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Abstract

Background: With the advent of second-generation sequencing, the expression of gene transcripts can be digitally
measured with high accuracy. The purpose of this study was to systematically profile the expression of both mRNA and
miRNA genes in clear cell renal cell carcinoma (ccRCC) using massively parallel sequencing technology.

Methodology: The expression of mRNAs and miRNAs were analyzed in tumor tissues and matched normal adjacent tissues
obtained from 10 ccRCC patients without distant metastases. In a prevalence screen, some of the most interesting results
were validated in a large cohort of ccRCC patients.

Principal Findings: A total of 404 miRNAs and 9,799 mRNAs were detected to be differentially expressed in the 10 ccRCC
patients. We also identified 56 novel miRNA candidates in at least two samples. In addition to confirming that canonical
cancer genes and miRNAs (including VEGFA, DUSP9 and ERBB4; miR-210, miR-184 and miR-206) play pivotal roles in ccRCC
development, promising novel candidates (such as PNCK and miR-122) without previous annotation in ccRCC
carcinogenesis were also discovered in this study. Pathways controlling cell fates (e.g., cell cycle and apoptosis pathways)
and cell communication (e.g., focal adhesion and ECM-receptor interaction) were found to be significantly more likely to be
disrupted in ccRCC. Additionally, the results of the prevalence screen revealed that the expression of a miRNA gene cluster
located on Xq27.3 was consistently downregulated in at least 76.7% of ,50 ccRCC patients.

Conclusions: Our study provided a two-dimensional map of the mRNA and miRNA expression profiles of ccRCC using deep
sequencing technology. Our results indicate that the phenotypic status of ccRCC is characterized by a loss of normal renal
function, downregulation of metabolic genes, and upregulation of many signal transduction genes in key pathways.
Furthermore, it can be concluded that downregulation of miRNA genes clustered on Xq27.3 is associated with ccRCC.
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Introduction

As the most common type of kidney cancer in adults, renal cell

carcinoma (RCC) is responsible for approximately 90% of all cases

[1]. RCC is a heterogeneous disease consisting of a number of

different subtypes of cancers originating in this organ [2]. Clear

cell renal cell carcinoma (ccRCC) accounts for the vast majority

(,70%) of RCC [3]. The five-year survival rates of RCC patients

decline considerably as the disease progresses from a localized,

regional tumor to distantly metastatic cancer [4].

Despite the high incidence of this type of malignancy in

populations of different ethnicities throughout the world, the

PLoS ONE | www.plosone.org 1 December 2010 | Volume 5 | Issue 12 | e15224



precise pathogenic mechanisms underlying ccRCC have not been

clearly elucidated. Environmental factors, such as cigarette

smoking, have been suggested to be associated with increased

susceptibility for renal cancer in over 35% of male patients [5],

other risk factors include obesity, hypertension, and acquired

cystic kidney disease is associated with end-stage renal disease [6].

Molecular studies have identified several genes that are causally

implicated in the carcinogenesis of ccRCC, including von Hippel-

Lindau (VHL) [7], hypoxia-inducible factor-1a (HIF1a) [8],

vascular endothelial growth factor (VEGF), and epidermal growth

factor receptor (EGFR) [9]. Recently, various genome-wide gene

expression profiling studies using microarray-based approaches

have provided us with abundant information on the phenotypic

characteristics of ccRCC [10,11,12]. Nevertheless, few gene

expression (profiling) studies have been focused on the mechanisms

that drive acquiring the malignancy of ccRCC.

MicroRNA (miRNA) is an important class of small non-coding

RNAs that can regulate the expression of protein-coding genes

through various mechanisms, including targeted mRNA degrada-

tion and translational inhibition [13,14]. Mutated or abnormally

expressed miRNAs have been identified as oncogenes or tumor

suppressors in many human cancers [15], including RCC

[10,12,16]. However, no consistent conclusion could be drawn

from most of the previous microarray-based studies due to the

limitations of inter-platform differences and the relatively small

sample sizes investigated [10,12,17,18]. With the advent of

second-generation sequencing technology, the expression level of

both miRNAs and mRNAs can be reliably and accurately

quantified on whole-genome scale [19]. Additionally, novel

miRNAs and mRNAs without previous annotation in public

databases can also be discovered with these sequencing platforms

[20].

