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Abstract: Gene-based testing is a commonly employed strategy in many
genetic association studies. Gene-trait associations can be complex due to
underlying population heterogeneity, gene-environment interactions, and
various other reasons. Existing gene-based tests, such as Burden and Se-
quence Kernel Association Tests (SKAT), are based on detecting differences
in a single summary statistic, such as the mean or the variance, and may
miss or underestimate higher-order associations that could be scientifically
interesting. In this paper, we propose a new family of gene-level association
tests which integrate quantile rank score processes to better accommodate
complex associations. The resulting test statistics have multiple advantages:
(1) they are almost as efficient as the best existing tests when the associa-
tions are homogeneous across quantile levels, and have improved efficiency
for complex and heterogeneous associations, (2) they provide useful insights
on risk stratification, (3) the test statistics are distribution-free, and could
hence accommodate a wide range of underlying distributions, and (4) they
are computationally efficient. We established the asymptotic properties of
the proposed tests under the null and alternative hypothesis and conducted
large scale simulation studies to investigate their finite sample performance.
We applied the proposed tests to the Metabochip data to identify genetic
associations with lipid traits and compared the results with those of the
Burden and SKAT tests.

Keywords and phrases: Quantile process, Rank score test, Gene-set as-
sociations, Sequencing analysis.

1. Introduction

Gene-based association tests have important advantages over individual variant
tests in GWAS analyses. By directly identifying associated genes, they greatly
improve functional interpretation. From the statistical perspective, the number
of tests is greatly reduced, which brings down the penalty for multiple testing,
and leads to more powerful tests. The increasing efficiency of generating large-
scale genome sequencing datasets such as the data from the NHLBI Trans-
Omics for Precision Medicine (TOPMed) Program (Taliun et al., 2019) also
motivated the development of gene-based association tests (Morgenthaler and
Thilly, 2007; Li and Leal, 2008; Morris and Zeggini, 2010; Wu et al., 2011,
2013; Chen et al., 2019; He et al., 2019; Ionita-Laza et al., 2011). As many
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variants identified in those studies have low population frequencies, the primary
test of interest is to test whether a group of variants within a region, such as
a gene or noncoding region, are associated with a phenotype of interest. The
existing tests include the Burden tests and the sequence kernel association tests
(SKAT). The Burden tests aggregate information across the variants within
a gene or region and then test for association between the resulting variant
burden score and a phenotype of interest. Burden tests assume that genetic
variants associated with the phenotype exhibit the same direction of association
and have similar magnitude of effect (Bomba, Walter and Soranzo, 2017). The
SKAT tests (Wu et al., 2011; Lee, Wu and Lin, 2012) relax these assumptions
by allowing a mixture of risk and protective variants, and allowing only a small
percentage of causal variants in a region. Both tests are commonly used in
the literature. Though many studies are focused on association tests with rare
variants, tests for the joint effects of rare and common variants are desirable
given the important contribution that common variants have to risk for complex
traits and the current modest sample sizes for most sequencing studies (Han and
Pan, 2010; Wang, Lu and Zhao, 2015). Several such tests have been proposed
in the literature, including the combined multivariate and collapsing (CMC)
method (Li and Leal, 2008), and extensions based on SKAT (Ionita-Laza et al.,
2013). In this paper, we propose a gene-level quantile association test that helps
identify the heterogeneous gene-trait associations.

Heterogeneous Genetic Associations Most existing tests evaluate whether
genetic variants are associated with the mean of the phenotype (Madsen and
Browning, 2009; Morgenthaler and Thilly, 2007; Wei, Hemani and Haley, 2014),
with only a few testing for effects on the variance (Schultz, 1985; Brown et al.,
2014). However, genetic associations can be complex due to underlying hetero-
geneity in population and disease model, and the dynamic influence of gene-gene
and gene-environment interactions (Manchia et al., 2013). Several recent studies
have reported that genetic variants can influence other aspects of the pheno-
type distribution than the mean. For instance, Yang et al. (2012) showed that
a SNP in the FTO gene is not only associated with the mean of body mass in-
dex (BMI) but also with its variance. Similarly, variance quantitative trait loci
(vQTLs) have been identified (Brown et al., 2014; Paré et al., 2010; Wang et al.,
2019). Identifying heterogeneous, higher order associations is a complementary
way to make new genetic discoveries, and which can lead to more accurate risk
stratification.

Quantile-based approaches have been applied in several genetic studies (Briol-
lais and Durrieu, 2014; Beyerlein et al., 2011), which reported heterogeneous
quantile-specific genetic effects on diverse complex traits. For example, Beyer-
lein et al. (2011) applied quantile regression to study the association between
BMI and eight selected genetic variants, and found that their effect on childhood
BMI is more pronounced among children with larger BMI. Song et al. (2017)
also found that the eQTLs (expression quantitative trait loci) with heteroge-
neous quantile effects are associated with strong GWAS enrichment. Despite
these significant findings for individual genetic variants, quantile-based associa-
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tions have not been investigated for gene-based or set-based associations.
Such heterogeneous genetic associations were also found in the Metabochip

study, which collected genotyping array data to assess associations with multiple
traits (Voight et al., 2012). We take the associations between genes and the lipid
trait triglycerides as a motivating example. To illustrate, we use the Norwegian
sample in the Metabochip study with n = 2, 793. We select two genes LPL and
ZPR1, which are among the top significant genes associated with triglycerides
(He et al., 2019; Ference et al., 2019; Ueyama et al., 2015; Justice et al., 2018).
For each subject, we calculate the mutation burden for each of the two genes
LPL and ZPR1, i.e. Si =

∑
j wjXij , where Xij is the j-th variant of i-th in-

dividual in the gene, and wj is the variant-specific weight in Ionita-Laza et al.
(2013). We then stratify individuals according to the quartiles of Si. We view
the subjects in the lowest quartile (≤ 25%) as the low mutation group, and those
in the top quartile (≥ 75%) as the high mutation group. We plot in Figure 1 the
empirical quantile curves of triglycerides among low and high mutation groups,
overlaid with 95% bootstrap confidence band. The difference between two em-
pirical quantile functions describes how a gene impacts the different parts of the
distribution. We observed that LPL showed significant associations only at the
upper quantiles, while ZPR1 showed significant associations across all quantiles,
with larger differences for larger quantile levels.

0.0 0.2 0.4 0.6 0.8

1
2

3
4

5

gene: LPL, site: Norwegian, trait: TG

tau

E
m

pi
ric

al
 q

ua
nt

ile
 fu

nc
tio

n 
of

 T
G

low mutation group

CI for low mutation group

high mutation group

CI for high mutation group

0.0 0.2 0.4 0.6 0.8

1
2

3
4

5

gene: ZPR1, site: Norwegian, trait: TG

tau

E
m

pi
ric

al
 q

ua
nt

ile
 fu

nc
tio

n 
of

 T
G

low mutation group

CI for low mutation group

high mutation group

CI for high mutation group

Fig 1. Empirical quantile function of Y for genes LPL (left) and ZPR1 (right) in Norwegian
site. 95% empirical confidence band is computed through bootstrap with 1000 replicates.

