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Abstract

In this paper, we study an integrated production and outbound distri-
bution scheduling model with one manufacturer and one customer. The
manufacturer has to process a set of jobs on a single machine and de-
liver them in batches to the customer. Each job has a release date and a
delivery deadline. The objective of the problem is to issue a feasible inte-
grated production and distribution schedule minimizing the transporta-
tion cost subject to the delivery deadline constraints. We consider three
problems with different ways how a job can be produced and delivered:
non-splittable production and delivery (NSP-NSD) problem, splittable
production and non-splittable delivery (SP-NSD) problem and splittable
production and delivery (SP-SD) problem. We provide a polynomial-time
algorithm that solves two special cases of SP-NSD and SP-SD problems.
Solving these problems allows us to compute a lower bound for the NP-
hard problem NSP-NSD, which we use in a branch and bound (B&B)
algorithm to solve problem NSP-NSD. The computational results show
that the B&B algorithm outperforms a MILP formulation of the problem
implemented on a commercial solver. keywords: single machine schedul-
ing production and delivery release dates deadlines transportation costs
branch and bound.

1 Introduction

Supply chain management is an active domain consisting of the optimization
and management of flows between different actors that generally have conflicting
objectives, which makes the coordination of their decisions a crucial issue in
supply chain management.

In this paper, we study an integrated production and outbound distribu-
tion scheduling (IPODS) model with one manufacturer and one customer. The
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manufacturer has to process a set of jobs on a single machine and deliver them
in batches to the customer. Each job has a release date and a delivery dead-
line. The release dates may correspond to the raw material availability dates
or to the delivery dates of semi-finished products coming from suppliers or clas-
sically from another unmodeled part of the factory that have to be processed
further and then sent to the customer. As observed commonly in practice, de-
livery is outsourced to a third-party logistics provider that owns a sufficiently
large number of vehicles. According to the European commission, in 2010,
the share of own-account transport is around 15% of the tonne-km generated
in road freight transport. This means that transport is mostly outsourced to
independent partners like third-party logistics providers. In some cases, the
manufacturer outsources all logistic activities, including the delivery schedule
and the transportation, to the third-party logistics provider. In other cases,
planning of delivery is still handled by the manufacturer and the third-party
logistics provider is just a pure transporter. In this paper, we consider the later
cases. The objective of the problem is to build a feasible integrated production
and distribution schedule minimizing the transportation cost subject to the de-
livery deadline constraints. This model is appropriate for the products with
few processing or other non-transport expenses, like fresh fruit and vegetable.
Fresh produce provides particularly clear insight into the effects of transporta-
tion costs on food prices (Volpe et al. 2013). Evidently, the delivery deadline is
also an important constraint for the fresh produce.

We consider three problems with different ways how a job can be produced
and delivered: non-splittable production and delivery (NSP-NSD) problem,
splittable production and non-splittable delivery (SP-NSD) problem and split-
table production and delivery (SP-SD) problem. As noticed by Chen and Pun-
door (2009), there are practical situations that justify all these cases. While
non-splitting delivery hypothesis is commonly considered, splitting delivery al-
lows, as remarked by Dror and Trudeau (1989), to save transportation costs.

We refer to recent surveys of Chen (2010) and Wang et. al. (2014). Before
presenting the related literature, recall the notation introduced by Chen (2010)
to represent the IPODS models. It is a five-field notation, α|β|π|δ|γ, where α,
β and γ specify respectively the machine environment, the job characteristics
and the optimality criterion as the classical three-field classification (Graham
et al. 1979). Some new objective functions linked to transportation are in-
troduced, such as maximum delivery time denoted by Dmax, total trip-based
transportation cost denoted by TC, etc. Fields π and δ specify respectively
the characteristics of delivery process and the number of customers. The num-
ber of customers is specified by one value of {1, k, n}, where δ = 1 for single
customer, δ = k ≥ 2 means there are multiple customers, and δ = n means
that each order belongs to a different customer. The characteristics of delivery
process include vehicle characteristics (number and capacity of vehicles) and
delivery methods. The vehicle characteristics are specified by V (x, y), where
x ∈ {1, v,∞} represents the number of vehicles, and y ∈ {1, c,∞, Q} represents
the capacity of vehicles. Field values {1, c,∞} and Q distinguish, respectively,
the possible capacities of vehicles when jobs have equal size, and the limited
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capacity of vehicles when jobs have general size. The delivery methods include:
individual and immediate delivery (iid), direct batch delivery (direct), batch
routing delivery (routing), shipping with fixed delivery departure dates (fdep),
and splittable delivery (split), i.e., an order can be split and delivered by several
vehicles.

When considering production only, our model concerns single machine
scheduling problems with release dates minimizing the maximum lateness Lmax.
The problem without release dates 1||Lmax can be solved by Jackson’s earliest
due date (EDD) rule introduced by Jackson (1955). This problem is a spe-
cial case of the problem 1|prec|Lmax solved by a polynomial-time algorithm
provided by Lawler (1973). The problem with release dates and preemption
1|rj , pmtn|Lmax can be solved by Jackson’s preemptive earliest due date (EDD-
preemptive) rule introduced by Jackson (1955). This problem is a special case of
the problem 1|prec, rj , pmtn|Lmax solved by a polynomial-time algorithm pro-
vided by Baker et al. (1983). Lenstra et al. (1977) proved the NP-hardness of
the problem 1|rj |Lmax. Carlier (1982) provided the first efficient branch-and-
bound algorithm to solve this problem.

The research on the IPODS problems with release dates concentrates on
the models with individual and immediate delivery, and direct delivery. As
proved by Chen (2010), the problems with individual and immediate de-
livery, (i) 1|rj |V (∞, 1), iid|n|Dmax, (ii) 1|rj , prec|V (∞, 1), iid|n| Dmax, (iii)
Pm|rj |V (∞, 1), iid|n|Dmax, (iv) Fm|rj |V (∞, 1), iid|n|Dmax are strongly NP-
hard. Liu and Cheng (2002) proved the NP-hardness of the problem (v)
1|rj , sj , pmtn|V (∞, 1), iid|n|Dmax. In these problems, the jobs are delivered
individually and immediately to the customers upon their completion while
minimizing the maximum delivery time. For problems (i), (ii), (iii) and (v), ap-
proximation algorithms and/or polynomial-time approximation schemes were
provided by Potts (1980), Hall and Shmoys (1989, 1992), Mastrolilli (2003),
Zdrzalka (1994), Liu and Cheng (2002). Gharbi and Haouari (2002) de-
veloped a branch-and-bound algorithm for problem (iii). Kaminsky (2003)
proposed an asymptotic optimality analysis of the longest delivery time al-
gorithm for problem (iv). Few articles consider direct or routing delivery.
Lu et al. (2008) provided a polynomial-time algorithm for the problem
1|rj , pmtn|V (1, c), direct|1|Dmax. For the problem 1|rj |V (1, c), direct|1|Dmax

they proved its NP-hardness and proposed an approximation algorithm with
worst case ratio of 5/3. Mazdeh et al. (2008) provided a branch-and-bound algo-
rithm for a special case of the NP-hard problem 1|rj |V (∞,∞), direct|n|

∑

Fj +
TC, where

∑

Fj represents the total flow time. Mazdeh et al. (2012) provided
a branch-and-bound algorithm for a special case of the similar problem with
sum of weighted flow time, 1|rj |V (∞,∞), direct|n|

∑

wjFj +TC. Selvarajah et
al. (2013) provided an evolutionary meta-heuristic for the same problem in the
general case and a polynomial-time algorithm for the special case with common
weight and preemption in production, 1|rj , pmtn|V (∞,∞), direct|n|

∑

wFj +
TC and 1|rj , pmtn|V (∞,∞), direct|n|

∑

wCj + TC. There are some arti-
cles considering the on-line problem, i.e., the information related to a job
becomes known when this job is released. Ng and Lu (2012) investigated
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the problems of Lu et al. (2008) in an on-line environment. Averbakh
and Xue (2007) provided a 2-competitive algorithm for the on-line problem
1|rj , pmtn|V (∞,∞), direct|k|

∑

Dj + TC, where
∑

Dj represents the total de-
livery time. Recent work on other on-line or semi-on-line integrated production-
distribution scheduling problems can be found in Averbakh (2010), Averbakh
and Baysan (2012,2013a,2013b), Feng et al. (2015).