In this report, we present an integrative analysis of digital gene

expression (DGE) profiling of both mRNAs and miRNAs in

ccRCC by initially detecting their expression levels in 10 matched

tumor-normal (adjacent) tissue pairs using the Illumina GA II

platform and then validating some of our most interesting findings

in a large cohort of ccRCC patients. Furthermore, network

analysis of the deregulated genes or the well annotated target genes

of the differentially expressed miRNAs pinpointed key signaling

and metabolic pathways that were frequently disrupted in most of

the investigated ccRCC patients.

Results

Overview of the DGE data generated in 10 ccRCCs
The expression levels of 17,595 protein-coding genes and 726

human miRNAs were determined to be detectable (at least one

transcript per million tags, 1 TPM) in at least one sample (either in

tumors or normal adjacent tissues) by our analysis pipeline. A total

of 404 distinct miRNAs and 9,799 mRNAs (Figure 1A) were

differentially expressed (P,0.01, FDR#0.001) in ccRCC samples

compared to the matched normal controls (see Table S1 and S2

for details), of which a large proportion was synchronously

upregulated or downregulated in at least two patients (Figure 1B).

Overall, the percentages of mRNA transcripts upregulated in each

individual ranged from 47.5 to 84.1% (average 64.3%), while

those for miRNAs ranged from 23.2% to 56.2% (average 35.3%).

In addition, 56 potentially novel miRNAs and 586 novel mRNA

expression tags were recurrently detected in at least two samples

(Tables S3 and S4). There were four novel candidates that were

only expressed at detectable levels in the tumor samples, while 40

of the novel miRNAs detectable in both tumor and normal tissues

displayed differential expression patterns (FDR #0.01) (Figure 1C

and Figure 1D).

Validation of the DGE analysis results using real-time
quantitative PCR (qPCR)

To validate the expression levels of the known miRNA and

mRNA genes determined by the DGE analysis, qPCR primers

were selectively designed for six miRNA and six mRNA genes

(Figure 2A and 2B), each of which was characterized by

concordant significant deregulation of its expression across all of

the tumor-normal tissue pairs profiled. The resulting validation

rates for all of the genes in individual patients ranged from 60% to

100%, with an average success rate of 88.3%. As illustrated in

Figure 2A and Figure 2B, the DGE results correlated well with the

qPCR results in terms of quantifying the expression of both

mRNAs and miRNAs. Additionally, 10 out of 14 of the predicted

miRNA candidates identified in at least two samples could be

successfully amplified by qPCR using miScript Reverse Tran-

scription and miScript SYBR Green PCR Kits (Qiagen,

Germany). Furthermore, the sequences of four out of five

randomly selected amplified products (hsa-Np-miR-02, hsa-Np-

miR-31, hsa-Np-miR-22, and hsa-Np-miR-15, see Table S3) were

confirmed by cloned Sanger sequencing (see Methods for details)

as predicted, indicating good accuracy of the DGE profiling in

identifying miRNAs (candidates) with no previously described

sequence or secondary structure information (Figure S1).

Deregulated expression of miRNAs and mRNAs in 10
ccRCCs

Consistent with recently published studies, the expression

profiles of protein-coding genes in ccRCC were characterized by

a loss of expression of most genes that are responsible for normal

renal function [21,22]. For instance, we observed that genes (such

as UMOD and AQP2) or gene families (SLC22A) involved in

regulating the homeostasis of water-electrolyte balances or

transepithelial transportation of toxic organic anions were most

significantly downregulated in ccRCCs [23,24]. In addition, other

well-known cancer-associated genes (including VEGFA, DUSP9

and ERBB4) were also selectively validated as exhibiting

consistently disrupted expression patterns in most of the ccRCC

samples profiled (Figure 2B). It should be noted that PNCK

(average log2Ratio = 8.6) was ranked as the most highly

overexpressed gene in all of the tumors in our study.

Among the miRNAs that were most consistently downregulated

in the majority of ccRCCs, miR-184 and miR-206 (Figure 2A)

were previously reported to promote tumor cell apoptosis via

targeting key components in signal transduction pathways [25,26].