Integrating such heterogeneity into testing could potentially increase the
power, identify new genes, and provide useful insights on distributional differ-
ences. To this end, we proposed a new Integrated Quantile RAnk Test(iQRAT)
to determine whether genetic variation within a gene leads to distributional
differences in Y .

The proposed iQRAT uses quantile regression (Koenker and Bassett, 1978) to
estimate the entire quantile process, and integrate its rank-score process(Gutenbrunner
et al., 1993; Koenker et al., 2010) with various weighting schemes. Each weight
scheme prioritizes a pattern of distributional difference that can be observed
in genetic associations. These weighted test statistics are then combined for an
overall gene-based association test. By construction, iQRAT is distribution-free.
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Hence, it generalizes the classical SKAT and Burden tests to accommodate a
wide range of distributions and more complex associations. They are also invari-
ant to normalization transformations, which allows more direct interpretations.
We establish the asymptotic properties of iQRAT under both null and local
alternative hypotheses, and extensively compare both asymptotic efficiency and
empirical power of the proposed iQRAT tests with existing approaches. In both
theoretical and numerical investigations, we observed the enhanced power for
detecting more complex and heterogeneous associations, especially when the
target gene contains a mixture of common and rare variants. When the data are
normal with homogeneous association, the iQRAT tests are almost as efficient
as the classical SKAT-based test. In addition, as each weight function prioritizes
certain distributional differences, post-hoc analyses on individual weighted test
statistics can provide useful insights of the nature of gene-trait associations.

The rest of the paper is organized as follows: we present the proposed method-
ology and related asymptotic properties in Sections 2 and 3; in Section 4, we
present a large scale simulation study to investigate the type I error and power
under various models; in Section 5, we applied the proposed test in Metabochip
data (Voight et al., 2012) to identify genes associated with lipid traits; in Sec-
tion 6, we discuss the advantages and limitations of the proposed method. Proofs
for the asymptotic results and more plots are presented in the Supplementary
Material.

2. Methodology

2.1. Notations and background

Throughout the paper, we denote a random sample as (Yi,Xi,Ci), i = 1, ..., n,
where Xi = (Xi1, . . . , Xip) is the p-dimensional genotype vector in a region (e.g.,
a gene) for the ith individual, Yi is the trait value, and Ci = (Ci1, . . . , Ciq) is
a q-dimensional covariate vector for the ith individual. The genotype vector Xi

can be a mixture of both rare and common genetic variants. The goal is to
determine whether any of the p genetic variants is associated with the outcome
Yi. The classical linear model for genetic associations can be written as

E(Yi|Xi, Ci) = α0 + Ciα+ Xiβ, (1)

where β = (β1, . . . , βp)
> are regression coefficients for the p genetic variants.

The hypothesis of interest is H0 : β = 0, i.e. the mean of Yi is unrelated to Xi.
To test β = 0 in eq (1), the Burden and SKAT test statistics have been

proposed (Wu et al., 2011; Lee, Wu and Lin, 2012; Morgenthaler and Thilly,
2007; Li and Leal, 2008). They can be written in the form

Qρ = (Y − µ̂0)>Kρ(Y − µ̂0),

where Y is the vector of the outcome Yi, µ̂0 is the vector of estimated means un-
der the null model (i.e all β’s equal to zero), Kρ = XWRρWX>,Rρ = (1−ρ)I+
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ρ11> specifies an exchangeable correlation matrix, and W = diag(w1, . . . , wp)
is a diagonal weight matrix. The weights w1, . . . , wp are pre-determined and
assigned to each genetic variant. The choice of weights depends on individual
application, according to the probability of these variants to be functional and
hence more likely to influence the trait. By default, the weights are inversely
proportional to the minor allele frequencies (MAF) of the variants. Other func-
tional scores such as CADD, DANN, FunSeq2, LINSIGHT, Eigen, FUN-LDA
or DeepSEA can also be chosen (Kircher et al., 2014; Ionita-Laza et al., 2016;
Quang, Chen and Xie, 2014; Huang, Gulko and Siepel, 2017; Backenroth et al.,
2018; Lu et al., 2016; Zhou and Troyanskaya, 2015). The Burden test and the
SKAT test are special cases for ρ = 1 and ρ = 0, respectively. They can be
written as

QSKAT =

p∑
j=1

w2
j

[
n∑
i=1

(Yi − µ̂i,0)Xij

]2
, QBurden =

 p∑
j=1

wj

n∑
i=1

(Yi − µ̂i,0)Xij

2

.

The null distribution of QBurden is a scaled χ2
1 distribution, and the null dis-

tribution of QSKAT follows a mixture of χ2
1 distributions. The p values can be

calculated based on the Davies method (Davies, 1980).

2.2. Proposed Integrated Quantile RAnk Test (iQRAT)

To test the genetic association across quantiles, we extend the mean model (1)
to the following conditional quantile model of Y given a genetic and covariate
profile (X,C),

QYi
(τ |Ci,Xi) = α0(τ) + C>i α(τ) + X>i β(τ),∀τ ∈ (0,1), (2)

where β(τ) = (β1(τ), β2(τ), ..., βp(τ))> is the p-dimensional quantile coefficient
functions associated with the gene Xi, α(τ) are those associated with the co-
variate Ci, α0(τ) is the intercept function. One can view α0(τ) as the quantile
function of Y when both X and C are zero. In the rest of the paper, we call
F (·) = α−10 (τ) the error distribution of Model (2).

Next, we propose a new group-wise quantile association test to test the hy-
pothesis

H0 : β(τ) = 0, ∀ τ ∈ (0, 1),

i.e., whether the quantile function of Y is related to the genotypes X at any
quantile level τ ∈ (0, 1). We call the proposed test Integrated Quantile RAnk
Test (iQRAT). We construct iQRAT as follows:

Step 1: Estimate the conditional quantile process under the null
model, and construct individual quantile rank score processes
accordingly. Under the null hypothesis β(τ) = 0, the conditional quan-
tile of Y given X and C can be written as QY (τ |X,C) = C>α(τ). We use
quantile regression to regress Y against C over the entire quantile process,
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and denote the resulting estimates as α̂null(τ). We refer to Koenker et al.
(1990); Gutenbrunner et al. (1993); Koenker et al. (2014); Wei and Carroll
(2009) for technical details of quantile process estimation.
For each observation, we define its rank-score process (under the null) by

âi(τ) = 1{Yi < Ciα̂null(τ)} − τ,

where 1{Yi < Ciα̂null(τ)} is a binary indicator whether Yi stays un-
derneath the τ -th estimated conditional quantile. If the null hypothesis
β(τ) = 0 is true, we expect the score function E(âi(τ)) = 0 for any
τ ∈ (0, 1). A deviation from zero at any quantile level τ suggests the
existence of genetic associations.

