast to cascaded architec-

tures, it relies upon the modelling of the two-dimensional score

distribution stemming from the combination of ASV and PAD

in parallel. This approach to combination is shown to gener-

alise particularly well across independent ASVspoof 2017 v2.0

development and evaluation datasets.

Index Terms: automatic speaker verification, spoofing, coun-

termeasures, presentation attack detection

1. Introduction

Presentation attack detection (PAD) systems capable of detect-

ing and deflecting so-called spoofing attacks, or presentation

attack (PA) in ISO/IEC 301071 nomenclature, leveled at au-

tomatic speaker verification (ASV) systems have been under

development for a number of years. While ASV systems aim

to verify the identity claimed by a speaker, PAD systems aim

to verify the authenticity of the speech signal itself, namely

whether it is bona fide speech or whether, instead, it is artifi-

cially created or somehow manipulated, i.e. spoofed.

While early PAD systems used features similar to those

used for ASV, being distinctly different tasks, most efforts to de-

velop effective PAD systems have focused on the design of new

features tailored to discriminate between bona fide and spoofed

speech. While the use of features designed specifically for PAD

have been shown to give better performance than systems that

1https://www.iso.org/standard/67381.html

use features designed for ASV, the use of different front-ends

augments computational complexity.

It can hence be convenient to use a single front-end. The

use of such a single front-end avoids redundant processing and

can also simplify the combination of ASV and PAD decisions.

The search for features which perform well for a combined ASV

and PAD task is the subject of this paper.

A second contribution relates to the manner in which ASV

and PAD systems scores can be combined. It extends previ-

ous work [1] which proposed cascade and parallel approaches

to system combination and is similar in nature to the combina-

tion architecture reported in [2]. New to this paper is a two-

dimensional score modelling technique which avoids the joint

optimisation of separate ASV and PAD decision thresholds.

The explicit modelling of target and impostor trial scores en-

compassing genuine, bona fide trials in addition to both zero-

effort and spoofed impostor trials provides for greater flexibil-

ity in decision boundaries and hence more reliable decisions.

The merits of these two contributions are assessed through ex-

periments with the ASVspoof 2017 database of bona fide and

spoofed speech signals and protocols for the assessment of com-

bined ASV and PAD systems.

The remainder of the paper is organised as follows. Sec-

tion 2 describes the different front-ends used in this work. The

approach to system combination is presented in Section 3. Ex-

periments are reported in Section 4 whereas results are reported

in Section 5. Conclusions are presented in Section 6.

2. Front-end processing

This paper aims to determine a common front-end for both

ASV and PAD tasks. While ASV calls for features that capture

speaker-discriminant information, PAD systems rely on features

that capture the tell-tale signs of spoofing. The study includes

four different front-ends, each of which is described here.

Mel-frequency cepstral coefficients (MFCCs): MFCCs are

used widely in speech and speaker recognition and have been

explored extensively as features for spoofing detection [3].

MFCCs are usually derived from short-time Fourier transform

(STFT) decompositions, the application of perceptually moti-

vated Mel-frequency scaled filterbank [4] and standard cepstral

analysis.

https://www.iso.org/standard/67381.html


Table 1: Classification of trials in PAD and ASV tasks. By “–”

we assume that ASV has zero or no capability to reject spoof-

ing imposter trials, similarly for PAD that cannot differentiate

zero-effort imposter and target trials. Alternatively “–” means

arbitrary: since the last row corresponds to the logical AND op-

erator to combine the two systems, choosing either +1 or -1 in

the place of “–” gives rise to the same trial classifications for

the integrated system.

class C1 C2 C3

system/trial target
zero-effort

nontarget

spoof

nontarget

PAD +1 – -1

ASV +1 -1 –

ASV + PAD +1 -1 -1

Linear frequency cepstral coefficients (LFCCs): LFCCs are

similar to MFCC except for the use of a linear-scaled in place

of a Mel-scaled filterbank, thereby giving a constant spectral

resolution. LFCCs have also been applied to both speech and

speaker recognition, in addition to spoofing detection [3].

