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Segmentation is the art of partitioning an image into different regions where each one has some degree of uniformity in

its feature space. A number of methods have been proposed and blind segmentation is one of them. It uses intrinsic

image features, such as pixel intensity, color components and texture. However, some virtues, like poor contrast, noise and

occlusion, can weaken the procedure. To overcome them, prior knowledge of the object of interest has to be incorporated

in a top-down procedure for segmentation. Consequently, in this work, a novel integrated algorithm is proposed combining

bottom-up (blind) and top-down (including shape prior) techniques. First, a color space transformation is performed. Then,

an energy function (based on nonlinear diffusion of color components and directional derivatives) is defined. Next, signed-

distance functions are generated from different shapes of the object of interest. Finally, a variational framework (based on

the level set) is employed to minimize the energy function. The experimental results demonstrate a good performance of

the proposed method compared with others and show its robustness in the presence of noise and occlusion. The proposed

algorithm is applicable in outdoor and medical image segmentation and also in optical character recognition (OCR).
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1. Introduction

The advent of segmentation has introduced an efficient

alternative to partitioning schemes for image processing.

Its main goal is to separate image into disjoint, non-

overlapping regions where each one has a uniformity in its

predefined feature space. There exist many approaches to

image segmentation in the literature, including watershed

transformation (Kuo et al., 2008; Lu et al., 2006; Hrebień

et al., 2008; Emambakhsh and Sedaaghi, 2009), graph-

cuts (Greig et al., 1989), expectation maximization (EM)

(Ramme et al., 2009), and region growing (Susomboon

et al., 2006; Petera et al., 2008).

These methods generally have a high computational

complexity making them unsuitable for multi-phase seg-

mentation. Also, they are highly sensitive to local minima

in their optimization steps. Moreover, watershed-based al-

gorithms are greatly responsive to noise and often produce

over-segmentation (Vincent and Soille, 1991).

Therefore, denoising and region merging algorithms

are mainly employed as post- and pre-processing stages

to reduce the number of regions. This will undoubtedly

weaken the robustness of the algorithm while increasing

the computational complexity.

On the other hand, two other approaches to seg-

mentation are energy minimization (implemented by vari-

ational frameworks) and clustering methods. Medical

image scission is one of the most popular fields of

study where clustering algorithms have mainly been uti-

lized. Some examples include: fuzzy C-means (FCM)

(Wang et al., 2008), hierarchical clustering (Lai and

Chang, 2009), Hopfield competitive learning networks

(Kuo et al., 2008), K-means and self-organizing maps

(SOMs) (Dokur et al., 2006; Ong et al., 2002).

Low computational complexity is one of the most

important gains of clustering-based techniques. However,

they have some serious disadvantages that must be taken

into account. They are sensitive to noise and outliers in

the feature space. They mainly acquire pixels’ local infor-

mation making them fragile in the presence of noise. On

the other hand, energy minimization methods can measure

image regional and statistical information resulting in a

more meaningful and reasonable segmentation (Cremers

et al., 2007). Moreover, regional-based methods are less
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sensitive to noise. Algorithms based on clustering are gen-

erally more appropriate for blind segmentation where only

intrinsic image features (e.g., gray level, color or texture)

are considered. In other words, using prior knowledge is

not usually straightforward in these approaches.

Conversely, a completely different procedure is em-

ployed in energy minimization approaches. An energy

function, defined from image features, is targeted to be

minimized. The minimization is implemented using a

variational framework where active contours (level set

(Osher and Sethian, 1988) and snakes (Kass et al., 1988))

are commonly applied. Splitting and merging a contour

(or modifying its topology) have made level sets attractive

for segmentation compared with snakes in recent studies

(Cremers et al., 2007). They are less sensitive to initial-

ization. Also, prior knowledge and probabilistic interpre-

tations are easily engaged.

The major task in the level set is to minimize an en-

ergy function by evolving a contour implicitly. The na-

ture of such a function is controversial in the literature.

It is defined by the features extracted from the input im-

age, where the features are simply the intensity of the

pixels, color components, texture features, motion vec-

tors computed from consecutive video frames by solving

the optical flow equation (Mitiche and Sekkati, 2006; Hao

et al., 2007) or even the integration of these features

(Cremers et al., 2007). In the works of Wang and Vemuri

(2004) as well as Feddern et al. (2006), structure tensors

are employed for texture segmentation. Raja et al. (2010)

used Gabor-wavelets for feature extraction from textured

images.