Some IPODS problems with maximum lateness Lmax or delivery dead-
line dj , and transportation cost TC have been investigated in the
literature. Polynomial-time algorithms were provided for the prob-
lems 1||V (∞,∞), direct|k|Lmax + TC with a fixed k by Hall and Potts
(2003), 1||V (∞, c), direct|k|Lmax + TC with a fixed k by Pundoor and
Chen (2005), 1||V (1,∞), direct|1|Lmax + TC by Hall and Potts (2005),
1||V (v,∞), direct|1|Lmax+TC with a fixed v and 1||V (1,∞), routing|k|Lmax+
TC with a fixed k by Chen (2010), 1|pmtn, dj |V (∞, Q), direct, split|1|TC
by Chen and Pundoor (2009). Wang and Lee (2005) proved the NP-
hardness of the problem 1|dj |V (∞, 1), iid|n|TC with two types of vehicles
and provided a pseudo-polynomial time dynamic programming algorithm for
a special case. Chen and Pundoor (2009) proved the NP-hardness of the
problems without preemption of production, 1|dj |V (∞, Q), direct|1|TC and
1|dj |V (∞, Q), direct, split|1|TC, and provided approximation algorithms with
worst-case ratio of 2. More recently, Leung and Chen (2013) considered the
problems involving maximum lateness and TC have been considered in a set-
ting where there are a fixed possible vehicle departure time instants. Mensendiek
et al. (2015) considered the maximum lateness criterion in a parallel machine
environment when the set of possible delivery dates are also fixed. Li et al.
(2015) extended this model to a parallel batching machine environment.

There are only a few papers studying the IPODS problem with the con-
sideration of jobs release dates and due-dates or deadlines at the same time.
Fu et al. (2012) considered a coordinated production and distribution sched-
ule in which each job has a production time window and a promised delivery
time. Contrarily to our model where actual delivery times must be determined,
there are fixed delivery times on which delivery batches made of completed jobs
can be assigned, with limited delivery capacities. The objective is to select a
subset of jobs to process and deliver, so as to maximize a global profit. NP-
hardness results and approximation algorithms have been given. In Chapter 4
of the recent book of Ullrich (2013a), the cost-cutting potential of integrated
supply chain scheduling has been demonstrated via computational experiments
on supply-chain scenarios including integrated machine and delivery scheduling
with job release dates, batch capacities, holding costs and earliness and tardi-
ness penalties. An integrated parallel machine scheduling and vehicle routing
problem with time windows has been considered by Ullrich (2013b) but the time
windows concern the delivery part while production jobs are subject to machine
ready times. Recently Condotta et al. (2013) proposed an efficient tabu search
algorithm for problem 1|rj |V (v, c), direct|1|Lmax. Note that this problem does
not include transportation costs. Our paper consider an IPODS problem with
jobs release dates, delivery deadlines and transportation cost, which is appropri-
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ate for the agricultural products and has no existing method in the literature.
The most related research has been provided by Chen and Pundoor (2009)

without considering release dates. They investigated an IPODS model in a
supply chain where a manufacturer needs to process a set of jobs at a single
production line, pack the completed jobs to form delivery batches, and deliver
them to a customer. They investigated problems in similar scenarios (with or
without splitting in production and distribution). Different from their model, we
consider that the jobs have equal size and possibly different release dates. Our
objective is to propose solution algorithms for the three considered problems, i.e.
SP-NSD, SP-SD and NSP-NSD, for each of which we consider two scenarios: (1)
decentralized system scenario where the production schedule and the delivery
schedule are decided in a sequential order (i.e. first the production schedule,
then the delivery schedule); (2) integrated system scenario where an integrated
production distribution schedule is built. In the decentralized system scenario,
we review known exact algorithms in the literature to solve the production
scheduling problems (i.e. NSP and SP problems) and develop exact algorithms
to solve the distribution scheduling problems (i.e. NSD and SD problems).
In the integrated system scenario, we proposed algorithms to solve three new
IPODS problems with job release dates and deadlines.

This paper is organized as follows. In section 2, we formally describe the
problems and introduce notations and terminology. Section 3 is devoted to
the decentralized system scenario. Section 4 deals with the integrated system
scenario, where we propose polynomial time algorithms for two special cases of
SP-NSD and SP-SD problems, and a branch-and-bound algorithm for NSP-NSD
problem. In section 5, we evaluate the performance of this branch-and-bound
algorithm by comparing it to a mixed integer linear programming (MILP) formu-
lation implemented on a commercial solver. Section 6 contains some conclusions
and perspectives.

2 Problems and notations

A set of jobs N = {1, . . . , n} has to be processed on a single machine. Each
job j ∈ N has a release date rj , a processing time pj and a delivery deadline
dj . After processing on the machine, the jobs can be grouped into batches of
maximum size c > 0, corresponding to a full truck load, and then sent to a single
customer location. The jobs are unit sized, i.e. a truck can carry at most c jobs
at a time. As mentioned by Chen (2010), even if this hypothesis is restrictive,
most of the literature considers this case. Delivery is handled by a third-party
logistic providers that has an infinite number of vehicles. A batch is available
to be delivered when all jobs of this batch are completed. The transportation
time of a batch and the corresponding subcontracting cost are supposed to be
independent on the batch constitution. Hence, we can assume without loss of
generality that the transportation time is 0 and the transportation cost of a
batch is 1. It follows that the delivery deadline is also the production deadline.

Let (σ, θ) denote an integrated production and distribution schedule, where
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σ and θ are respectively the production schedule and the delivery schedule. In
this integrated schedule, Cj(σ) is the completion time of job j on the machine
and Dj(θ) is the delivery time of job j to the customer location. When there
is no ambiguity, we use Cj and Dj instead of Cj(σ) and Dj(θ) to simplify the
notations.

We consider two scenarios: (1) decentralized system scenario, where the
production schedule and the delivery schedule are decided in a sequential order
(i.e. first the production schedule, then the delivery schedule); (2) integrated
system scenario, where an integrated production distribution schedule is issued.
The induced scheduling problems are formally defined as follows.

1. Decentralized system scenario

(a) Production scheduling problem: The objective is to determine a
feasible production schedule in which the jobs are completed before
or at their deadline. We investigate the problem in two cases:

• Non-splittable production (NSP) problem: A job is non-
preemptable (or non-splittable) in production. Using the three-
field notation α|β|γ for machine scheduling problems (Graham
et al. 1979), this problem can be denoted by 1|rj , dj |−.

• Splittable production (SP) problem: A job can be split in pro-
duction. This problem can be denoted by 1|rj , pmtn, dj |−.

(b) Distribution scheduling problem: The objective is to obtain a
delivery schedule minimizing the transportation cost TC subject to
the job release dates fixed by the production schedule and the delivery
deadlines. A delivery schedule is a partition of the jobs into batches,
along with the departure time for each batch. We investigate the
problem in two cases:

• Non-splittable delivery (NSD) problem: A finished job must be
delivered in one batch.

• Splittable delivery (SD) problem: A finished job can be split and
delivered in several batches. We assume that the capacity occu-
pied by a job in a batch is equal to the delivered fraction of the
job.

2. Integrated system scenario
The objective is to determine an integrated production and distribution
schedule minimizing the transportation cost TC subject to the delivery
deadlines. We consider the integrated problem in three cases with different
ways how a job can be produced and delivered.

• Non-splittable production and delivery (NSP-NSD) problem: a job
is non-preemptable (or non-splittable) in production and a finished
job must be delivered in one batch. Using the five-field nota-
tion proposed by Chen (2010), this problem can be denoted by
1|rj , dj |V (∞, c), direct|1|TC, where V (∞, c) and direct mean that
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we consider the direct batch delivery by an unlimited number of
trucks with the capacity of c.