Infinite impulse response constant Q Mel cepstral coeffi-

cients (ICMCs): ICMCs have been applied successfully to

ASV [5], utterance verification (UV) [5] and speaker diariza-

tion [6]. Features are based upon the perceptually-motivated

infinite impulse response constant Q transform (IIR-CQT) ap-

proach to spectro-temporal decomposition [7]. In contrast to

the STFT, the spectral resolution has a constant Q factor which

reflects filter selectivity, defined as the ratio between the cen-

tre frequency and bandwidth. Efficient feature extraction is

obtained from the IIR filtering of the fast Fourier transform

(FFT) giving a variable-resolution decomposition with greater

frequency resolution at low frequencies and greater time res-

olution at higher frequencies. ICMCs are then obtained from

Mel-scaling and standard cepstral analysis.

Constant Q cepstral coefficients (CQCCs): CQCC features

were designed specifically for spoofing detection [8, 9] and ap-

plied subsequently to ASV [10]. CQCCs rely on the same CQT

approach used in ICMCs but are extracted according to the more

computationally demanding approach described in [11,12]. Re-

sampling [9] is applied to warp the geometric scale of the CQT

to the linear scale of the discrete Cosine transform (DCT).

3. Integration of PAD with ASV

The integration of ASV and PAD can be achieved at the

model/feature level [13] or at the score level [1]. This paper fo-

cuses on the latter. Dedicated classifiers are developed for ASV

and PAD, and scores produced by each system are combined

(i.e., late fusion). Even at this score level, there are different ap-

proaches to combination including both cascaded and parallel

combinations [1]. We describe below the cascade approach and

then the proposed Gaussian back-end fusion approach.

3.1. Task and trial definitions

Whereas ASV and PAD systems are both binary classifiers, they

tackle different tasks. Table 1 defines the three different types

of trial that ASV and PAD systems may encounter: (1) target,

(2) zero-effort nontarget and (3) spoof nontarget trials. Also

illustrated in Table 1 are the ground-truth labels for each task

sASV

sPAD

θ1

θ2

impostor genuine

P
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Figure 1: A two-dimensional view of the score space formed by

PAD and ASV scores.

and trial combination. PAD systems aim to distinguish bona

fide speech from spoofed speech, while ASV systems aim to

verify a claimed identity.

This same idea is illustrated in the two-dimensional score

space of Fig. 1. For a threshold θ2 applied to PAD scores

sPAD, all trials for which the score is greater than the threshold,

sPAD > θ2, are classified as bona fide speech. Those for which

the score is below the threshold are classified as presentation at-

tack speech. Similarly, for a threshold θ1 applied to ASV scores

sASV, all trials for which the score is greater than the threshold,

sASV > θ1, are classified as genuine speaker trials. Those for

which the score is below the threshold are classified as impos-

tor trials. The green-colored region to the upper-right-hand cor-

ner of Fig. 1, where {sPAD > θ2} ∩ {sASV > θ1}, corresponds

to target trials (class C1). Class C2 (zero-effort nontarget) is

represented by the blue-colored region, which is the resultant

of the impostor and bona fide axes. Similarly, class C3 (spoof

nontarget) is represented by the red-colored region, which is the

resultant of the target and spoofed axes. As shown in Table 1,

only target trials should be positively verified. Both forms of

nontarget trial should be rejected.

3.2. Cascaded/tandem combination

ASV and PAD systems can be cascaded in either order – PAD

followed by ASV, or ASV followed by PAD. ASV and PAD

systems can be optimised independently or jointly, e.g. con-

sidering an architecture whereby PAD precedes ASV, then the

PAD threshold θ2 can be optimised, for instance, to minimise

the equal error rate (EER) of the ASV system. In order to esti-

mate the performance of the integrated system, trials classified

as spoofs are assigned arbitrarily −∞ scores and are thereby

rejected automatically by the ASV system that follows.

The cascaded approach relies on two thresholds, θ2 and θ1,

applied to PAD and ASV scores, respectively. The cascading of

ASV and PAD in such a way is equivalent to the partitioning of

the score space into rigid decision regions with the vertical and

horizontal decision boundaries being those illustrated in Fig. 1.