Additionally, consistent with what has been found in other studies

[27,28], miR-210 (a well-established miRNA gene that can be

induced under hypoxia conditions in many solid cancers in a HIF-

1a- and VHL-dependent manner) was also found to be significantly

overexpressed in all of the ccRCC samples in our study.

Paradoxically, though it was the most significantly upregulated

miRNA and was validated to be overexpressed nearly 25 fold on

average in all 10 of the ccRCCs sequenced, miR-122 has

predominately been demonstrated to be significantly downregu-

lated in hepatocellular carcinoma and to act as a negative

regulator of tumorigenesis [29]. Thus, full elucidation of the role of

miR-122 in ccRCC development beyond its well-known tumor-

suppressing function still awaits further study.

As listed in Table S5, a substantial number of miRNAs that were

recurrently up- or downregulated in the 10 ccRCCs also displayed

deregulated expression patterns in other cancers. The expression of

Integrated Profiling of miRNAs and mRNAs in ccRCC

PLoS ONE | www.plosone.org 2 December 2010 | Volume 5 | Issue 12 | e15224



miR-155 has also been found to be upregulated in prediatric Burkitt

lymphoma [30], Hodgkin disease [31], CLL [32], AML [33], breast

cancer [34] and lung cancer [35]. The possible oncogenic effect of

miR-21 has also been reported in other solid cancers (including

pancreas, prostate, stomach, colon, lung and breast cancer) [36].

Our study also further confirmed the results presented by Liu et al.

that the loss of miR-200c expression results in gain of function of

VEGFA, and increased levels of miR-224 cause the loss of function of

the tumor suppressor ERBB4 in ccRCC [18]. Furthermore, five

members of the miR-200 family (including miR-200c, miR-141,

miR-200a, miR-200b, and miR-429) were all significantly down-

regulated in the renal tumors sequenced. Recent studies revealed

that the miR-200 family may play a critical role in determining the

process of epithelial-to-mesenchymal transition (EMT), and that

Figure 1. Overview of the expression profiles of miRNAs and mRNAs in 10 ccRCC patients. A: The number of miRNAs and mRNAs
differentially expressed in 10 ccRCC patients (P,0.01, FDR#0.001). B: The number of miRNAs and mRNAs recurrently deregulated across 10 ccRCC
patients. One miRNA or mRNA may be deregulated only in partial of the 10 patients, and X-axis represents the at least case number, for example, the
column 2 represents the number of miRNAs or mRNAs deregulated in at least 2 patients. C: Venn diagram of putative novel miRNA candidates
identified in different tissues. D: Venn diagram of putative novel mRNA candidates identified in different tissues.
doi:10.1371/journal.pone.0015224.g001
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inhibition of the expression of these miRNAs promoted tumor

invasion and migration [37,38,39].

Pathway analysis of differentially expressed genes and
miRNA targets in ccRCC

Interconnected KEGG [40] pathways enriched in deregulated

genes were visualized with network-based approaches using

Cytoscape [41] with the ClueGo plug-in [42]. As shown in

Figure 3, multiple canonical cancer-associated signaling pathways

(Table S6), including focal adhesion, cell cycle and ECM-receptor

interaction, were significantly more likely to be disrupted in ccRCC

than expected by chance (FDR ,0.01). Various metabolic

pathways (such as those involved in amino acid metabolism) were

also observed to be enriched in deregulated genes in our study,

(FDR ,0.01). Generally, we observed that functionally interacting

pathways tended to exhibit similar deregulated expression patterns.

As has been found by other investigators, genes regulating cellular

signaling were more likely to be overexpressed, whereas metabolic

genes were predominantly downregulated in ccRCC [43].

All KEGG genes that were differentially expressed in at least

two patients were prioritized against each pathway by gene set

enrichment analysis (GSEA) [44,45] according to their expression

levels in all the samples. Core genes ranked at the top or bottom of

each pathway gene set were sorted using the leading edge analysis

method introduced by Subramanian A. Figure 4A provides a

reduced overview of the common core genes shared by multiple

pathways. Previously well-established cancer genes (including

PIK3CG, PIK3R3 and PIK3R5, EGFR, CCND1 and TP53), as well

as genes encoding key enzymes (ALDH1B1and ALDH2) were

predicted to play essential roles in ccRCC development based on

integrated pathway analysis.