• Splittable production and non-splittable delivery (SP-NSD) problem:
a job can be split in production, and a finished job must be deliv-
ered in one batch. This problem can be denoted by 1|rj , pmtn, dj |
V (∞, c), direct|1|TC.

• Splittable production and delivery (SP-SD) problem: a job can be
split in both production and delivery. This problem can be denoted
by 1|rj , pmtn, dj |V (∞, c), direct, split|1|TC.

We do not consider the non-splittable production and splittable delivery
(NSP-SD) problem, because according to Lemma 2 in section 3.2, for
any feasible NSP production schedule, there exists an optimal delivery
schedule which is a NSD schedule.

Example 1: To illustrate the integrated problems, we consider the following
example with seven jobs where the vehicle capacity c is equal to 2. Table 1 gives
the jobs’ parameters.

Table 1: Example for the integrated problems
Order j 1 2 3 4 5 6 7

pj 4 2 2 2 2 3 1
rj 0 2 2 2 13 12 17

dj 12 5 12 12 16 18 19

Figure 1: Optimal schedules for the three integrated problems

Figure 1 shows the optimal schedules for the integrated problems. In a
production schedule, [j] means that job j is produced without preemption. In
a delivery schedule, [j] means that job j is delivered without splitting. When
[j] is preceded by a constant α, 0 < α < 1, this means that a part α of job j is
produced or delivered.
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NSP-NSD problem: In an optimal schedule as shown in Figure 1(a),
the production sequence is ([2], [1], [3], [4], [5], [6], [7]). There exists an idle time
before job 2, because if another job was processed before 2, then job 2 would
be late. A similar reason holds for the second idle time. There are six delivery
batches: {[2]}, {[1], [3]}, {[4]}, {[5]}, {[6]} and {[7]}, which depart respectively at
time 4, 10, 12, 15, 18 and 19.

SP-NSD problem: In an optimal schedule as shown in Figure 1(b), the
production sequence is ( 12 [1], [2], [3],

1
2 [1], [4],

1
3 [6], [5],

2
3 [6], [7]), where jobs 1 and

6 are split into two parts. The optimal schedule has five delivery batches:
{[2]}, {[1], [3]}, {[4]}, {[5]} and {[6], [7]}, which depart respectively at time 4, 8,
10, 15 and 18. Since job 2 cannot be delivered with any other job, the trans-
portation cost cannot be improved for the first 4 jobs with the non-splittable
delivery. However, we can split job 6 in production in order to deliver jobs 6
and 7 in one batch.

SP-SD problem: In an optimal schedule as shown in Figure 1(c), the
production sequence is the same as for the SP-NSD problem. The optimal
schedule has four delivery batches: { 1

2 [1], [2],
1
2 [3]}, {

1
2 [3],

1
2 [1], [4]}, {[5]} and

{[6], [7]}, which depart respectively at time 5, 10, 15 and 18. The first delivery
batch consists of half of job 1, whole job 2 and half of job 3. With the splittable
delivery, the first four jobs can be delivered in two full batches. Recall that the
capacity occupied by a job in a batch is equal to the delivered fraction of the
job.

Note that in the above problems, the jobs delivered together are not neces-
sarily sequenced consecutively, which makes the considered problems different
from classical batching models.

Example 2: To illustrate the benefit of integration of production and dis-
tribution decisions in the case of NSP-NSD problem, we consider the following
example with five jobs where the vehicle capacity c is equal to 3. Table 2 gives
the jobs’ parameters.

Table 2: Example for evaluation of the benefit of integration
Order j 1 2 3 4 5

pj 8 2 8 6 2
rj 2 10 6 0 12

dj 15 17 32 28 22

Figure 2(a) shows a feasible schedule for the decentralized system scenario.
Figure 2(b) shows an optimal schedule in the integrated system scenario. We
compare the two schedules to evaluate the benefit of integration.

Decentralized system scenario (solve NSP then NSD): Applying
Carlier’s algorithm (see section 3.1), we stop when we find the first feasible
production schedule. As shown in Figure 2(a), the production sequence is
([4], [1], [2], [5], [3]). All jobs are completed before their deadline. With this pro-
duction schedule, the best delivery schedule consists of four delivery batches:
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Figure 2: Schedules for the individual problems and the integrated problem

{[1]}, {[2]}, {[5]} and {[3], [4]}, which depart respectively at time 14, 16, 18 and
26.

Centralized system scenario (solve NSP-NSD): In an optimal
integrated schedule as shown in Figure 2(b), the production sequence is
([1], [2], [5], [3], [4]). The optimal schedule has two delivery batches: {[1], [2], [5]}
and {[3], [4]}, which depart respectively at time 14 and 28. Comparing with
the schedule for individual problems, we observe that with the integration, the
transportation cost is reduced by 50%.

3 Decentralized system scenario

In the decentralized scenario, the production schedule and the delivery schedule
are established sequentially. We review known exact algorithms to solve the
production scheduling problems (i.e. NSP and SP problems) and develop exact
algorithms to solve the distribution scheduling problems (i.e. NSD and SD
problems).

3.1 Production scheduling problem

The objective is to determine a feasible production schedule in which the jobs
are completed before or at their deadline. We introduce first the definitions
of production triplet (see definition 1) and production block (see definition 2).
Then we investigate NSP and SP problems.

Definition 1. In a production schedule σ, a production triplet is a job or a part
of job which is processed without preemption. Let Vj(σ) = (Jj , aj , bj) denote
production triplet j, where the job Jj ∈ N is scheduled in the time interval
[aj , bj ], aj and bj represent respectively the starting time and ending time of
the triplet. Hence the production schedule σ can be represented by a sequence of
production triplets denoted by V (σ).

Definition 2. In a production schedule σ, a production block is defined as a
subset of jobs which are processed consecutively without idle time. We define the
starting time of the block as the minimum starting processing time of jobs of the
block and the ending time of the block as the maximum completion time of jobs
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of the block. The sequence of jobs is not taken into account in the definition of
a block. Let Ki(σ) denote the production block i in σ.

NSP problem In this problem, a job is non-preemptable (or non-splittable)
in production. This decision problem, denoted by 1|rj , dj |−, is NP-complete
(Garey and Johnson 1979). Carlier (1982) proposed an efficient binary branch-
and-bound algorithm to solve a head-tail problem where a job j is available for
processing on the machine at release date rj (called also head), and has to spend
an amount of time pj on the machine and an amount of time qj (called tail) in
the system after its processing. The objective is to minimize maxj∈N (Cj + qj).
It is well-known that this problem is equivalent to the problem 1|rj |Lmax, where
Lmax = maxj∈N Lj = maxj∈N (Cj − dj), Lj is the lateness and dj is the due
date (i.e. it can be violated). Indeed, if we define qj = maxi∈N di − dj , then
minimizing maxj∈N (Cj + qj) is equivalent to minimizing Lmax. Furthermore,
the problem 1|rj , dj |− is nothing but the decision version of the optimization
problem 1|rj |Lmax, i.e. does there exist a production schedule σ such that
Lmax(σ) ≤ 0 ? It immediately follows that NSP problem can be solved by
applying Carlier’s branch-and-bound algorithm and stopping when a feasible
solution with Lmax ≤ 0 is found.

For further usage, we review the Carlier’s branch-and-bound algorithm for
the problem 1|rj |Lmax. The algorithm computes a lower bound and an up-
per bound for each node based on preemptive and non-preemptive EDD rules
(Jackson 1955), respectively.

• Preemptive EDD rule: at each decision point t in time, consisting of each
release date and each job completion time, schedule one of the available
jobs j (i.e. rj ≤ t) with the earliest due date, interrupting the job in
process at t, if it exists. If no jobs are available at a decision point,
schedule an idle time until the next release date.

• Non-preemptive EDD rule: at each decision point t in time, consisting
of each starting time of production block and each job completion time,
schedule an available job j (i.e. rj ≤ t) with the earliest due date without
preemption. If no jobs are available at a decision point, schedule an idle
time until the next release date.