3.3. Gaussian back-end fusion

In contrast to the cascaded approach to combination involving

the optimisation of two different thresholds for PAD and ASV,

the parallel approach to combination requires the optimisation

of only a single threshold. Recall the N = 3 classes of trial



illustrated in Table 1, namely target (C1), zero-effort nontarget

(C2) and spoof nontarget (C3). Let s = [sPAD, sASV]
T ∈ R

2 be

a two-dimensional score vector of PAD and ASV scores corre-

sponding to a single ASV trial.

We treat s as a 2D feature vector and model the class-

conditional probability density of s using a Gaussian

p(s|Cl) = N (s|µl,Σl),

where µl ∈ R
2 and Σl ∈ R

2×2 are the mean vector and the co-

variance matrix corresponding to class Cl where l ∈ {1, 2, 3}.

For each trial t, a fused score is computed as the log-likelihood

ratio according to:

s̃t = log
p(st|H0)

p(st|H1)

= log
p(st|C1)

α× p(st|C2) + (1− α)× p(st|C3)
,

(1)

where the null hypothesis H0 represents the likelihood that st

is a target speaker trial (from class C1) while the alternative hy-

pothesis H1 signifies that st belongs to either C2 or C3. There-

fore, (1) converts the 2D detection score vector st into a log-

likelihood ratio, a scalar where higher relative values are asso-

ciated with a stronger support for the null hypothesis. Classi-

fication decisions corresponding to the last line of Table 1 may

then be made upon the application of a single threshold θ to s̃t.

Note that the alternative hypothesis likelihood in the de-

nominator of (1) represents, in fact, a 2-component GMM with

mixing weight α. The hyper-parameter α ∈ [0, 1], determines

the weight of C2 and C3 in the denominator of Eq. 1 (the al-

ternative hypothesis). Parameters µl, Σl and threshold θ can be

learned from development data.

3.4. Modeling capacity of the two integration approaches

The cascaded approach has two parameters that require opti-

mization — the thresholds θ1 and θ2. The Gaussian back-end

approach, in turn, has 3× 2 = 6 parameters to specify the three

mean vectors, 3 × 3 = 9 parameters to specify the three co-

variance matrices (they are symmetric so 3 parameters are suf-

ficient), one combination parameter α, plus the final decision

threshold, i.e. a total of 6 + 9 + 1 = 16 parameters.

While the number of parameters in the Gaussian back-end

fusion approach is greater than that for the cascaded approach,

generative score modelling offer better potential for generaliza-

tion. In specific, the decision regions in the cascaded approach

have a limited modeling capacity: as illustrated in Fig. 1, the de-

cision region for the target class is an infinite rectangular region,

with the lower left corner at (θ1, θ2). Since the joint distribu-

tion of the PAD and ASV scores is certainly not defined by such

regions, the cascaded approach has limited modeling power. In

the Gaussian back-end fusion, in turn, we use three Gaussians

with arbitrary (non-shared) covariance matrices, which yields

generally a more complex nonlinear decision boundary [14] and

makes the model better adaptable to arbitrary scores.

Similar 2D back-end fusions have been used earlier in the

context of general biometrics and joint operation of PAD and

biometric modalities, e.g. [2] and [15]. The authors of [2, 15]

used a linear classifier whose parameters (i.e. slope and inter-

cept) were trained using a logistic loss.

4. Experimental setup

This section describes the database used in this work with im-

plementation details for the individual PAD and ASV systems.

4.1. ASVspoof 2017 v2.0 database and protocols

Experiments relate to the ASVspoof 2017 v2.0 database [16]

of bona-fide and replayed, spoofed short utterances of about

1 to 5 seconds each. PAD systems are trained using the of-

ficial training partition containing 1507 bona fide and 1507 re-

played speech segments. Joint PAD and ASV experiments were

performed using a specifically designed protocol encompassing

target segments and both zero-effort and spoofed speech seg-

ments2. The number of speakers and trials in the development

and evaluation sets are illustrated in Table 3.