Similarly, target genes of all of the miRNAs deregulated in at

least two ccRCCs were retrieved from two experimentally

supported databases, TarBase [46] and miRecords [47], for

subsequent pathway analysis. Multiple cancer-associated KEGG

pathways (e.g., cell cycle and p53 signaling) were found to be

enriched in the target genes regulated by miRNAs that were

recurrently deregulated in our study (Table S7). Furthermore, all

of the targets of recurrently deregulated miRNAs were tested

against a smaller pathway set: all 29 pathways catalogued under

the hierarchical designation of ‘pathways in cancer’ in the KEGG

database using GSEA. As shown in Figure 4B, miR-124 target

genes were implicated in the leading edge of 59 pathways,

including 9 pathways in cancer, followed by miR-155 (48

pathways, including 12 pathways in cancer) and miR-21 (37

pathways, including 14 pathways in cancer).

miRNA genes located on Xq27.3 significantly
downregulated in ccRCC

Seven miRNAs of the miR-506 family (miR-506, miR508-3p and

miR-509-5p, miR-509-3p, miR-509-3-5p, miR-510 and miR-514)

were clearly downregulated in most of the renal tumors sequenced

in the discovery screen. These miRNA genes were tandemly

clustered in the same genomic region, Xq27.3 (,8 Mb away from

the telomere). However, little information on the target genes

regulated by these miRNAs could be obtained from current

experimentally supported databases (TarBase and miRecords).

Nevertheless, as a pilot study, all 23 of the putative targets uniformly

predicted by miRanda [48] and miRNAMap [49] were evaluated

for their expression in the 10 ccRCCs. On average, all of these

targets were clearly upregulated in the tumors in comparison to

their matched controls. Predicted targets, such as VEGFB and

PSMA1 (regulated by miR-506), LDHA (regulated by miR-508-3p)

and HK1 (regulated by miR-509-3p), are core genes involved in

multiple key pathways. To further investigate the expression

patterns of the miRNA cluster found in the discovery screen, qPCR

tests were performed in matched pairs of cancer-normal adjacent

tissues in a large panel of ccRCC patients in the prevalence screen.

As shown in Figure 5, the expression of all of the tested miRNAs was

significantly downregulated in the majority of the tumors screened.

In contrast, the expression levels of four predicted targets (HK1,

LDHA, PSMA1and VEGFB) were upregulated on average.

Discussion

DGE sequencing is a powerful and reliable tool for accurately

quantifying the absolute expression levels of both mRNAs and

Figure 2. Comparison of deep sequencing data and qPCR
results. For the comparison of deep sequencing data and qPCR results,
genes determined to be differentially expressed in all of the 10 patients
by deep sequencing were validated using qPCR. The height of the
columns in the chart represents the log-transformed average fold
change (tumor/normal) in expression across the 10 patients for each of
the genes validated; bars represent standard errors. A: The validation
results of six miRNAs indicated that the deep sequencing data were in
excellent agreement with the qPCR results. B: The validation results of
six mRNAs also indicated that the results of the deep sequencing were
generally agreed well with the qPCR results.
doi:10.1371/journal.pone.0015224.g002
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miRNAs and overcomes the drawbacks of detecting a limited

number of relatively high-abundance transcripts determined by

the availability of array probes [20]. The results of deep

sequencing correlated well with those of qPCR in our study based

on the validation results of randomly selected miRNA and mRNA

genes. In addition, the novel miRNA candidates identified in this

study, especially those validated by qPCR and Sanger sequencing,

further complements the current human miRNA catalog.

The most significantly downregulated gene in ccRCC in

comparison to normal tissue was the pregnancy-up-regulated

non-ubiquitously expressed CaM kinase gene (PNCK). PNCK was

previously found to be overexpressed in a particular subtype of

epithelial cells involved in the differentiation and transformation of

breast cancer [50]. A recent report also revealed that PNCK

mediates the protea-lysosomal degradation of EGFR protein and

may represent a promising target for therapeutic intervention in

EGFR-regulated oncogenesis [51]. Here, we report its possible

association with the development or progression of ccRCC for the

first time, though the molecular mechanisms underlying this

association remain largely unknown. Other well-known oncogenes

that control the cell division cycle, such as CDCA2 and CDKN2A,

were also likely to play crucial roles in the development of ccRCC,

as they were ranked at the top of the lists of genes that were highly

overexpressed in most ccRCCs in this study.