At every node u, the algorithm runs the premptive EDD rule to obtain a
lower bound and the node is pruned if the upper bound does not exceed the lower
bound. Otherwise, the algorithm constructs the non-preemptive EDD schedule,
possibly updating the upper bound, and the branching scheme depends on the
analysis of this schedule. We suppose that jobs are renumbered according to
the sequence in the obtained schedule. Let l be the job with the smallest index
such that Ll = Lmax. Let h ≤ l be the job with the largest index such that
h = 1 or Ch−1 < sh where sh is the starting time of job h. Let [h, l] denote
the set of jobs from h to l, defining a critical block. If dl = maxk∈[h,l] dk, then
the obtained schedule is optimal. Otherwise, the algorithm defines a critical job
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e ∈ [h, l] with the largest index such that de > dl and a critical set J = [e+1, l].
The algorithm considers two subsets of schedules corresponding to two nodes
u1 and u2. Let rj(u) and dj(u) be the release date and the due date of job j at
node u, respectively.

• At node u1, the algorithm requires the critical job to be processed before
the jobs of the critical set by setting

de(u1) = max
j∈J

dj(u)−
∑

j∈J

pj (1)

dk(u1) = dk(u), k ∈ N\{e} (2)

rk(u1) = rk(u), k ∈ N (3)

• At node u2, the algorithm requires the critical job to be processed after
the jobs of the critical set by setting

re(u2) = min
j∈J

rj(u) +
∑

j∈J

pj (4)

rk(u2) = rk(u), k ∈ N\{e} (5)

dk(u2) = dk(u), k ∈ N (6)

SP problem In this problem, the preemption is allowed in production. This
problem, denoted by 1|rj , pmtn, dj |−, is a decision problem corresponding to
the optimization problem 1|rj , pmtn|Lmax, which is solved with the preemptive
EDD rule in O(n log n) time (Horn 1974). Hence SP problem can be solved with
the preemptive EDD rule in O(n log n) time. Since the preemption occurs only
at release dates in the schedule generated with the preemptive EDD rule, there
are at most n−1 preemptions. Hence there are O(n) production triplets in this
production schedule.

3.2 Distribution scheduling problem

The objective is to obtain a delivery schedule minimizing the transportation
cost TC subject to the job release dates fixed by the production schedule σ and
the delivery deadlines. We assume that the jobs are indexed in the increasing
completion time, i.e. C1(σ) < . . . < Cn(σ). This sorting operation requires
O(n log n) time. Here, σ can be a NSP schedule or a SP schedule. We recall
that there are O(n) production triplets in σ (see section 3.1). We first provide
a general property for NSD and SD problems. Then we investigate NSD and
SD problems separately.

Lemma 1. There exists an optimal solution for NSD and SD problems, such
that each batch is delivered at its completion time, i.e. when all jobs (or parts
of jobs) of the batch are completed.

Proof. Consider an optimal delivery solution for NSD and SD problem that does
not satisfy the property. We can anticipate the delivery time of each batch to
its completion time without changing the number of delivery batches.
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NSD problem In this case, a finished job must be delivered in a single
batch. We propose a polynomial-time greedy algorithm (see algorithm GA1)
for NSD problem.

Algorithm GA1

Step 1: Let N ′ ⊆ N denote the set of undelivered jobs. Set the current delivery
time T = maxj∈N ′ Cj(σ).

Step 2: Find the set of undelivered jobs with deadlines greater than or equal
to T . Let S ⊆ N ′ denote this set.

Step 3: If |S| < c, deliver all jobs of S in one batch which departs at time T .
Otherwise, deliver the last c completed jobs of S in one delivery batch
which departs at time T . Then, update N ′. If all jobs are delivered, then
STOP. Otherwise, go to step 1.

Theorem 1. Algorithm GA1 finds an optimal delivery schedule for NSD prob-
lem in O(n2) time.

Proof. We first prove the complexity. Steps 1 and 2 require O(n) time both at
each iteration. Since the jobs of N are sorted in the increasing completion time,
the jobs of S obtained at the step 2 are also sorted in the increasing completion
time. Hence, step 3 requires O(1) time at each iteration. Since there are at
most n iterations, the complexity is O(n2).

Then we prove that algorithm GA1 provides an optimal solution. Suppose
that there is an optimal delivery schedule θ∗ respecting Lemma 1 for NSD
problem. Let θ be the delivery schedule generated by algorithm GA1. Suppose
that the k last delivery batches are the same in the two schedules and the
(k+1)th last delivery batch Bk+1 is different in the two schedules. According to
Lemma 1 and the step 1 of algorithm GA1, Bk+1(θ

∗) and Bk+1(θ) are delivered
at the same time T = maxj∈N ′ Cj(σ) where N

′ is the set of delivered jobs before
the k last delivery batches. Let S be the set of delivered jobs before the k last
delivery batches with the deadline greater than or equal to T . We distinguish
two cases:

• if |S| < c, it is clear that the jobs of Bk+1(θ
∗) are in Bk+1(θ). We can put

all jobs j, such that j ∈ Bk+1(θ) and j /∈ Bk+1(θ
∗), in Bk+1(θ

∗) without
increasing the number of delivery batches. Now Bk+1(θ

∗) becomes the
same as Bk+1(θ).

• if |S| ≥ c, we have |Bk+1(θ)| = c and Bk+1(θ
∗) ⊂ S. If |Bk+1(θ

∗)| < c, we
fill Bk+1(θ

∗) with some jobs of S which are not in Bk+1(θ
∗) and update the

delivery time of modified batches. Now we do not increase the number
of batches and have |Bk+1(θ

∗)| = c. If there exists a job j such that
j /∈ Bk+1(θ) and j ∈ Bk+1(θ

∗), then there exists another job i such that
i ∈ Bk+1(θ), i /∈ Bk+1(θ

∗) and Cj < Ci because job i is one of the last c
completed job. We can interchange jobs i and j in θ∗ without changing
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the number of batches and update the delivery time of modified batches.
We repeat this operation until Bk+1(θ

∗) becomes the same as Bk+1(θ).

Hence, we can transform any optimal schedule θ∗ to θ without increasing the
transportation cost.

SD problem In this case, a finished job can be split and delivered in several
batches. We propose a polynomial-time greedy algorithm (see algorithm GA2)
for SD problem.

Algorithm GA2

Step 1: Let V ′ ⊆ V (σ) denote the set of production triplets (see definition 1)
corresponding to the undelivered parts of jobs. Set current delivery time
T = maxVj∈V ′ bj .

Step 2: Find the set of production triplets corresponding to the jobs with a
deadline greater than or equal to T from V ′. Let S ⊆ V ′ denote this set.

Step 3: If
∑

Vj∈S(bj−aj)/pJj
< c, deliver the parts of jobs corresponding to S

in one batch which departs at time T . Otherwise, create one batch which
departs at time T as follows: iteratively, if the remaining capacity of the
batch, denoted by c′, is enough, add the part of job corresponding to the
last completed production triplet Vj ∈ S in the delivery batch, otherwise
split Vj = (Jj , aj , bj) into two production triplets (Jj , aj , bj − c′pJj

) and
(Jj , bj−c′pJj

, bj). Put the part of job Jj corresponding to (Jj , bj−c′pJj
, bj)

in the batch to form a full batch. Then update V ′. If all jobs are delivered,
then STOP. Otherwise, go to step 1.

Theorem 2. Algorithm GA2 finds an optimal delivery schedule for SD problem
in O(n2) time.

Proof. The proof is similar as for Theorem 1.

As discussed in section 2, we do not consider the non-splittable production
and splittable delivery (NSP-SD) problem, because according to the following
Lemma 2, for any feasible NSP schedule, there exists an optimal delivery sched-
ule which is a NSD schedule.

Lemma 2. For any given feasible NSP schedule, there exists an optimal delivery
schedule in which the jobs are not split.

Proof. For a given NSP schedule, algorithm GA2 finds an optimal delivery
schedule which is a NSD schedule. In fact, in the case NSP, each production
triplet Vj corresponds to a non split job Jj , i.e., bj − aj = pJj

. In the step 3 of
algorithm GA2, when we create a full batch in the case

∑

Vj∈S(bj−aj)/pJj
> c,

we do not split any production triplet, i.e. the jobs are put in the delivery batch
without splitting.