Step 2: Integrate âi(τ) over τ with multiple weight functions. As âi(τ)
indicates quantile-specific associations, a natural way to measure the over-
all genetic association is to integrate âi(τ) over quantile levels τ . We con-
sider weighted integrations to enhance the detection of heterogeneous as-
sociations.
Let ϕ : (0, 1) → R be a non-decreasing square-integrable function. We
integrate each âi(τ) over τ with respect to the ϕ(·) by

φ̂ϕi =

∫ 1

0

âi(τ)dϕ(τ), i = 1, ..., n.

The integrated rank score φ̂ϕ essentially accumulates the evidence across
quantile levels, and uses the first derivative ∂ϕ(τ)/∂τ as the weight func-
tion to assign different weights at different quantile levels.
When ϕ(τ) is a linear function of t, the resulting rank score φ̂ϕ is an
unweighted average over quantile process, and hence is equivalent to the
mean effect. Following the notations in (Gutenbrunner and Jurecková,
1992; Gutenbrunner et al., 1993; Koenker et al., 2010), we call ϕ1(τ) = τ
as the Wilcoxon weighting function. Several studies, including Zou et al.
(2008); Kai, Li and Zou (2010), estimated the mean by averaging quantile
functions, and found that it leads to more efficient mean estimation than
the classical least square estimators in the presence of non-normal errors.
Besides ϕ1(τ) = τ , we also consider the following three weight functions:
(1) The Normal weighting function: ϕ2(τ) = Φ−1(τ), where Φ(·) is the
standard normal distribution function, (2) The Lehmann weighting func-
tion: ϕ3(τ) = − log(1−τ)−1, and (3) Inverse-Lehmann weighting function:
ϕ4(τ) = log(τ) + 1.
Figure 2 displays the four weight functions and their first derivatives,
ϕ1(τ) (Wilcoxon weighting), ϕ2(τ) (Normal weighting), ϕ3(τ) (Lehmann
weighting) and ϕ4(τ) (Inverse-Lehmann weighting). As shown, ∂ϕ2(τ)/∂τ
is symmetric around the median with heavier weights at the two tails. The
resulting integrated rank score is asymptotically optimal for Gaussian er-
ror under the location shift model (Gutenbrunner et al., 1993). On the
other hand, the first derivatives of Lehmann and Inverse Lehmann weight
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Fig 2. The quantile weighting functions ϕ (top) and their first derivatives dϕ/dτ (bottom):
ϕ1(Wilcoxon), ϕ2(Normal), ϕ3(Lehmann) and ϕ4(Inverse Lehmann).

functions are asymmetric. The Lehmann weights ∂ϕ3(τ)/∂τ assign in-
creasingly higher weights at the upper tail. As a result, it is optimal to
detect distributional differences at upper tails. In contrast, the Inverse
Lehmann weight function focuses on the differences at the lower tails.

Step 3: Construct iQRAT test statistics for each ϕ. For each weighting
function ϕ, we construct the following test statistics:

Sϕ = n−1/2
n∑
i=1

X∗>i φ̂ϕi ,

where X∗i is the genotype vector after being orthogonalized against the
covariate matrix. Let Cn be the n × q design matrix associated with the
covariates, and PC = Cn(C>n Cn)−1C>n is the projection matrix onto the
linear space of Cn. X∗i is the ith row of the matrix X∗ = (I − PC)Xn,
where Xn is the n × p design matrix associated with the genotypes. The
orthogonalization ensures the asymptotic independence between the ge-
netic association and covariates. The test statistic Sϕ is in the category
of rank-based statistics (Sidak, Sen and Hajek, 1999; Gutenbrunner et al.,
1993). We propose two integrated quantile rank test (iQRAT) statistics
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that generalize the SKAT and Burden tests in the following forms:

QϕS = Sϕ>W 2Sϕ =

p∑
j=1

w2
j

(
n∑
i=1

φϕi X
∗
ij

)2

, (3)

QϕB = Sϕ>W1p1
>
pWSϕ =

 p∑
j=1

wj

n∑
i=1

φϕi X
∗
ij

2

, (4)

where W = diag(w1, ..., wp) is the diagonal weight matrix for p individual
genetic variants. The weights wj ’s are pre-determined, and measure the
relative likelihood of the jth genetic variant to be functional. We discuss
the details of the choice of W in the subsequent section 2.3. In section 3,
we establish the asymptotic distributions of QϕS and QϕB under both the
null and alternative hypotheses.

Step 4: Combine ϕ-specific tests into the final iQRAT test. As each quan-
tile weighting function captures a certain type of association pattern, we
propose to integrate the rank-score process using each of the four ϕ(τ)
functions, and then use the Cauchy combination test recently proposed
in Liu and Xie (2018) combine their p-values into the final iQRAT test.
Let p1, ..., pk be k p-values, which follow a uniform (0,1) distribution un-
der the null hypothesis. The Cauchy p value combination method com-
bines them by computing

∑k
i=1 tan{(0.5 − pi)π}/k. One can show that

tan{(0.5− pi)π} follows a standard Cauchy distribution for any i. Conse-

quently,
∑k
i=1 tan{(0.5 − pi)π}/k is also a standard Cauchy distribution

for any k. In other words, the test correlations have limited effect on the
tail distribution of Cauchy combined p-values, and we easily use the stan-
dard Cauchy distribution to determine the overall p-value of the combined
statistic. The Cauchy combination method is computationally simple and
allows the combined tests to be correlated. The unified test statistic shows
robust power improvement, while the test statistic with single quantile
weighting function can provide useful insights into the possible local asso-
ciation patterns.

Remark 1. The test statistics QϕS and QϕB are in the category of rank-score
test, but are distinct from the existing rank score tests in quantile regression
(Koenker et al., 2010). Due to the existence of rare variants, the covariance
matrix of S is nearly singular. Hence the classical rank-score test in (Koenker
et al., 2010; Gutenbrunner et al., 1993) and its multivariate version in Song
et al. (2017) cannot be applied directly. The asymptotic and empirical properties
need to be investigated separately.

Remark 2. There are several existing approaches in literature to combine mul-
tiple p-values, such as the Fisher’s method, minimum p-value, higher criticism,
Berk-Jones (Fisher, 1992; Dudoit et al., 2003; Jin, 2006; Moscovich, Nadler and
Spiegelman, 2016; Sun et al., 2019). In our approach, the p-values from the same
set of variants with different score functions ϕ(τ) are highly correlated. These
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traditional approaches for combining p-values require resampling or permutation
to estimate the correlations, which are computationally expensive. That is why
we employ here the Cauchy combination method.