Our study highlights the importance of investigating the

functional roles of miRNAs in the tumorigenesis of ccRCC. Of

the minority (35.3%) of miRNAs that were most significantly

upregulated in the tumor tissues, the outlier miR-122 was initially

identified as a tumor-suppressor in other cancers [52,53],

indicating the necessity for the intensive investigation of well-

known cancer-associated miRNAs in different kinds of tumors for

full elucidation of their functional roles in tumorigenesis. Cellular

adaptation to hypoxic microenvironments is a characteristic of

many solid cancers [54]. Genetic inactivation of the VHL gene,

which regulates the ubiquitin-ligated degradation of hypoxia-

inducible factors (HIFs), has frequently been reported as the

‘‘driving event’’ initiating ccRCC [55]. Accumulation of HIF-1a at

the protein level leads to continuous activation of downstream

target genes (e.g., VEGF and PDGF), which were all upregulated in

our tumor sample panel [56,57]. Interestingly, miR-21, one of the

few currently known miRNA genes under the control of the VHL-

HIF-1a cascade, was also found to be significantly overexpressed in

ccRCC. It can be speculated that characterization of the miRNA

genes targeted by the VHL-HIF cascade, or the protein-coding

genes targeted by the VHL-HIF-miRNA cascade would be of great

value in furthering our understanding of the pathogenic

mechanisms underlying ccRCC.

It has become widely acknowledged that disrupted pathways, as

opposed to deregulated individual gene, drive the tumorigenesis

process [58]. Network-based pathway analysis of significantly

deregulated protein-coding genes allowed us to obtain an overview

of key pathways that may have profound effects on ccRCC

development. Core genes common to multiple pathways are more

likely to be cancer genes. As shown in Figure 4A, most of the genes

ranked in the top 20 of the final core gene sets determined by

GSEA have previously been causatively linked with tumorigenesis

in other studies, indicating a high predictive value of this

integrative pathway analysis in identifying genuine cancer genes

in ccRCC using our sequencing data. Similarly, all significantly

deregulated miRNA genes were also prioritized based on

Figure 3. Network analysis of differentially expressed pathways. Nodes in the network represent individual pathways, and edges in the
pathway represent the functional relationships between pathways. Pathways significantly enriched with more up- or downregulated genes are
represented in red or green, respectively. The color gradient of each node is proportional to the percent of genes up- or downregulated in each
pathway. In particular, if there are equal numbers of genes up- and downregulated in a pathway, the node representing the pathway is colored
white. The node size reflects the relative degree of significance to which the pathway is enriched in deregulated genes within the interconnected
subnetwork. In other words, larger nodes are expected to play more important roles in the interconnected pathway subnetwork. In addition, if a
pathway is significantly enriched with differentially expressed genes (corrected P-value ,0.05), the name of the pathway is highlighted in red (see
Table S7 for details).
doi:10.1371/journal.pone.0015224.g003
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integrative pathway analysis of their target genes retrieved from

experimentally supported databases. miR-155, miR-21, miR-34a,

miR-135a and miR-135b were previously found to be associated

with ccRCC [12,18,59], indicating that they are authentic cancer-

associated miRNAs in ccRCC. miR-155 and miR-21 were also

reported to be involved in the development of different cancers

[30,31,32,33,34,35,36]. In summary, in addition to the miRNA

and mRNA genes known to implicate in cancer development,

other genes prioritized at the top of our core gene list are

promising candidates worthy of further investigation.

It has been proposed that most of the known miRNAs are

tandemly clustered [60,61] and are transcribed as polycistronic

primary transcripts [62]. Positional enrichment analysis of the

deregulated miRNA genes revealed that the expression levels of the

miRNAs clustered at the fragile site Xq27.3 [63] were significantly

decreased in our study samples. Interestingly, careful analysis of the

results of another small sample study on ccRCC also revealed that

five of the seven miRNAs were downregulated in tumor tissues [64].