13



4 Integrated system scenario

The integrated scheduling problem is to compute an integrated schedule mini-
mizing the transportation cost TC subject to the delivery deadlines. In what
follows, we first consider SP-NSD and SP-SD problems, then NSP-NSD prob-
lem.

4.1 SP-NSD and SP-SD problems

In this section, we first give some properties of optimal solutions for SP-NSD
and SP-SD problems. Then we provide a polynomial-time algorithm that solves
these problems in two special cases. This algorithm will be used to compute
lower bounds in the branch-and-bound algorithm that solves NSP-NSD problem.

Lemma 3. An optimal integrated schedule for SP-NSD and SP-SD problems,
if it exists, satisfies the following properties:

(1) Each job is processed in one production block only.

(2) Each production block starts at the minimum release date of jobs within this
block.

(3) Each batch is delivered at its completion time when all jobs (or parts of
jobs) of the batch are completed.

Proof. (1) Suppose there exists an optimal integrated schedule (σ∗, θ∗) which
does not satisfy property 1, such that job j is the first job which is split and
scheduled in several production blocks. Let Ki be the first block containing job
j (see figure 3(a)). We reschedule as early as possible the rest of job j in the
idle times after Ki (see figure 3(b)). Consequently, the job j is processed only
in Ki. The delivery schedule θ∗ is also feasible for the new production schedule.
So this new integrated schedule is also optimal. We can repeat this argument a
finite number of times until property 1 is satisfied.

Figure 3: Illustration of property 1 of Lemma 3

(2) Suppose there exists an optimal integrated schedule (σ∗, θ∗) which satis-
fies property 1 but does not satisfy property 2, such that production block Ki is
the first block which does not satisfy property 2. Suppose job j has the earliest
release date among the jobs of block Ki. We reschedule job j as early as possible
without changing other jobs. We distinguish two cases: in the first case, the
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Figure 4: Illustration of property 2 of Lemma 3

completion time of the production block Ki−1 is less than rj (see figure 4(a)), in
the new production schedule all blocks before K ′

i satisfy property 2 (see figure
4(b)); in the second case, the completion time of the production block Ki−1

is greater than or equal to rj (see figure 4(c)), in the new production schedule
all blocks before Ki satisfy property 2 (see figure 4(d)). In the new production
schedules (b) and (d), we reduce the total size of blocks which do not satisfy
property 2. The delivery schedule θ∗ is also feasible for these new production
schedules. So this new integrated schedule is also optimal. We can repeat this
argument in polynomial time until property 2 is satisfied.

(3) The proof is the same as Lemma 1.

Lemma 4. An optimal integrated schedule for SP-NSD and SP-SD problems,
if it exists, is such that the structure of production blocks, consisting of the jobs
composition, the starting time and the ending time of each block, is the same as
that constructed by the preemptive EDD rule.

Proof. Suppose there exists an optimal integrated schedule (σ∗, θ∗) which sat-
isfies the properties of Lemma 3, but does not satisfy the property of Lemma
4. Let (K∗

1 , . . . ,K
∗
l ) be the set of production blocks of σ∗. Let σ denote the

production schedule constructed by the preemptive EDD rule. Let (K1, . . . ,Ku)
be the set of production blocks of σ. Suppose K∗

i and Ki are the first blocks
that are different in the two schedules.

According to the preemptive EDD rule, in σ there is a idle time only if there
is no available job. Hence there is no idle time among the split parts of each job.
In addition, at each end of idle time, the rule schedules always one of remaining
jobs with the earliest release date. Consequently, σ satisfies the properties of
Lemma 3.

According to property 2 of Lemma 3, K∗
i and Ki must start at the same

time. Noting that in σ there is a idle time only if there is no available job, we
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know that all jobs of K∗
i must be in Ki, i.e. K

∗
i ⊆ Ki.

Suppose job j is the first job such that j /∈ K∗
i and j ∈ Ki. Since the jobs

before j of Ki are also in K∗
i , we know that K∗

i can finish only at or after rj .
According to property 2 of Lemma 3, the block including the job j must start
before or at rj . Consequently, the job j must be in K∗

i , which is in conflict with
the assumption of job j. That means that all jobs of Ki must be in K∗

i , i.e.
Ki ⊆ K∗

i .
Hence, we have Ki = K∗

i and the ending times of Ki and K∗
i are the same.

So K∗
i and Ki are not the first blocks that are different in the two schedules.

Hence the property of Lemma 4 is satisfied.

Then, we introduce the Shortest Remaining Processing Time (SRPT) rule
to construct a production schedule in SP-NSD and SP-SD problems.
SRPT rule: at each decision point t in time, consisting of each release date and
each job completion time, schedule an available job j (i.e. rj ≤ t) with the
shortest remaining processing time. If no jobs are available at a decision point,
schedule an idle time until the next release date.

Next, we provide a polynomial-time algorithm (see algorithm GA3) for SP-NSD
and SP-SD problems in the following two special cases:

case 1: The vehicle capacity is unlimited, i.e. c = ∞.

case 2: The set of jobs N can be divided into two subsets of jobs N1 and N2.
∀j ∈ N1, ∄j′ ∈ N1 such that rj ≤ rj′ < rj + pj . ∀j ∈ N1 and i ∈ N2,
rj + pj ≤ ri. In any production block of the schedule constructed by
preemptive EDD rule, the jobs of N2 have the same release date.

Algorithm GA3

Step 1: Generate a production schedule σ with the preemptive EDD rule. If
Cj(σ) ≤ dj , ∀j ∈ N , go to Step 2, otherwise there is no solution and
STOP.

Step 2: Let N ′ ⊆ N denote the set of undelivered jobs. Set the current delivery
time T = maxj∈N ′ Cj(σ).

Step 3: Find the set of undelivered jobs with deadlines greater than or equal
to T . Let S denote this set.

Step 4: If |S| < c, deliver the jobs of S in one batch which departs at time T .
Otherwise, reschedule the jobs of S in σ with the SRPT rule and do not
change the schedule of other jobs, then deliver the last c completed jobs
of S in one batch which departs at time T . Then update N ′. If all jobs
are delivered, then STOP. Otherwise, go to step 2.

Theorem 3. Algorithm GA3 finds an optimal integrated schedule for SP-NSD
and SP-SD problems in the special case 1 in O(n2) time, and the special case 2
in O(n2 log n) time.

16



Proof. We first prove the complexity of algorithm GA3. At step 1, the gen-
eration of σ takes O(n log n) time. We take O(n) time to check feasibility of
the solution. At each iteration, step 2 and step 3 take O(n) time respectively.
The step 4 takes O(1) time for the case |S| ≤ c and takes O(n log n) time to
reschedule the jobs of S with the SRPT rule for the case |S| > c. There are
O(n) iterations. We note that for the problem in the special case 1, at the step 4
we have always |S| ≤ c, the algorithm GA3 finds an optimal integrated schedule
for SP-NSD and SP-SD problems in the special case 1 in O(n2) time, and the
special case 2 in O(n2 log n) time.

Next, we prove that the algorithm provides an optimal solution. Let us add
a fictive job 0, such that r0 = p0 = d0 = 0. Let (σ, θ) denote the integrated
schedule provided by algorithm GA3 with k batches. Let Bi denote the ith last
batch of θ. Let |Bi| denote the size of Bi. Let T (Bi) denote the departure date
of Bi. Since d0 = 0, it is clear that T (Bk) = 0. We use a recursion theorem to
prove that algorithm GA3 constructs a solution with minimum T (Bi), among
all feasible solutions.

Using the preemptive EDD rule at step 1 guarantees that T (B1) is minimum.
Suppose that T (Bi) is minimum, for a given 1 ≤ i ≤ k − 1, and prove that
T (Bi+1) is minimum. We consider the two special cases 1 and 2 separately.