2.3. iQRAT test with Variants Stratification

In this section, we discuss the practical consideration of implementing the pro-
posed iQRAT, which includes (1) the stratification of common and rare variants,
and (2) the rationale behind the choice of four quantile weighting functions.

Variants Stratification In gene-based association tests, assigning weights to
individual variants is a common strategy to enhance the power of the test by
leveraging external knowledge (Wu et al., 2011; Ionita-Laza et al., 2013; Madsen
and Browning, 2009). The weights are often chosen to be inversely proportional
to the MAFs. The underlying rationale is that rare or low frequency variants
are more likely to be disease associated.

For many complex traits, risk variants may range from rare to common (Li
and Leal, 2008). Several studies (Wu et al., 2011; Lee, Wu and Lin, 2012; Jeng
et al., 2016; Bomba, Walter and Soranzo, 2017) reported that a single MAF-
based weighting scheme often over-penalizes the common variants, and in turn
undermines the detection of gene-level associations. For this reason, we follow
the recommendations in Ionita-Laza et al. (2013) to stratify the variants into
rare and common groups.

Let pj be the sample MAF of the jth variant in a target gene. We use an
adaptive threshold 1/

√
2n, where n is the total sample size, to stratify the

variants. Specifically, we assign a variant to the common group if pj > 1/
√

2n,
and assign a variant to the rare group, if pj ≤ 1/

√
2n. After the partition,

we construct the iQRAT test statistics separately for the common and rare
variants. For common variants, we construct the iQRAT test statistics using
all the four score functions ϕ(τ) respectively, and using the variant weights
wj = Beta(pj , 0.5, 0.5) where Beta stands for the density function of a Beta-
distribution. Following the outlined procedure in the precedent section, we use
Cauchy Combination to combine the p-values from the four ϕ specific iQRAT
statistics. We denote the resulting p-value as pcommon. For rare variants, we
only construct the iQRAT statistics using the Normal (ϕ2) and Wilcoxon (ϕ1)
score functions, and use the variant weights wj = Beta(pj , 1, 25). We also use
the Cauchy combination method to obtain the p-value for rare variants, prare.
Finally, we use the Cauchy combination to combine pcommon and prare into the
final p-value for the target gene. Figure 3 displays the flow chart of the proposed
iQRAT test procedure.

Rationale behind the choice of weights for the rare variant test The
Lehmann and Inverse Lehmann score functions are designed to prioritize the
tail differences at extreme quantiles. In the rare variant group, we often do not
have enough carriers of such rare variants. As a result, we do not have sufficient
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Fig 3. Implementation procedure for iQRAT test for rare and common variants.

samples to detect a tail difference. Incorporating those score functions into the
rare variant tests could lead to variance-inflation, and increased false positive
rates. Same as in Ionita-Laza et al. (2013), we used different variant weights
for common and rare variants, since they are optimized for common and rare
variants, respectively. Instead of combining all the 6 p-values (4 for common
variants, and 2 for rare variants) at once, we used two-stage combinations. We
first combine the p-values within common and rare groups separately, and then
combine pcommon and prare in the second stage. Such design is to ensure the
equal contribution of rare and common variants.

3. Asymptotic results

3.1. Asymptotic distributions for QB and QS

In this section, we establish the asymptotic distributions for the test statistics
QϕS and QϕB respectively under the null hypothesis and a set of local alternatives.

The two iQRAT test statistics QϕS and QϕB , as defined in eq(3)-(4), are built

upon the rank-score statistics Sϕ = n−1/2
∑n
i=1 X∗>i φ̂ϕ. We first establish the

asymptotic normality of Sϕ in the following theorem. To do so, we make a
few assumptions. We assume that the errors are independent and identically
distributed with an absolutely continuous density f . The quantile weighting
function ϕ is nondecreasing and square-integratable over (0, 1). We also impose
some mild conditions on the design matrix (1,C) to obtain a valid Bahadur
representation of regression quantiles. We outline the detailed conditions in Sup-
plementary Material, see Conditions A-C. They are consistent with the quantile
rank score literature (Gutenbrunner et al., 1993). Under those conditions, we
establish the asymptotic normality of Sϕ in the following theorem, and derive
the asymptotic distributions of QϕS and QϕB accordingly. For simplicity, we define
Σ = n−1X∗>X∗, i.e. the component that does not depend on ϕ(·) and the error
distribution.
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Under the null hypothesis

Theorem 1. Under the conditions A-C (in the Supplementary Material), and
under the null hypothesis H0 : β(τ) = 0, we have

1. Sϕ follows asymptotically a normal distribution Sϕ = AN(0, σ2
ϕΣ), where

σ2
ϕ =

∫
(ϕ(t)− ϕ̄)2dt and ϕ̄ =

∫ 1

0
ϕ(t)dt.

2. QϕS is asymptotically a mixture of χ2
1 distributions: QϕS = σ2

ϕ

∑p
j λjχ

2
1,

where λjforj = 1, ...,m are positive eigenvalues of Σ1/2W 2Σ1/2; If Σ1/2W 2Σ1/2

is semi-positive definite, we sum over the first p positive eigenvalues in-
stead of all m eigenvalues.

3. QϕB follows a scaled χ2
1 distribution: QB = σ2

ϕλχ
2
1, where λ = 1>pWΣW1p.

The rank-score statistics Sϕ is distribution-free in the sense that its asymp-
totic distribution under the null hypothesis only depends on the score/weight
function ϕ(t) and the design matrix. This feature makes it flexible to accommo-
date a wide range of trait distributions. The p value of QϕS can be approximated
efficiently using Davies method based on the numerical inversion of the charac-
teristic function (Davies, 1980).

Under the alternative hypothesis When β(τ) 6= 0, the test statistics QϕS
and QϕB have no longer mean zero. Their non-central parameters η depend on
the form of alternatives β(τ), error distribution F and the weight score function
ϕ(τ). Theorem 2 presents the asymptotic distributions of QϕS and QϕB under
alternatives.

Theorem 2. Under the conditions A-C (in the Supplementary Material), we
have

1. Sϕ follows asymptotically a normal distribution Sϕ = AN(ξ>Σ, σ2
ϕΣ),

where ξ = (ξ1, ..., ξp), and ξj =
∫ 1

0
f(F−1(τ))βj(τ)dϕ(τ) for j = 1, ..., p;

2. The distribution of QϕS converges to a linear combination of non-central

chi-square distributions QϕS
d−→
∑m
j σ

2
ϕλjχ

2
1(ηj), where λj’s are the positive

eigenvalues of Σ1/2W 2Σ1/2 and ηj’s are non-central parameters. Let U be
an orthonormal matrix which satisfies Λ = UΣ1/2W 2Σ1/2U> and Λp×p =
diag(λ1, ..., λm, 0, ..., 0). We can write the non-central parameters ηj = µ2

j

where µj is the jth element of µ = UΣ−1/2ξ/σϕ.
3. The distribution of QϕB converges to a scaled non-central chi-square distri-

bution QB = λχ2
1(η), where η = ξ>ΣW1p1

>
pWΣξ and λ = σ2

ϕ1>pWΣW1p.