However, little attention has been paid to identifying the target

genes regulated by these miRNAs using classic molecular biology

methods. In the prevalence screen conducted in this study, the

deregulated expression patterns detected in ,50 ccRCC patients

for five of the miRNAs further supported the finding that the

miRNA genes located on Xq27.3 were expressed at substantially

lower levels in at least 76.7% of primary ccRCCs compared to

patient-matched normal adjacent controls. The high prevalence of

Figure 4. Pathway-based gene set enrichment analyses of differentially expressed mRNAs or miRNAs. Protein-coding genes were
ranked according to the number of pathways in which they were prioritized as core genes (most significantly deregulated genes). miRNAs were
ranked according to the number of pathways in which their target genes were prioritized as core genes. Columns in green/red represent the genes or
miRNAs that were down/upregulated on average in at least two ccRCCs respectively; columns in black represent the genes or miRNA targets involved
in at least one cancer-associated pathway. The height of the columns in different colors represents the number of pathways where the genes or
miRNA targets were ranked as core genes. A: Genes ranked in the top 20 based on the results of pathway-based gene set enrichment analysis. B:
miRNAs ranked the top 20 based on the results of pathway-based gene set enrichment analysis of their target genes.
doi:10.1371/journal.pone.0015224.g004
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this abnormal expression pattern suggested that the loss of

expression of the miRNAs clustered at Xq27.3 is an important

event in ccRCC pathogenesis, and more detailed studies are needed

to establish their exact functional roles in carcinogenesis.

In summary, this is one of the few studies that have

simultaneously profiled the expression patterns of both miRNAs

and mRNAs on a genome-wide scale in ccRCC patients using

second-generation sequencing technology. Our results demon-

strated that the expression phenotype of ccRCC is characterized

by a loss of normal renal function, downregulated expression of

metabolic genes, and upregulation of many signal transduction

genes in key pathways. Individual pathway enrichment analysis

revealed that well-known cancer pathways (e.g., cell cycle,

apoptosis, focal adhesion and ECM-receptor interaction) play

critical roles in ccRCC development. With the aid of currently

available databases, we found that cancer-associated mRNA and

miRNA genes could be accurately prioritized with the integrative

pathway analysis approach using our sequencing data. Finally, we

also established the association of a cluster of miRNA genes on

Xq27.3 with ccRCC in a large sample set.

Materials and Methods

Clinical sample collection
All of the ccRCC tissues and matched normal adjacent tissues

used in this study were obtained from the clinical institutions of

Urinogenital Cancer Genomics Consortium (UGCC) in China.

Detailed information on the 10 patients sequenced in the discovery

screen is summarized in Table S8. Specimens were snap-frozen in

liquid nitrogen or deposited in RNALater (Qiagen, Germany) and

subsequently stored at 280uC. Hematoxylin-eosin (HE)-stained

sections were examined for tumor cell percentage, and tumor

tissues containing more than 80% tumor cells were selected for

further study. The matched normal adjacent tissues were defined

as kidney tissues located 2.0 cm outside of visible ccRCC lesions.

Histopathologic examination of the normal tissues indicated the

presence of normal renal tubules and glomeruli without tumor cell

contamination (Figure S2). The collection and use of the patient

samples were reviewed and approved by Institutional Ethics

Committees, and written informed consent from all patients was

appropriately obtained.

RNA extraction
Total RNA was extracted from ccRCC and normal adjacent

tissues using TRIZOL (Invitrogen, US) according to the

manufacture’s protocol and evaluated using Agilent 2100

Bioanalyzer (Agilent Technologies, US).

Digital gene expression (DGE) sequencing of mRNA and
statistical analysis

Of the total RNA isolated from each sample, 4 mg was used in

DGE sequencing. Briefly, following synthesis of double-stranded

cDNA using oligo(dT)18 beads, the cDNA was digested with NlaIII

and ligated to a first adapter (GEX adapter 1) containing a

restriction site recognized by MmeI. After dephosphorylation with

alkaline phosphatase CIAP, the purified MmeI-digested products

were linked to a second adapter (GEX index adapter) containing

2-bp degenerate 39 overhangs. Then, the double adapter-flanked

tags from the mRNAs were amplified by PCR using Phusion DNA

polymerase and Gex PCR primers following the manufacturer’s

protocol. PCR was carried out using the following program: 98uC
for 30 sec, followed by 15 cycles of 98uC for 10 sec, 60uC for

30 sec and 72uC for 15 sec, and then 72uC for 10 min. The

resulting ,85-bp PCR products were ethanol precipitated and

purified from electrophoresis gels using Spin-X filter columns.