Case 1: Since c = ∞, the algorithm generates a non full batch |Bi| < c. Since
Bi delivers all undelivered available jobs at time T (Bi), T (Bi+1) is a pro-
duction completion time of one job with a deadline less than T (Bi). Ac-
cording to the preemptive EDD rule, we cannot anticipate the maximum
production completion time of all jobs with a deadline less than T (Bi).
Hence T (Bi+1) is minimum,

Case 2: In this case, if the algorithm generates a non full batch |Bi| < c, with
the same argument of the case 1, we can prove that T (Bi+1) is minimum.
If the algorithm generates a full batch |Bi| = c, we can also prove the
minimization of T (Bi+1) as follows:

• if T (Bi+1) is a production completion time of one job with a deadline
less than T (Bi), according to the preemptive EDD rule, we cannot
anticipate the maximum production completion time of all jobs with
a deadline less than T (Bi).

• if T (Bi+1) is a production completion time of one job of N1 with a
deadline greater than or equal to T (Bi), according to the preemptive
EDD rule the completion times of jobs of N1 cannot be anticipated
and the SRPT rule does not change the completion times of jobs in
N1, hence we cannot anticipate T (Bi+1). If T (Bi+1) is a production
completion time of one job j of N2 with a deadline greater than or
equal to T (Bi), algorithm GA3 guarantees that this job is executed
before all jobs of Bi in σ. Since the release dates of the jobs of
N2 are equal in each production block, using SRPT rule minimizes
T (Bi+1) = Cj .
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In the two special cases, we prove that T (Bi+1) is minimum. Consequently,
for any other solution with k′ batches, we have k ≤ k′ and algorithm GA3
generates a solution with the minimum number of batches to deliver all jobs.

Remark that the computational complexities of SP-NSD and SP-SD prob-
lems in the general case are still open.

4.2 NSP-NSD problem

It can be observed easily that problem 1|rj , dj |− reduces to NSP-NSD prob-
lem, i.e. it is a special case of NSP-NSD problem with c = 1. Consequently,
NSP-NSD problem is NP-hard in the strong sense. In this section, we first
present two heuristics to determine upper bounds of TC. Then we describe a
branch-and-bound algorithm to solve NSP-NSD problem. Finally, we provide a
mixed integer linear programming (MILP) model, which is used to evaluate the
performance of the branch-and-bound algorithm.

4.2.1 Heuristics

In our branch-and-bound algorithm, we will use two heuristics that try to con-
struct a feasible integrated schedule for NSP-NSD problem.

The first heuristic, denoted by H1, uses the non-preemptive EDD rule,
which forces to create a production schedule without preemption. If the
obtained production schedule is feasible, then we apply algorithm GA1.

Heuristic H1

Step 1: Create a production schedule σ with the non-preemptive EDD rule.
If Cj(σ) ≤ dj , ∀j ∈ N , go to step 2. Otherwise, the algorithm cannot
provide a feasible solution and STOP.

Step 2: Apply algorithm GA1 to compute a delivery schedule.

The second heuristic, denoted by H2, uses a SP-NSD integrated schedule
computed by algorithm GA3 to construct, if possible, a feasible integrated
schedule for NSP-NSD problem.

Heuristic H2

Step 1: Create a priority list of jobs, such that in the given schedule (σ, θ), if
Di(θ) < Dj(θ), job i must be before job j in the list, and if Di(θ) = Dj(θ)
and Ci(σ) < Cj(σ), job i must be before job j in the list.

Step 2: Schedule each job as early as possible without preemption. When
there are several jobs which can be scheduled, we choose the job with
the highest priority. Let σ′ be the constructed production schedule. If
Cj(σ

′) ≤ dj , ∀j ∈ N , go to step 3. Otherwise, the algorithm cannot
provide a feasible solution and STOP.
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Step 3: Apply algorithm GA1 to compute a delivery schedule.

4.2.2 Branch-and-bound algorithm

We propose a branch-and-bound algorithm (see algorithm B1) for NSP-NSD
problem based on the branch-and-bound algorithm of Carlier recalled in section
3.1.

Algorithm 1: Algorithm B1

1 Generate the root associated with LB(Lmax, root) and UB(Lmax, root) as
in the algorithm of Carlier, and put this node in list L;

2 while L 6= ∅ do
3 Choose one node u in L with minimum LB(Lmax, u) ;
4 if UB(Lmax, u) > 0 and LB(Lmax, u) ≤ 0 then
5 Compute LB(TC, u) and UB(TC, u) as in algorithm B2;
6 if LB(TC, u) < UB∗(TC) then
7 if UB(TC, u) < n+ 1 then

8 Apply algorithm B2 with pj , rj(u), dj(u), the original

deadlines dj(root) for j ∈ N , and the precedence relations
between jobs imposed at the path from the root to node u;

9 else
10 Branch as Carlier’s algorithm and add new nodes with the

bounds of Lmax in L;

11 else
12 if LB(Lmax, u) ≤ UB(Lmax, u) ≤ 0 then

13 Apply algorithm B2 with pj , rj(u), dj(u), the original

deadlines dj(root) for j ∈ N , and the precedence relations
between jobs imposed at the path from the root to node u;

14 Remove u from L.

In the search tree, a node u is characterized by: release dates rj(u) and
deadlines dj(u) of jobs j ∈ N , a lower bound of Lmax denoted by LB(Lmax, u),
an upper bound of Lmax denoted by UB(Lmax, u), a lower bound of TC denoted
by LB(TC, u), an upper bound of TC denoted by UB(TC, u), the current best
upper bound of TC denoted by UB∗(TC), and precedence constraints between
the jobs. If node u is the root of search tree, rj(root) and dj(root) represent
the original release dates and deadlines, respectively.

Algorithm B1 first applies Carlier’s algorithm. When a feasible solution,
i.e. UB(TC, u) < n + 1 (line 7 of algorithm B1) or UB(Lmax, u) ≤ 0 (line
12 of algorithm B1), is found at node u, we apply another branch-and-bound
algorithm denoted by algorithm B2 from node u to try to find a local optimal
solution minimizing TC. When algorithm B2 stops, algorithm B1 continues
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the branching of Carlier’s algorithm for the remaining active nodes (line 10 of
algorithm B1).

In algorithm B2, the lower bound LB(TC, u) is computed by solving two
relaxed problems which respect the two special cases of SP-NSD problem. The
upper bound UB(TC, u) is obtained by applying the two heuristics H1 and H2.
Branching of algorithm B2 is done by assigning to each position of production
schedule a job respecting a set of rules. Moreover, when algorithm B2 applies
algorithm GA3, heuristics H1 and H2, the modified deadlines dj(u) are used
to determine a feasible production schedule according to Carlier’s algorithm,
while the original deadlines dj(root) are used to determine the delivery schedule.

Algorithm B2

Lower bound: At node u, we solve two relaxed problems, which respect the
two special cases of SP-NSD problem:

Case 1: Set c = n.

Case 2: Divide the set of jobs N in two subsets of jobs N1 and N2 as
follows. ∀j ∈ N1, ∄j′ ∈ N1 such that rj(u) ≤ rj′(u) < rj(u) + pj .
∀j ∈ N1, ∀i ∈ N2, rj(u) + pj ≤ ri(u). Schedule the jobs with
the preemptive EDD rule, then find, for each production block, the
smallest release date of jobs of N2 in this block. Replace the release
date of each job in N2 by the corresponding smallest release date of
its production block.

We solve these relaxed problems by applying algorithm GA3: execute
step 1 of algorithm GA3 with dj(u) for j ∈ N , and execute the re-
maining steps of the algorithm with the original deadlines, i.e. dj(root)
for j ∈ N . Let (σ1, θ1) and (σ2, θ2) denote the obtained SP-NSD inte-
grated schedules for the above problems respectively. Set LB(TC, u) =
max{TC(σ1, θ1), TC(σ2, θ2)}.

Upper bound: Firstly, generate a NSP-NSD integrated schedule by applying
heuristic H2 with the above obtained schedule (σ2, θ2) and the original
deadlines, i.e. dj(root) for j ∈ N . Secondly, generate a second NSP-
NSD integrated schedule by applying heuristic H1: execute the step 1 of
heuristic H1 with dj(u) for j ∈ N , and execute the step 2 of the heuristic
with the original deadlines, i.e. dj(root) for j ∈ N . Finally, if one or
both constructed integrated schedules are feasible, set UB(TC, u) as the
smallest TC among the two schedules. Otherwise, set UB(TC, u) = n+1.
Update UB∗(TC) if necessary.