Proofs for Theorems 1-2 can be found in the Supplementary Material.
In theory, one can choose an optimal ϕ(τ) by maximizing the non-central

parameter. However, the non-central parameters depend on actual β(τ) and
F , which are often unknown and could be very different across genes. Hence,
it is hard to identify a simple ϕ(τ) that works for all genes. Adaptive ϕ(τ)
is appealing but often numerically challenging. Hence combining multiple pre-
determined but representative weight functions ϕ is a more practical strategy
to accommodate complex associations and to enhance the statistical power.
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3.2. Asymptotic efficiency of the iQRAT tests

In this section, we compare the asymptotic efficiency of the proposed iQRAT
tests with their mean-based counterparts under various alternative settings. As
we derived in Theorem 2, the asymptotic distribution of Qϕ is the same as
the distribution of σ2

ϕ

∑
j λjχ

2
1(ηj), where χ2

1(ηj)’s are independent non-central
chi-square distributions with non-central parameters ηj and degree-of-freedom

1. The non-central parameters ηj = ξ>u>j ujξ/(σ
2
ϕλj), where λj and uj only

depend on X, σ2
ϕ =

∫
(ϕ(t) − ϕ̄)2dt, ϕ̄ =

∫ 1

0
ϕ(t)dt, ξ = (ξ1, ..., ξp) and ξj =∫ 1

0
f(F−1(τ))βj(τ)dϕ(τ) for j = 1, ..., p. On the other hand, the asymptotic

distribution of QSKAT shares the same form, except that ξ is replaced by β =

(β1, ..., βp) and βj =
∫ 1

0
βj(τ)dτ for j = 1, ..., p, and σ2

ϕ is replaced by σ2 =

β
2
σ2
x + σ2

e = β
2

+ σ2
e .

To this end, we define eff(T ) = µ2(T )/Var(T ) as the efficiency measure of
a test statistics T , where µ(T ) and Var(T ) are its asymptotic mean and vari-
ance. Without loss of generality, we assume that X is univariate with variance
1. Similar results hold for multiple dimensional X. In this univariate setting,
SKAT-type test statistics are equivalent to Burden-type tests, and we denote
them both as Qmean. It follows that we can write the efficiency eff(Qϕ) and
eff(Qmean) as

eff(Qϕ) =
(1 + ξ2/σ2

ϕ)2

2(1 + 2ξ2/σ2
ϕ)

and eff(Qmean) =
(1 + β̄2/σ2)2

2(1 + 2β̄2/σ2)
.

The efficiency depends on the alternative hypothesis and its corresponding quan-
tile effect β(τ), the error distribution F (·) and the quantile weighting function
ϕ(τ). Since normalization is a common practice in genetic association tests,
we consider F (·) as a standard normal distribution in this section. Empirical
power comparisons with non-normal distributions can be found in the section
on simulations. We consider four local alternative hypotheses, along with the
corresponding quantile effects for the settings we present in the simulation sec-
tion.

1. Location shift: β(τ) = βn, where βn = β0/
√
n.

2. Location-scale shift: β(τ) = β1n +β2nF
−1(τ), where β1n = β1/

√
n, β2n =

β2/
√
n; β2 = β1/2.

3. Lehmann shift (upper tail): β(τ) = F−1(1 − (1 − τ)βn) − F−1(τ), where
βn = 1 + β0/

√
n. This is equivalent to comparing two distributions F (x)

and G(x), where G(x) = F βn(x).
4. Lehmann shift (lower tail): β(τ) = F−1(τβn) − F−1(τ), where βn = 1 +
β0/
√
n. This is equivalent to comparing two distributions F (x) and G(x),

where G(x) = F 1/βn(x).

A visualization for Lehmann shift (lower/upper quantile effects) can be found
in the Supplementary Material. Results are presented in Figure 4. We observed
that the Normal and Wilcoxon quantile weighting functions are more efficient
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Fig 4. Compare relative efficiency for different test statistics under the location shift (top
left), location-scale shift (top right), upper-tail Lehmann alternatives (bottom left), and
lower-tail Lehmann alternatives (bottom right). In each figure, we present the relative effi-
ciency for proposed test statistics Qϕ based on four quantile weighting functions Wilcoxon,
Normal, Lehmann and Inverse Lehmann, respectively.

than the others in the homogeneous case (location shift). The Lehmann quantile
weighting function leads to higher efficiency in the location-scale shift model.
For the Lehmann shift model, where the signals are concentrated in the upper
tail or lower tail, the corresponding Lehmann function and Inverse Lehmann
function are the best, as expected.

4. Simulation

4.1. Simulation Models and Settings

In this section, we present a simulation study to demonstrate the finite sample
performance of the proposed tests under various genetic models and various
trait distributions. We compare the proposed iQRAT statistics (QS and QB)
to the traditional mean-based tests. Specifically, we compare the proposed QS
test to the SKAT-C test proposed in Ionita-Laza et al. (2013). SKAT-C is a
test for the joint effects of rare and common variants. We also compare the
proposed QB test to the Burden-C test in Ionita-Laza et al. (2013). These
SKAT and Burden tests were implemented via the function SKAT CommonRare

in the R package SKAT (Lee, with contributions from Larisa Miropolsky and
Wu, 2017). In the following, we denote the unified QS as iQRATS-mix, and
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denote QϕS with different quantile weighting functions ϕ as iQRATS-W/-N/-L/-
invL, corresponding to Wilcoxon/Normal/Lehmann/Inverse Lehmann function
respectively. Similar notations are adopted for QB .