Finally, mRNA libraries were sequenced on the Illumina Cluster

Station and Genome Analyzer II (Illumina Inc, USA) following the

manufacturer’s protocol.

Before statistical analysis, potentially erroneous tags (single copy

tags and tags consisting of adapter sequences or containing

unknown sequences ‘N’) were filtered out. All of the 17-bp

sequences next to the possible Nla III restriction sites in a human

reference genome (hg19) and the 4-bp CATG restriction enzyme-

digested site were extracted and concatenated as a new reference

[65]. Tags were mapped to the constructed reference using SOAP

V2.0 [66] allowing no more than one base mismatch. Only unique

mapping tags were used for gene expression analysis. Standardized

TPM (transcripts per million clean tags) values were applied to

compare gene expression between tumors and normal adjacent

tissues. The expression fold change (tumor versus normal) for each

gene was calculated as the log2Ratio using TPM values.

Subsequently, we performed a rigorous significance test to

determine the differentially expressed genes [67]. The resulting

P-values for all genes were corrected for multiple tests using a FDR

(false discovery rate) adjustment [68]. In addition, after filtering

out all annotated mRNA tags and those tags matching the

mitochondrial genome, the remaining clean tags that could be

mapped to the human reference genome were identified as

potentially novel mRNA expression tags. Only those tags

expressed in at least two samples at detectable levels ($1 TPM)

were defined as high-confidence novel mRNA expression tags.

DGE miRNA sequencing and statistical analysis
For miRNA sequencing, 5 mg of total RNA form each sample

was ligated with both a 59 adapter and 39 adapter for reverse

transcription using Superscript II at 42uC for 1 h and 70uC for

15 min. Subsequently, the reverse transcribed products were

amplified using the following PCR program: a 15-cycle reaction

at 98uC for 30 sec, followed by 15 cycles of 98uC for 10 sec,

Figure 5. qPCR results for five miRNAs clustered on Xq27.3 and
their putative target genes in ,50 ccRCC patients. The
expression of five miRNAs clustered on Xq27.3, as well as the expression
of some of their most interesting predicted targets was evaluated in a
large sample panel. The height of the columns in the chart represents
the log-transformed average fold change (tumor/normal) in expression
across all patients for each of the genes validated; bars represent the
standard errors. The number of samples (n) used in the validation assay
is shown beside each standard error bar. Generally, miRNAs were
downregulated in 76.7% to 88.6% of the patients, while the target
genes were upregulated in 63.8% to 84.9% of the patients.
doi:10.1371/journal.pone.0015224.g005
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72uC for 15 sec, and then 72uC for 10 min. After obtaining a

,92-bp DNA band on 6% PAGE gels, the PCR products were

ethanol precipitated and purified using Spin-X filter columns.

Finally, miRNA libraries were sequenced on the Illumina Cluster

Station and Genome Analyzer II following the manufacturer’s

protocol.

Low quality reads were trimmed and adapter sequences were

accurately clipped with the aid of a dynamic programming

algorithm before subsequent statistical analysis. After elimination

of the duplicate reads, the remaining reads of at least 18 nt

were mapped to a human reference genome (hg19) using SOAP

V2.0. To remove tags originating from protein-coding genes,

repeat sequences, rRNA, tRNA, snRNA, and snoRNA, we

also mapped the short read tags to UCSC RefGene, RepeatMas-

ker and NCBI Refseq, as well as our in-house ncRNA annotation

datasets compiled from the NCBI GenBank database (http://

www.ncbi.nih.gov). The same pipeline used for DGE mRNA

differential expression analysis was also used for miRNA

expression analysis.

Prediction of novel miRNA candidates and determination
of miRNA target genes

Mireap (http://sourceforge.net/projects/mireap) was used to

predict novel miRNA candidates based on their secondary

structure, stability of their hairpin structure and the Dicer cleavage

site of the miRNA tags. Moreover only those candidates fulfilling

the following two criteria were defined as high-confidence miRNA

candidates in our study: 1) stable hairpin structure with low free

energy (,220 kcal/mol); 2) expressed in at least two samples at

detectable levels (1 TPM).

miRNA target genes that were supported by two databases

(TarBase and miRecords) with experimental evidence were

retrieved for pathway analysis. For those miRNAs (clustered on

Xq27.3) without target recorded in the two databases mentioned

above, we only retained those putative targets uniformly predicted

by miRanda and miRmap 2.0.