Branching: if LB(TC, u) < UB∗(TC, u) for a node u, firstly choose one job to
be scheduled in the current production position. Job j is a valid candidate
if it respects the following rules. Let N ′ denote the set of unscheduled jobs
without job j.

active scheduling rule: rj(u) < mink∈N ′(rk(u) + pk)
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deadline rule: rj(u) + pj ≤ mink∈N ′(dk(u)− pk)

precedence relations rule: j has no predecessors in N ′.

Then, require the valid candidate j to be scheduled at the current pro-
duction position and let u′ be the corresponding new node. Set rk(u

′) =
max(rk(u), rj(u) + pj), ∀k ∈ N ′.

Example To illustrate algorithm B1, we consider the following example with
seven jobs where the vehicle capacity c is equal to 2. Table 3 gives the jobs’
parameters.

Table 3: Example to illustrate the branch-and-bound algorithm B1
Order j 1 2 3 4 5 6 7

pj 13 18 19 20 7 8 2
rj 35 38 14 21 1 48 14

dj 69 79 99 80 65 88 51

Figure 5 illustrates the search tree of the branch-and-bound algorithm B1.
At the root, i.e. node 1, since UB(Lmax, u) > 0 and LB(Lmax, u) ≤ 0, we check
UB(TC, u) and LB(TC, u). Since UB(TC, 1) = 8, i.e. the algorithm does not
find a feasible NSP schedule, the algorithm branches as Carlier’s algorithm.
Here, we have the critical job e = 3 and the critical set J = {1, 2, 4}.

Figure 5: Illustration of the branch-and-bound algorithm B1

At node 2, Carlier’s algorithm requires the critical job to be processed before
the jobs of the critical set by setting the deadline of the critical job 3 to d3(2) =
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29. Since LB(Lmax, 2) = 6 and UB(Lmax, 2) = 6, the algorithm ensures that
there is no feasible NSP-NSD schedule for node 2.

At node 3, Carlier’s algorithm requires the critical job to be processed after
the jobs of the critical set by setting the release date of the critical job 3 to
r3(3) = 72. Since LB(Lmax, 3) = 0 and UB(Lmax, 3) = 0, the algorithm ensures
that there is at least one feasible NSP-NSD schedule. Then it applies algorithm
B2. The precedence relations include that the job 3 has to be processed after
the jobs 1, 2 and 4. Since initially LB(TC, 3) = 4 and UB(TC, 3) = 5, the
branching is performed as prescribed by algorithm B2. UB∗(TC) is updated to
5.

For the first position of production schedule, algorithm B2 finds that job 5 is
the only job that respects the rules among the candidates. By scheduling job 5 in
the first position, node 4 is generated. Since rk(3) < r5(3)+ p5(3), ∀k ∈ N\{5},
the algorithm does not change the release dates. Since LB(TC, 4) = 4 and
UB(TC, 4) = 5, the tree continues to branch. We still have UB∗(TC) = 5.

The algorithm finds the only candidate 7 for the second position of produc-
tion schedule. By scheduling job 7 in the second position, node 5 is generated.
Since rk(4) < r7(4) + p7, ∀k ∈ N\{5, 7}, the algorithm does not change the
release dates. Since LB(TC, 5) = 4 and UB(TC, 5) = 5, the tree continues to
branch. We still have UB∗(TC) = 5.

For the third position of production schedule, algorithm B2 finds a set of
candidates {1, 2, 4}.

By scheduling job 1 in the third position, node 6 is generated. The algorithm
sets r2(6) = max{r2(5), r1(5) + p1} = 48 and r4(6) = max{r4(5), r1(5) + p1} =
48. With this modified setting, there is no feasible solution for SP-NSD prob-
lem in the two special cases. Hence there is no feasible solution for NSP-NSD
problem.

By scheduling job 2 in the third position, node 7 is generated. The algorithm
sets r1(7) = max{r1(5), r2(5) + p2} = 56 and r4(7) = max{r4(6), r2(6) + p2} =
56. With this modified setting, there is no feasible solution for SP-NSD prob-
lem in the two special cases. Hence there is no feasible solution for NSP-NSD
problem.

By scheduling job 4 in the third position, node 8 is generated. The algorithm
sets r1(8) = max{r1(5), r4(5) + p4} = 41 and r2(8) = max{r2(5), r4(5) + p4} =
41. With this modified setting, algorithm B1 computes LB(TC, 8) = 5 and
UB(TC, 8) = 5, a local optimal solution is found. Since there is no active node,
the algorithm stops and an global optimal solution for NSP-NSD problem is
found (see figure 6).

Figure 6: An optimal solution for NSP-NSD problem

Figure 6 shows an optimal solution for NSP-NSD problem. The pro-
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duction sequence is (5, 7, 4, 1, 2, 6, 3). There are five delivery batches:
{7}, {5, 1}, {2}, {4, 6}, and {3}, which depart respectively at time 16, 54, 72,
80, and 99.

4.2.3 Mixed integer linear programming model

Lemma 5. There exists an optimal integrated schedule for NSP-NSD problem,
such that each batch is delivered at one delivery deadline of job.

Proof. Suppose that there is an optimal integrated schedule for NSP-NSD prob-
lem that does not satisfy the property. We can change the delivery time of
each batch to satisfy the property without changing the number of delivery
batches.

We propose a MILP model which extends the time-indexed scheduling
model as follows. We note that {minj∈N rj ,minj∈N rj +1, . . . ,min(maxi∈N ri+
∑

i∈N pi,maxi∈N di)} is the set of possible production starting times. Let T
denote this set. In this model, according to Lemma 5, we can suppose that
each delivery batch departs at one job deadline. Note that one batch departs
at a delivery deadline of job (which can be out of this batch) between the last
production completion time of jobs in this batch and the earliest deadline of
jobs in this batch. Let s1, . . . , su denote the possible delivery batch departure
dates.

Decision variables:

• xit =







1, if production job i starts at time t,
i ∈ {1, . . . , n}, t ∈ T

0, otherwise

• yiq =







1, if job i is delivered at time sq,
i ∈ {1, . . . , n}, q ∈ {1, . . . , u}

0, otherwise

• wq = number of batches departing at time sq, q ∈ {1, . . . , u}

MILP:

min

u
∑

q=1

wq (7)

s.t.
∑

t∈T

xit = 1, i ∈ {1, . . . , n} (8)

n
∑

i=1

t
∑

k=max{ri,t+1−pi}

xik ≤ 1, t ∈ T (9)

xit = 0, i ∈ {1, . . . , n},

t < ri or t > di − pi (10)
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∑

t∈T

txjt + pj ≤
u
∑

q=1

(yjqsq), j ∈ {1, . . . , n} (11)

n
∑

i=1

yiq ≤ cwq, q ∈ {1, . . . , u} (12)

u
∑

q=1

yiq = 1, i ∈ {1, . . . , n} (13)

yiq = 0, i ∈ {1, . . . , n},

q ∈ {1, . . . , u}, di < sq (14)

yiq ∈ {0, 1}, i ∈ {1, . . . , n},

q ∈ {1, . . . , u} (15)

wq ∈ N, q ∈ {1, . . . , u} (16)

xit ∈ {0, 1}, i ∈ {1, . . . , n}, t ∈ T (17)

In MILP, the objective function is to minimize the transportation cost. Con-
straints (8) ensure that any job i starts its processing once. Constraints (9)
guarantee that the interval [t, t+ 1], for each t, is occupied by at most one job.
The interval [t, t + 1] is occupied by job i only if job i starts its processing in
the interval [max{ri, t + 1 − pi}, t]. Constraints (10) ensure that job i starts
its processing in the interval [ri, di − pi]. Constraints (11) ensure that each job
is delivered after or at its production completion time. Constraints (12) are
the batch capacity constraints. Constraints (13) ensure that each job is deliv-
ered in one batch only. Constraints (14) are the delivery deadlines constraints.
Constraints (15)-(17) give the domain of definition of each variable.