A similar approach is reported by Andrysiak and

Choras (2005), Sagiv et al. (2006) or Sandler and Lin-

denbaum (2006) to define an energy function for contour

evolution based on the outputs of Gabor filters. However,

feature extraction and defining the energy function based

on structure tensors and Gabor filters have some disadvan-

tages. Firstly, since image gradients need to be computed

in structure tensors, a Gaussian kernel is utilized for de-

noising. Such smoothing degrades the edges leading to

a weak segmentation. The same problem exists in Ga-

bor filters. Moreover, a high dimensional feature space

is required in both methods, which results in an increase

in computational complexity. Perona and Malik (1990)

and also Gerig et al. (1992) cured these problems (i.e.,

dimensionality and smoothing) using nonlinear diffusion.

Rousson et al. (2003) and Cremers et al. (2007) put this

method to work for texture segmentation. Nonlinear dif-

fusion solely might not be sufficient for a successful seg-

mentation. Lots of circumstances, such as texture inhomo-

geneity, poor image contrast, missing or diffused bound-

aries (Tsai et al., 2003), noise, intensity non-uniformity

(Kuo et al., 2008) and occlusion can result in inappropri-

ate segmentation. Therefore, prior knowledge of the ob-

ject of interest has to be considered in segmentation.

In the work of Tsai et al. (2003), a method is pro-

posed to use shape as prior knowledge for medical image

segmentation. It is defined for both binary and grey scale

images. To improve the efficiency of their approach, we

have proposed a hybrid region-based method integrating

top-down and bottom-up processes. Moreover, we em-

ploy a prior shape knowledge of the object of interest,

texture features and color channels for segmentation. The

proposed method has various applications in outdoor and

medical image segmentation, as will be discussed in the

simulation results. Our algorithm’s robustness in the pres-

ence of noise and occlusion has also been evaluated. Pre-

liminary results of this research appeared in the work of

Emambakhsh et al. (2010).

This paper is organized as follows. Section 2 intro-

duces the proposed method. The experimental results are

provided in Section 3. Section 4 contains the conclusion.

2. Proposed method

In this section, we develop a novel scheme of image seg-

mentation. It integrates the prior shape information of

the object of interest with intensity information extracted

from a textured color image using a nonlinear diffusion

filter, in a level set framework. Figure 1 visualizes the

block diagram of the proposed algorithm. A brief descrip-

Fig. 1. Block diagram of the proposed algorithm.

tion of the proposed method is as follows. First of all, the

input image is transformed from the RGB into the CIE

L*a*b* color space. Then the directional derivatives of

the L* channel are computed. The directional derivatives

and L*a*b* color components are considered as inputs for

nonlinear diffusion in the next step. The result of diffu-

sion is a feature space and it is used in computing the en-

ergy function for level set evolution. In parallel with the
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above procedure, an algorithm similar to that presented by

Tsai et al. (2003) is employed to create the distance maps

for level set functions using training shapes. This process

originates considering binary images including shape in-

formation. A shape alignment is next utilized on the train-

ing shapes. Then, superior shapes are captured by apply-

ing principal component analysis (PCA). Finally, distance

maps are engaged to set up the level set functions from

the major shapes. The produced distance maps are used

in active contour evolution. After minimizing the energy

function, the inner part of the contour will correspond to

object location. Also, the outer part conceptualizes the

background. The proposed method includes the following

steps:

1. feature space construction,

2. distance map generation,

3. level set evolution.

2.1. Feature space construction. The feature space is

constructed using the following stages:

• RGB to L*a*b* conversion,

• directional derivatives,

• nonlinear diffusion.

2.1.1. RGB to L*a*b* conversion. It can be under-

stood from McAdams ellipses (Forsyth and Ponce, 2002)

that the RGB color space is not a good choice for color

image processing (Ong et al., 2002). Moreover, a feature

space based on RGB components (and, generally speak-

ing, linear color spaces) is highly correlated. Therefore,

the background and foreground regions cannot be distin-

guished precisely. Consequently, the CIE L*a*b* color

space with a nonlinear uniform domain is employed to

produce a more detachable feature space.