Pathway analysis of differentially expressed genes and
miRNAs

KEGG pathway analysis was performed the using Cytoscape

V2.6.3 (http://cytoscape.org/) with the ClueGo plug-in. Right-

side hypergeometric tests were used to identify pathways enriched

in deregulated genes. Benjamini-Hochberg adjustment was

applied for multiple test correction. Differentially expressed genes,

as well as target genes of deregulated miRNAs were mapped onto

KEGG pathways for network construction.

All KEGG genes that were differentially expressed in at least

two patients were prioritized against each pathway by gene set

enrichment analysis (GSEA) according to their expression levels in

all of the samples. Core genes or miRNA targets ranked at the top

or bottom of each pathway gene list were most significantly altered

between tumors and normal adjacent tissues (called leading edge

in GSEA). An individual gene or miRNA target may be implicated

in the leading edge of multiple pathways, and the numbers of

pathways in which the core genes or miRNAs were implicated

were determined by the leading edge analysis. In addition, to

further reveal the roles of miRNAs and genes in ccRCC, we

subsequently constructed a dataset based on all 29 pathways

catalogued under the hierarchical designation of ‘pathways in

cancer’ (ko05200) in the KEGG database for GSEA. miRNAs and

genes ranked in the leading edge of these cancer-associated

pathways may play more important roles than others in

tumorigenesis.

Validation of the expression of miRNAs and mRNAs by
qPCR

To validate the expression levels of the known miRNA and

mRNA genes determined by deep sequencing, qPCR primers

were selectively designed for six miRNA and six mRNA genes. Six

genes (VEGFA, YWHAH, DUSP9, NR4A1, HSPA2 and ERBB4) that

were differentially expressed in all patients in the discovery screen

were validated in both tumor and normal adjacent tissues from the

10 ccRCC patients using qPCR. b-actin was selected as the

internal control. In brief, 2 mg of total RNA from each sample was

reverse transcribed for cDNA synthesis using a reverse transcrip-

tion kit according to the manufacturer’s protocol (Promega,

Madison, WI). The reverse transcription products were amplified

using the following PCR program: 94uC for 4 min, followed by 30

cycles of 94uC for 30 sec, 55uC for 30 sec, 72uC for 30 sec and

then extension at 72uC for 10 min. Six miRNAs (miR-122, miR-

210, miR-184, miR-206, miR-660 and miR-502-3p) that were

deregulated in all patients were also selected for validation by

qPCR using the miScript Reverse Transcription and miScript

SYBR Green PCR Kits according to the manufacturer’s protocol

(Qiagen, Germany) and snRNA U6 was used as the internal

control. PCR was performed for both tumor and normal tissue

samples using the following program: 95uC for 15 minutes,

followed by 40 cycles of 94uC for 15 sec, 55uC for 30 sec and

72uC for 30 sec.

The expression levels of miR-509-5p, miR508-3p, miR-514,

miR-509-3-5p and miR-509-3p, as well as their putative target

genes (PSMA1, LDHA, HK1 and VEGFB) were evaluated in both

the tumor and normal adjacent tissues obtained from ,50 ccRCC

patients by qPCR. The PCR programs and reverse transcription

kits used were as mentioned above.

We randomly selected 14 novel miRNAs candidates for

validation by qPCR. Briefly, after adding poly(A) to the end

of mature miRNAs with poly(A) polymerase, reverse-transcrip-

tion was performed using oligo-dT and random primers.

Using the resulting cDNA products as templates, real-time

PCR was performed with miRNA-specific primers and uni-

versal primers provided by the miScript SYBR Green PCR

Kit. The purified qPCR products excised from agarose gels

were cloned into the PMD18-T vector (TAKARA, Dalian,

China) for subsequent sequencing on an AB 3730 DNA

analyzer. All of the primers used in the validation assays are

listed in Table S9.
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