5 Computational results

In this section, we evaluate the performance of the branch-and-bound algo-
rithm B1 by comparing it with MILP. The branch-and-bound algorithm is im-
plemented in C++ and the MILP model is implemented in Cplex V12.1. The
experiments are carried out on a DELL 2.50GHz personal computer with 8GB
RAM.

We reuse the method of Briand et al. (2010) to generate instances. We
consider n ∈ {10, 20, 30, 50, 70, 100, 150, 200, 300, 500}. The integers pj , rj
and dj are generated respectively from the uniform distributions [1,50], [0,
α
∑n

j=1 pj ] and [(1− β)a
∑n

j=1 pj , a
∑n

j=1 pj ], where α, β ∈ {0.2, 0.4, 0.6, 0.8, 1}

and a ∈ {100%, 110%}. If dj < rj + pj , dj has been updated by rj + pj . The
transportation cost of one batch is equal to 1. We choose a set of hard instances
as follows: we apply the branch-and-bound algorithm of Carlier to find the min-
imum Lmax for each instance, if the problem for this instance cannot be solved
at the root of the search tree, we consider this instance as a hard instance. If the
found Lmax of this hard instance is positive, we add this value to each dj of this
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instance to ensure that we have at least one feasible solution. For n ≤ 70, we
consider the batch capacity c ∈ {2, 3, ⌈n

8 ⌉, ⌈
n
4 ⌉}, and c ∈ {⌈ n

50⌉, ⌈
n
30⌉, ⌈

n
20⌉, ⌈

n
10⌉}

for n ≥ 100. 80 hard instances for each value of n are generated. Totally 800
hard instances are generated.

Table 4: Performance of the branch-and-bound algorithm B1.

n Fea Opt Node Time

10 100% 100% 2 0.07
20 100% 100% 16 0.85
30 100% 96.25% 165 14.82
50 100% 95% 173 19.16
70 100% 91.25% 183 36.13
100 100% 77.5% 324 78.46
150 100% 66.25% 334 118.18
200 100% 51.25% 298 150.02
300 100% 32.5% 240 209.01
500 100% 32.5% 118 212.98

Table 5: Performance of MILP.

n Fea Opt Node Time

10 100% 100% 1 0.87
20 100% 100% 313 12.14
30 100% 78.75% 1401 108.64
50 96.25% 37.5% 357 215.86
70 75% 27.5% 98 264.52

Table 6: Gaps of solutions of the branch-and-bound algorithm B1.

Gap1 Gap2
n Average Min Max Average

10 0% 0% 0% 0%
20 0% 0% 0% 0%
30 0.4% 6.67% 12.5% 10.56%
50 0.7% 5.88% 16.67% 13.97%
70 0.76% 6.25% 12.5% 8.7%
100 2.5% 4% 28.57% 11.1%
150 3.92% 2% 31.58% 11.62%
200 5.64% 2% 30% 11.57%
300 7.98% 2% 30.23% 11.83%
500 8.8% 2.22% 32% 13.03%

Tables 4 - 7 illustrate the performance of branch-and-bound algorithm B1.
Imposing 5 minutes as the limit of execution time, we use the following measures
to compare the branch-and-bound algorithm with the MILP model.

Fea: the percentage of instances for which a feasible solution is determined
within the given time.
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Table 7: Gaps of solutions of MILP.

Gap1 Gap2
n Average Min Max Average

10 0% 0% 0% 0%
20 0% 0% 0% 0%
30 5.61% 6.25% 62.5% 26.4%
50 22.79% 3.85% 86.75% 37.34%
70 37.95% 6.67% 90.96% 59.92%

Opt: the percentage of instances which are solved to optimality within the
given time.

Node: the average number of explored nodes.

Time: the average CPU time in seconds.

Gap1: the relative gap measured by (UB∗(TC)−LB∗(TC))/LB∗(TC), where
UB∗(TC) and LB∗(TC) are the best upper bound and lower bound. We
consider the instances for which we obtained at least one feasible solution
(optimal solution included).

Gap2: the relative gap for the instances for which we obtained at least one
feasible solution (optimal solution excluded).

The results show that the branch-and-bound algorithm B1 outperforms the
MILP model. From Tables 4 - 5, we observe that the average execution time and
the number of nodes with the MILP model are always larger than the branch-
and-bound algorithm. MILP cannot find a feasible solution with n ≥ 100.
The branch-and-bound algorithm solves all instances with n ≤ 20 optimally
within a very short execution time less than one second, and more than 90% of
instances with n ≤ 70 within an average execution time less than 40 seconds.
The branch-and-bound algorithm finds at least a feasible solution and solve
32.5% of instances optimally with n up to 500 and 5 minutes as time limit.

Consulting the gaps in Tables 6 - 7, we observe that the branch-and-bound
algorithm has a much better performance. In average, Gap1 and Gap2 of the
branch-and-bound algorithm are less than 0.8% and 14% when n ≤ 70. How-
ever, the maximum Gap2 shows some hard cases for the branch-and-bound
algorithm when n ≥ 100. For the MILP model, in average, Gap1 and Gap2
exceed 20% and 30% respectively when n = 50.

When the number of jobs is very large, it is difficult to construct a simple
heuristic that guarantees that a feasible solution is found (especially when dead-
lines are tight). For this reason, for large instances, the B&B algorithm could
be stopped after a fixed amount of time and/or when a first feasible solution is
found. We report in Table 8 the results when a first feasible solution is found.
We use the following measures.

Gap3: average gap between the cost of the final solution of the B&B (computa-
tional times limited to 5 minutes) and the first obtained feasible solution.
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Table 8: Results of the first feasible solution obtained by the branch-and-bound
algorithm

n Gap3 %Imp Gap4 Node Time

10 0.36% 2.5% 14.58% 1.75 0.05
20 0.5% 5,00% 10.05% 3.09 0.1
30 2.96% 23.75% 12.45% 19.89 0.7
50 1.81% 17.5% 10.34% 16.4 1.11
70 1.13% 11.25% 10.02% 14.79 1.62
100 0.82% 15,00% 5.47% 33.13 6.59
150 1.12% 18.75% 5.99% 31.01 10.32
200 0.42% 5,00% 8.34% 9.46 4.61
300 0.31% 8.75% 3.51% 19.28 16.68
500 0.62% 26.25% 2.36% 18.14 42.69

%Imp: average percentage of instances where the two solutions are different.

Gap4: average gap between the cost of the final solution of the B&B and the
first obtained feasible solution, for instances where they are different.

The results show that good solutions can be found for large instances within
a reasonable amount of computational time (43 seconds in average for n = 500).
The relative gap (Gap4 ) decreases when n increases, justifying the use of the
B&B algorithm as a good heuristic.

6 Conclusions

In this paper, we studied an integrated production and outbound distribution
scheduling problem in a supply chain with one manufacturer, and one cus-
tomer. We considered a single machine production and a direct batch delivery.
Moreover, we considered an important feature in production and distribution:
splittable or non-splittable production/distribution. We first investigated the
scheduling problems induced by the decentralized system scenario. We reviewed
the production scheduling problems (i.e. SP and NSP problems) and provided
two polynomial-time algorithms to solve the distribution scheduling problems
(i.e. SD and NSD problems). Then we investigated the scheduling problems in
the integrated system scenario (i.e. SP-NSD, SP-SD and NSP-NSD problems).
We provided a polynomial algorithm to solve two special cases of SP-NSD and
SP-SD problems. We also provided a branch-and-bound algorithm for NSP-
NSD problem and evaluated its performance with numerical experiments. The
results showed that the proposed algorithm has a better performance than the
MILP model and can solve more than 90% of instances with n ≤ 70 optimally
within an average execution time less than 40 seconds.

Several important research issues remain open for future investigations. A
first research direction is to fix the complexity of SP-NSD and SP-SD problems.
Solving one of these problems efficiently would provide a better lower bound
for the branch-and-bound algorithm that solves problems NSP-NSD. A second
issue is to consider the same model with a limited number of vehicles and/or
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with fixed pickup times. Finally, one might consider extending the model to
production systems with parallel machines.
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