4.2. Front-ends

Experiments were conducted using the four front-ends de-

scribed in Section 2 using pre- and post-processing comprising

the addition of log-energy parameters, cepstral mean and vari-

ance normalization (CMVN) [17], relative spectral (RASTA)

filtering [18] and articulation rate (ARTE) filtering [10]. Dy-

namic coefficients up to double deltas are also considered.

The configuration of MFCCs and LFCCs is standard: 19

(S)tatic coefficients (excluding the 0-th), RASTA filtering with

appended (D)elta and (A)cceleration coefficients. The ICMC

configuration is that reported in [19] and is the same as for

MFCCs. Based on configurations used previously for text-

dependent ASV [10] and PAD [16], CQCCs includes 29 S

coefficients with appended D coefficients, ARTE filtering and

log-energy coefficients. None of the experiments reported here

use speech activity detection (SAD). Any single experiment re-

ported in this paper involve PAD and ASV systems that use the

exact same front-end configurations.

4.3. PAD and ASV systems

Both the PAD and the ASV classifiers are conventional Gaus-

sian mixture models (GMMs). The PAD classifier uses mod-

els of 512 components. Models are learned for bona fide and

spoofed speech with an expectation-maximisation (EM) algo-

rithm with random initialisation. Classifier scores for a given

test utterance are computed as the log-likelihood ratio between

the GMMs for bona fide and spoofed speech. The ASV clas-

sifier also uses models of 512 components and learns speaker

specific models from the maximum a posteriori (MAP) adap-

tation of a universal background model (UBM) trained on the

RSR2015 database [20]. Scores are the log-likelihood ratio

given the target model and the UBM.

4.4. Integration of PAD and ASV

Concerning the Gaussian back-end fusion described in Sec-

tion 3.3, we use maximum likelihood to obtain the means and

covariances of all the three classes (C1, C2 and C3). The value

of α is set empirically to 0.96 using a grid search on the devel-

opment set.

5. Experimental results and discussion

Results are presented in Table 2 for development (D) and eval-

uation (E) partitions of the joint PAD-ASV protocol (see Ta-

ble 3). Results are presented for each front-end and for the cas-

caded combination and the proposed Gaussian backend fusion

(bottom part of Table 2). The performance of two alternative

methods, namely linear regression (LR) and polynomial linear

2Note to the Interspeech reviewers: this custom protocol will be
made public later on, to ensure reproducibility.



Table 2: Speaker verification performance in terms of EER using linear regression fusion, polynomial logistic regression fusion, cas-

cade/tandem combination and proposed Gaussian back-end fusion of PAD and ASV scores for the ASVspoof 2017 v2.0 database. D:

development set, E: evaluation set. The best average results for development set are shown in boldface.

impostor type zero-effort spoof average zero-effort spoof average

feat. config /

tested on
D E D E D E D E D E D E

Logistic regression fusion [2] Polynomial logistic regression fusion [2]

MFCC 3.78 2.42 42.72 31.02 23.25 16.72 3.86 2.50 43.81 35.14 23.84 18.82

LFCC 5.72 2.11 46.41 35.71 26.06 18.91 5.47 2.20 37.64 26.99 21.55 14.60

ICMC 2.67 2.16 43.60 33.59 23.14 17.88 2.60 2.08 37.58 29.31 20.09 15.69

CQCC 6.02 3.52 38.76 33.17 22.39 18.34 6.02 7.93 42.67 47.96 24.34 27.94

Cascaded/tandem combination Gaussian back-end fusion

MFCC 5.19 5.36 23.07 24.65 14.13 15.00 3.99 3.26 21.02 24.35 12.51 13.81

LFCC 7.28 4.96 22.41 21.28 14.84 13.12 5.71 2.90 21.26 17.98 13.48 10.43

ICMC 4.30 4.92 27.08 27.82 15.69 16.37 3.06 3.71 20.90 22.51 11.98 13.11

CQCC 7.31 8.30 15.71 25.26 11.51 16.78 6.04 4.71 17.34 18.11 11.69 11.41

Table 3: Statistics of the ASVspoof 2017 joint PAD+ASV proto-

col.