We simulate (yi,Xi,Ci) with i = 1, ..., n to reflect the complexities of real
genetic association studies with sequencing data, including different genetic cor-
relation structures, different directions of effects, and assume sparsity of causal
effects within a gene. In each simulated data, the genotype matrix (X) is simu-
lated from the R package SKAT (Lee, with contributions from Larisa Miropolsky
and Wu, 2017) mimicking the data structure in sequencing studies. We use more
than 100,000 Monte Carlo replicates. The reference data set from SKAT package
consists of 10,000 haplotypes over a 200kb region, including 3,845 variants. These
haplotypes were simulated using a calibrated coalescent model (COSI, (Schaffner
et al., 2005)), mimicking linkage disequilibrium structure in populations of Eu-
ropean ancestry. For each simulated dataset, we randomly selected a roughly
3.5kb region from the reference data, and treated it as the “targeted” gene. We
then generated individual genetic profiles Xi in that “gene” by randomly draw-
ing and combining two haplotypes from the 10,000 haplotypes. Moreover, we
calculate sample MAF of all the variants in each selected region/gene from the
reference data, and randomly picked 20% common variants and 30% rare vari-
ants as causal variants. Additional simulations for different sparsity of effects
are included in the Supplementary Material, as the results are similar to what
have been presented in this section. According to the asymptotic theorem, under
the alternative hypothesis, the power of iQRAT with single quantile weighting
function depends on the alternative hypothesis, the error distribution and the
quantile weighting function itself. Hence, we consider different quantile mod-
els to generate the phenotype Yi, and consider four error distributions, namely
N(0, 1), χ2

2, Cauchy(1, 0), and t2. In all the models, we assume the covariate
Ci ≈ N(4, 1).

Global Model 1: a location model. We assume that the phenotype Yi fol-
lows the model

Yi = 1 + 1.2Ci + Xiβ + ei i = 1, ..., n,

where Xi is the vector of genotypes for the i-th individual at the k causal
variant, β = (β1, .., βj , ..., βk), βj = β| log10(mj)| and mj represents the
sample MAF of the jth causal variant. In this model, quantile effect is
constant across all quantiles. We let β = 0.3 when the error distribution
of ei is N(0, 1) or χ2

2, and let β = 0.6 when the error distributions are
Cauchy(1, 0) or t2 with heavy tails and larger variation.

Global Model 2: a location-scale model. We simulated phenotype Yi from
the following model,

Yi = 1 + 1.2Ci + Xiβ + (1 + Xiγ)ei, i = 1, ..., n, (5)

where βj = β| log10(mj)|, γj = γ| log10(mj)|. In this model, Xi is associ-
ated with both the mean and the variance of Y . We let γ = 0.1, β = 0.3
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when the error distribution is N(0, 1) or χ2
2; and let γ = 0.2, β = 0.6 when

the error distribution is Cauchy(1, 0) or t2.
Local Model: upper/lower quantile effect models. In this setting, we as-

sume that the conditional quantile function of the phenotype Y can be
written as

QY (τ |C,X) = 1 + 1.2C + Xβ(τ) + F−1(τ),

where β(τ) = 5β(τ − 0.7)/(1 − 0.7) when τ > 0.7 and β(τ) = 0 oth-
erwise. Here the quantile effects only exist at the upper quantiles, i.e.,
τ ∈ [0.7, 1]. We also simulate a local model with lower quantile effects
for τ ∈ [0, 0.3] in a similar fashion. Since the association only exists in a
small interval, we set β = 0.9 / 1.8 / 4.5 / 2.7 when the error distribu-
tion is N(0, 1) / χ2

2 / Cauchy(1, 0) / t2. To simulate Yi from this model,
we use the inverse quantile approach, where we randomly draw a U(0, 1)
random variable as τ , and plug it into the conditional quantile function
QY (τ |Ci,Xi).

After simulating Yi from these models, we use the quantile and rank normal-
ization in Qiu, Wu and Hu (2013) to transform Yi’s into a normal distribution.
Since quantile function is invariant to monotone transformations, the proposed
iQRAT actually produces identical results with and without normalization. We
implement the normalization for a fair comparison with the existing approaches.
Otherwise, the existing methods will have type I error inflation issues, especially
with non-gaussian errors.

Due to limited space, we present here only iQRATS-related results, and report
the results of iQRATB in the Supplementary Material.

4.2. Type I Error

We first investigate whether the proposed iQRAT (QS and QB) tests preserve
the desired type I error rate at significance levels α = 5e-02, 1e-02, 1e-03, 1e-04,
1e-05, and at the exome-wide significance level 2.5e-06. To do so, we simulated
the data with sample size n = 1, 000 under the null model, where β = γ = 0
and ei ∼ N(0, 1) in Model (5). We present in Table 1 the resulting type I error
for iQRATS from 107 Monte-Carlo replicates. As shown in Table 1, iQRATS
test statistics have controlled type I errors at all significance levels. The slight
inflation at the exome-wide significance level 2.5e-06 is still within the 95%
confidence interval. Similar results were found in other scenarios where the error
terms e follow non-Gaussian distributions. The type I error is also controlled for
iQRATB , see detailed results in the Supplementary Material.

4.3. Power

We investigate and compare the empirical power of the proposed iQRAT test
statistics and the competitors under the outlined model settings in Section 4.1.
We simulate data from each model setting with four different sample sizes n =
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α = 0.05 α = 0.01 α = 1e-03 α = 1e-04 α = 1e-05 α = 2.5e-06
iQRATS-mix 0.051 9.77e-03 9.34e-04 8.78e-05 9.10e-06 2.7e-06
iQRATS-W 0.048 9.01e-03 8.34e-04 7.13e-05 6.90e-06 1.7e-06
iQRATS-N 0.050 9.83e-03 9.44e-04 9.25e-05 1.03e-05 2.2e-06
iQRATS-L 0.050 9.90e-03 9.86e-04 1.09e-04 1.15e-05 3.2e-06
iQRATS-invL 0.050 9.90e-03 1.00e-03 1.04e-04 1.18e-05 2.8e-06

Table 1

Summary of Type I error for iQRAT test statistics. iQRAT-mix is the unified test statistic;

iQRAT-W/-N/-L/-invL is the iQRAT using single quantile weighting function

Wilcoxon/Normal/Lehmann/inverse Lehamnn.

{100, 500, 1000, 2000}. We applied the proposed iQRAT tests, as well as the
SKAT-C and Burden-C tests, to detect gene-level associations at the exome-
wide significance level α = 2.5e-06. We calculate the empirical power with 105

Monte-Carlo replicates. We present the results of iQRATS and SKAT-C with
sample size n = 1000 in this section, and present the results for other sample
sizes in the Supplementary Material. Furthermore, the results for iQRATB and
Burden-C are also presented in the Supplementary Material.

We present in Figure 5 the estimated power from 105 Monte-Carlo repli-
cates under the Global models 1-2 (i.e. Location shift and Location-scale shift).
Each sub-figure corresponds to one specific error distribution. In each sub-figure
and under each Global model, the first two bars represent the estimated pow-
ers from iQRATS-mix (the black bar) and SKAT-C (the light gray bar). The
following four bars represent iQRATS with single quantile weighting functions
(Wilcoxon/Normal/Lehmann/Inverse Lehmann), which provide insights for the
power improvement of iQRATS-mix in different scenarios. Under the location
model (i.e. homogeneous association) with normal errors, SKAT-C is slightly
more powerful than the iQRAT as expected. When the error distribution is
non-normal, iQRAT outperforms SKAT-C even after trait normalization. In
the second Global model (i.e. the location-scale model), iQRAT and SKAT-C
have comparable performance when the errors are normally distributed. When
the errors are non-normal, the iQRAT again outperforms the SKAT-C. As we
shown in the Supplementary Material, the efficiency gains are more evident as
the sample size increases.