#spk target zero-effort spoof

Dev. 8 742 5186 940

Eval. 24 1106 18624 10878

regression (PLR) fusion approaches [2], is also reported (top

part of Table 2). These contrastive methods also aim to split the

2D score space into two classes. Results are also presented sep-

arately for target trials combined with zero-effort and spoofed

impostor trials, and the average.

LFCC, ICMC and CQCC features perform marginally bet-

ter than MFCC features. LFCC features generalise better across

development and evaluation subsets, giving the best average

(zero-effort and spoofing impostor) results of 13% and 10%

EER for each approach to combination. This observation shows

that other features that give better performance in terms of

spoofing detection do not necessarily give the best performance

when ASV and PAD are combined. This is probably due to use

of single features which avoids redundant processing and sim-

plifies the combination of ASV-PAD decisions.

These same results also show that the Gaussian back-end

fusion approach proposed in this paper outperforms the cas-

cade/tandem combination and the LR and PLR approaches. The

improvement in performance is attributed to use of a single,

flexible and jointly-optimised, instead of independently opti-

mised, rigid thresholds. The former gives better capacity to

reject spoofed trials with less impact on the rejection of target

trials. The Gaussian back-end fusion approach reported in this

paper therefore offers better robustness to spoofing and better

usability. Results for LR and PLR fusion approaches are glob-

ally worse with respect to the other two approaches. Moreover,

they exhibit similar performance for development and evalua-

tion sets, but with a lack of generalisation.

Finally, Fig. 2 shows the 2D score space representation for

the LFCC features for development and evaluation set. By

analysing the data distribution, it is clear that a decision can

not be taken using approaches with rigid thresholds optimised

on development set.

target spoof zero-effort

-1 0 1 2 3
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ASV
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Figure 2: Two-dimensional PAD-ASV score representation cor-

responding to LFCC features for development (left) and evalu-

ation (right) set. Green dots represent target trials, while blue

stars represent zero-effort trials and red crosses are spoof trials.

6. Conclusions

This paper presents a comparative study of the performance of

different front-ends when used for both automatic speaker ver-

ification (ASV) and presentation attack detection (PAD). Per-

formance is assessed with difference approaches to system inte-

gration including cascaded combination, linear and polynomial

logistic regression and a Gaussian back-end fusion approach.

The use of a single front-end for both ASV and PAD systems

simplifies integration in terms of convenience and efficiency;

computational effort is reduced by avoiding redundant process-

ing.

Performance is assessed using the ASVspoof 2017 v2.0

database. Results show that feature that achieve the best results

for independent ASV or PAD tasks do not give the best perfor-

mance when systems are combined. The cascaded approach to

ASV and PAD combination, as well as the logistic and poly-

nomial logistic regression approach, improve reliability in the

case where the nature of non-target trials is known. When faced

with unknown, or previously unseen forms of non-target trials

and spoofing attacks, then performance degrades significantly;

these approaches to ASV and PAD combination fail to gener-

alise. In contrast, the Gaussian back-end approach to integra-

tion is shown to generalise well and gives the lowest equal error

rate for the independent evaluation set.
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features for synthetic speech detection,” in INTERSPEECH, 2015,
pp. 2087–2091.

[4] S. Davis and P. Mermelstein, “Comparison of parametric repre-
sentations for monosyllabic word recognition in continuously spo-
ken sentences,” IEEE Transactions on Acoustics, Speech and Sig-

nal Processing, vol. 28, no. 4, pp. 357–366, Aug 1980.

[5] H. Delgado, M. Todisco, M. Sahidullah, A. K. Sarkar, N. Evans,
T. Kinnunen, and Z.-H. Tan, “Further optimisations of constant Q
cepstral processing for integrated utterance verification and text-
dependent speaker verification,” in SLT 2016, IEEE Workshop on

Spoken Language Technology, San Diego, Dec. 2016.

[6] J. Patino, H. Delgado, N. Evans, and X. Anguera, “EURECOM
submission to the Albayzin 2016 Speaker Diarization Evaluation,”
in Proc. IberSPEECH, 2016.

[7] P. Cancela, M. Rocamora, and E. López, “An efficient multi-
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