The estimated power from the two Local Models are presented in Figure 6
with the same notations and legends. When X only impacts the tails of the
Y distribution, iQRAT outperforms SKAT-C under all error scenarios. As ex-
pected, the efficiency gain comes from the Lehmann/Inverse Lehmann weighted
iQRATs, which upweight tail differences. Same as in the Global model, the
efficiency gains are more evident as the sample size increases (see the Supple-
mentary Material).
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4.4. Post-hoc analysis:

Overall, we observed higher efficiency gain of the proposed iQRAT tests under
heterogeneous genetic associations. Unlike in traditional quantile regression ap-
plications, here we do not have a target quantile level of interest. Thus, after
identifying significant associations using the unified tests, we propose to per-
form post-hoc analyses via the single quantile weighting functions (iQRATϕ
for specific weight function ϕ), to gain insights on gene-induced distributional
differences, i.e. which part of the distribution has larger signals on gene-trait
associations. In this section, we found that such post-hoc analysis help better
understand the power gain of iQRATS-mix in each scenario.

We observed that iQRATS-W (Wilcoxon) performs best for heavy-tailed er-
rors such as the standard Cauchy and t2 distributions; That is expected, and
similar results were reported in (Zou et al., 2008). On the other hand, iQRATS-
invL (Inverse Lehmann) had best power for χ2 errors. That is because the
chi-square distribution has much higher density at the lower tail. Any location-
shift effect will induce large detectable difference at lower tail. When it comes to
local models, iQRATS-L is clearly superior in detecting the local associations at
the upper tail, while iQRATS-invL achieves the highest power for detecting the
effect at the lower tail. By examining the patterns of p-values across the four
different ϕ functions, we also learn how the target gene affects the distribution
of the phenotype Y . Such information helps better identify the individuals at
highest risk, and consequently leads to a more accurate risk stratification.
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Fig 5. Power results for iQRAT, and SKAT-C different scenarios, where causal variants are
mix of common and rare variants. The significance level is 2.5e-06.
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Fig 6. Power results for iQRAT, and SKAT-C different scenarios, where causal variants are
mix of common and rare variants. The significance level is 2.5e-06.

In reality, it is unlikely that all the conditional distributions of Y given X
and C are normally distributed. For this reason, we observed improved power
with non-normal error distributions.

5. Metabochip Data Analysis for Lipid Traits

5.1. Data Description

The Metabochip is a custom genotyping array that assays nearly 200,000 vari-
ants in order to assess associations with traits such as type 2 diabetes, fasting
glucose, coronary artery disease and myocardial infarction, low density lipopro-
tein cholesterol, high density lipoprotein cholesterol, triglycerides, body mass
index, systolic and diastolic blood pressure, QT interval, and waist-to-hip ra-
tio adjusted for BMI, etc (Voight et al., 2012). In this section, we applied the
proposed iQRAT on a Metabochip dataset focusing on 265 genes in 99 gold
fine-mapping regions. The data contain 12,281 individuals from eight studies,
including FUSION stage 2 (n = 2, 741), D2D 2007 (n = 2, 108), DPS (n = 429),
METSIM (n = 1, 439) and DR’s EXTRA (n = 1, 242) in Finland; HUNT and
Tromsø(n = 2, 793 together) in Norway; and DIAGEN (n = 1, 529) in Ger-
many. The two Norwegian cohorts are analyzed jointly as in He et al. (2018). As
a result, we have seven independent sites for the subsequent meta-analyses. We
consider four lipid phenotypes, low-density lipoprotein (LDL) cholesterol, high-
density lipoprotein (HDL) cholesterol, total cholesterol (CHOL) and triglyc-
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erides (TG). We present the results for TG in the main manuscript, and re-
port the results for HDL/LDL/CHOL in the Supplementary Material. We have
excluded samples and SNPs with call rates < 98%, and also excluded any in-
complete data with missing outcomes or covariates. The missing values in geno-
types were imputed using mean imputation. Same as in the simulation studies,
we compared the results to SKAT-C. In all the tests, we have adjusted for the
covariates gender, age, squared age, and type 2 diabetes status for each study.
For METSIM, we did not adjust for gender because it contains males only.
For the two Norwegian studies, we additionally adjusted for study region. We
did not adjust for principal components accounting for ancestry, because the
Metabochip data is targeted array rather than genome-wide. The adjustments
mentioned above are consistent with Lee et al. (2013) and He et al. (2017).

5.2. Results

Following the procedure in He et al. (2018), we first apply the different tests
to each study site, and then use Fisher’s method (Fisher, 1992) to combine the
p-values across the seven sites. As in the simulation study, we have compared
iQRATS to SKAT-C in the main text, and presented iQRATB and Burden-C in
the Supplementary Material. For each testing method, we use the exome-wide
significance level α = 2.5e-06. Both iQRATS-mix and SKAT-C identified six
significant gene-trait associations exceeding the exome-wide significance level.
The p-values from both tests as well as the single weighted iQRATs are listed in
Table 2. Although iQRATS-mix and SKAT-C found the same number of exome-
wide significant genes, the p-values from iQRATS-mix are much smaller than
those from SKAT-C with one exception. Furthermore, examining the patterns
of p-values, we found that for the genes ZPR1, LPL and BUD13, Lehmann-
weighted iQRAT gave the smallest p-values, while the inverse-Lehmann weight
reported the largest p-values. This suggests that the gene-trait associations are
stronger at upper tails than at the lower tails. And that is consistent with the
empirical evidence for heterogeneous gene-trait associations shown in Section 1.

Evidence in literature also supports that LPL is a well-known triglyceride-
lowering gene, which plays a critical role in breaking down fat in the form
of triglycerides (Ference et al., 2019). For ZPR1, as effects are evident across
quantiles, all tests reported significant p values. This association has also been
confirmed in the literature (Ueyama et al., 2015; Justice et al., 2018).

To obtain more insights into the heterogeneous gene-trait associations, we
considered two ways for post-hoc visualization of the quantile-specific associa-
tions.

One way is to fit a semi-parametric quantile model QY (τ |Si, Ci) = C>i ατ +
gτ (Si), where Si is the aggregated mutation burden of the ith subject for the
target gene (as defined in the motivating example in Section 1), and gτ (S) is a
non-parametric function of S. gτ (·) can be approximated by B-spline. Based on
the estimated model, we can estimate the quantile functions of Y given the mu-
tation burden S at its 10th and 90th percentiles. Bootstrapping can be used to
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Gene iQRATS-mix SKAT-C iQRATS-W iQRATS-N iQRATS-L iQRATS-invL
ZPR1 4.13e-47 3.26e-35 1.44e-41 4.76e-46 1.91e-50 3.40e-28
LPL 1.70e-18 2.97e-15 4.70e-14 2.66e-15 8.85e-19 1.05e-10
BUD13 1.59e-21 1.38e-15 3.42e-20 1.51e-21 4.50e-24 2.83e-13
GCKR 5.49e-08 3.13e-09 1.81e-07 4.49e-08 1.00e-08 8.80e-08
ZNF512 1.32e-06 9.71e-06 5.34e-06 2.56e-05 2.65e-07 4.30e-07
MLXIPL 3.83e-07 1.82e-06 9.15e-08 5.78e-07 1.33e-06 1.30e-06

Table 2

Meta-analysis results for gene-trait association test with respect to Triglycerides in

Metabochip data. Exome-wide significant threshold 2.5e-06 has been applied.

construct the corresponding confidence bands. Using the same Norwegian data
and the two target genes (i.e., LPL and ZPR1) as in the motivating examples,
we fit this semi-parametric quantile model, and show in Figure 7 the estimated
quantile functions with their 95% bootstrap confidence band given the mutation
burden of LPL and ZPR1 at the 10th and 90th percentiles.

Higher mutation burden in LPL lowers the upper quantile of TG when τ >
0.6, while leaving the rest of the distribution unchanged. For ZPR1, on the
other hand, higher burden elevates the entire quantile function of TG, and
the differences increase with quantile levels as well. The horizontal doted line
in Figure 7 indicates the clinical suggested threshold for high levels of TG,
i.e., 2.3mmol/L1. When one projects the intersection point (between a quantile
function and high cholesterol threshold ) on to X axis (as shown by the vertical
dotted lines), we can easily obtain the probability/risk of high cholesterol. As
shown in Figure 7, carrying LPL mutations reduces the risk of high cholesterol
by at least 5%, and could reduce the risk of higher cholesterol even more. Such
findings indicate the potential clinical relevance of the heterogeneous association
we discover.

A second way to investigate heterogeneity across quantiles is to plot the
quantile-specific p-values. The proposed iQRAT tests integrate the rank-score
process into a single test to enhance the detection power. Once a gene is identi-
fied, one can also calculate quantile-specific p-values for mutation burden scores.
The bottom panel of Figure 7 plots the quantile-specific p-values of LPL and
ZPR1, which is consistent with the quantile differences displayed in the upper
panel.

6. Discussion

In this paper, we propose an efficient integrated quantile test (iQRAT) based
on weighted rank scores processes. Compared to the widely-used mean-based
dispersion and Burden tests, our test has the following advantages: (1) It is
efficient and distribution-free. By design, it is almost as efficient as the mean-
based dispersion and Burden tests for homogeneous associations, and is more
efficient in the presence of heterogeneous associations. Since the test statistic

1from https://www.mayoclinic.org/
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Fig 7. Top: Predicted quantile function of Y for gene LPL (left) and gene ZPR1 (right).
95% empirical confidence intervals are computed through bootstrap. Bottom: Validating local
signals by traditional wald test for quantile regression. We report log10(p) for gene LPL

(left) and ZPR1 (right) in Norwegian site, where p is the p value of β̂(τ) in QY (τ |S,C) =
S>β(τ) + C>α(τ), for τ = {0.01, 0.02, ..., 0.98, 0.99}.

and the asymptotic distribution under the null are distribution-free, it is widely
applicable to accommodates complex and heterogeneous associations. (2) Since
quantile association is invariant to monotone transformation, it simplifies the
data processing procedure by avoiding normalization, and enables direct in-
terpretation on how a gene associates with the distribution/quantile functions
of the phenotype. Such insights are especially useful for exploring the genetic
architecture of complex traits in more details. Moreover, avoiding trait normal-
ization also facilitates meta-analyses, which is commonly performed in genetic
analyses of multiple studies. Specifically, since the transformation functions used
in normalization vary across individual studies, the summary statistics under
different normalization procedures are not completely comparable from a tech-
nical perspective, which raises concerns when combining them across different
studies.

Although the proposed iQRAT test requires the estimation of the entire con-
ditional quantile process, it is computationally feasible for large scale sequencing
data due to the following reasons: (1) The estimation of quantile process uses the
parametric linear programming technique that is much faster than estimating
individual quantile functions. (2) The use of Cauchy combination to combine
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different weighting schemes is computationally simple. In the Metabochip data
that we analyzed, iQRAT can be fully implemented within 1 second for testing
a single gene in any of the eight studies, see the Supplementary Material for a
summary of computational time.

In the proposed iQRAT, we considered and combined four quantile weight-
ing functions, each of them representing a different type of association. The
Wilcoxon weight combines quantile effects equally across quantile levels, and is
preferable for heavy tail error distributions. The Normal weight is heavier at the
two tails and lighter in the middle range, and is optimal for normal errors. The
Lehmann/Inverse Lehmann weight, on the contrary, assigns heavy weight at the
upper/lower tails, and diminishes as quantile levels decrease/increase. They are
designed to detect the right/left tail differences and location-scale changes. By
combining the various weighting schemes, the proposed unified iQRAT could
support a wider range of complex and heterogeneous associations. After screen-
ing out possible associations, one can further consider using iQRAT with single
quantile weighting function to detect heterogeneous associations. Depending on
individual applications, other weighing functions can be used without changing
the asymptotic theory.

Instead of pre-determined weight functions, it is also of interest to consider
adaptive weights that may accommodate more complex associations. In Ionita-
Laza et al. (2013), an adaptive version of SKAT-C is proposed as SKAT-A,
which combines the test statistics from common and rare variants in a more
adaptive way. Considering data-driven combination of common and rare vari-
ants in iQRAT may lead to more informative discovery of complex gene-trait
associations. One could consider a two-stage procedure which estimates the
quantile specific effects first, and then incorporates it into an integrated test.
Implementation of such more adaptive integrated tests with appropriate type I
error control warrants future research.

In our application to the Metabochip data, most of the significant associations
identified by iQRAT have already been identified using the classical SKAT-C
tests. This is expected since in general we only expect a small proportion of
associations with higher order moments of the trait distribution, and we focused
here on a small number of genes in 99 fine mapping regions. It is therefore of
interest to apply the proposed methods to the genome-wide setting and multiple
phenotypes to fully benefit from the power improvements we have shown in the
simulations.

R package

The proposed method has been fully implemented in the R package iQRAT,
available on Github: https://github.com/tianyingw/iQRAT. We will submit the
package to CRAN once the paper is accepted.
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Gutenbrunner, C. and Jurecková, J. (1992). Regression rank scores and
regression quantiles. The Annals of Statistics 305–330.
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