2.1.2. Directional derivatives. The directional deriva-

tives are computed on the L* color component. It helps to

find the most salient edges in different directions. There

exist reports on using only two directions for gradient

computation (the gradients in the x and y directions)

(Rousson et al., 2003; Cremers et al., 2007). We consider

employing more directions because this significantly im-

proves the result of the segmentation, especially for more

complicate textures. Let IL denote the L* color channel.

Then, the output of the directional derivative will be

⎧

⎪

⎨

⎪

⎩

uθi
=
[

Ix
L cos (θi) + IL

y sin (θi)
]2

,

θi = θ0 + (i)∆θ,

∀i = 0, 1, . . . , n − 1,

(1)

where IL
x and IL

y are the IL derivatives along the x and

y directions, respectively; uθi
is the directional derivative

computed along θi; θ0 represents the initial value mea-

sured (in degrees) in a counter-clockwise direction from

the horizontal axis; θi is the i-th update used in comput-

ing the derivative; n is the number that specifies the total

number of slices for dividing the unique circle. The val-

ues for L∗, a∗, b∗ and also the vectors for the directional

derivatives are considered as inputs for nonlinear diffu-

sion. Therefore, the input matrix for the nonlinear diffu-

sion is as follows:

u =
(

uθ0
, uθ1

, . . . , uθn−1
, IL, Ia, Ib

)

, (2)

where IL, Ia, and Ib represent the L*, a*, and b* color

channels, respectively.

2.1.3. Nonlinear diffusion. Nonlinear diffusion is a

method for image denoising and simplification. It was

initially proposed by Perona and Malik (1990) for edge

detection and its vector-valued version was presented by

Gerig et al. (1992). We use it in setting up the feature

space. The proposed feature space improves the robust-

ness of segmentation in the vicinity of noise. The feature

vectors (Eqn. (2)) is considered as an input for nonlinear

diffusion. It is defined as in the work of Rousson et al.

(2003):

∂t u′
i = div

[

g

(

N−1
∑

k=0

|∇uk|
2

)

∇ui

]

, (3)

where ui
′ is the result of diffusion when the input vector

is ui; g(·) is a decreasing function of the gradient of the

image; N denotes the dimension of the feature vector. We

have used the following function in our research:

gm(s) =

⎧

⎪

⎨

⎪

⎩

1 − exp

(

−
Cm

(s/λ)
m

)

, s≥ 0,

1, s < 0,

(4)

where m is a constant used to define the damping rate;

Cm is put in the equation to make the flux S · g(s) in-

crease for g < λ and decrease for g ≥ λ. Also, λ is a

parameter for controlling the contrast. Compared with the

functions suggested by Rousson et al. (2003) and Cremers

et al. (2007) for g(·), our function proposed in Eqn. (4)

has more free parameters and flexibility. Solving Eqn. (3)

results in a (n + 3)-dimension feature vector, i.e.,

u′ =
(

u′
0, u

′
1, . . . , u

′
n+2

)

. (5)

The feature vector is used to compute the internal energy

in level set evolution as explained in Section 2.3.
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2.2. Distance map generation. The algorithm ex-

plained in the work of Tsai et al. (2003) is utilized to

generate distance maps. It includes three stages. Stage

1. In the first step, binary images including the shape in-

formation of the object of interest are provided. These

shapes have to be aligned. There are n training shapes.

One of the images is considered as the reference while

the others are translated, rotated and scaled in order to be

aligned accordingly. In this paper, we have employed the

alignment method of Tsai et al. (2003). The training set

consists of n binary images {I1, I2, . . . , In} with pixel

values equal to one for the inside, and zero for the out-

side of the object. The purpose is to find pose parameters,

{P1,P2, . . . ,Pn}. They are used to align all of the n
training images according to the reference. P is a set of

parameters related to scaling, translation and rotation.

Let Ĩ denote the result of the transformation. There-

fore, for each image, I , the transformed image will be

(Tsai et al., 2003)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Ĩ (x̃, ỹ) = I(x, y),

⎡

⎣

x̃
ỹ
1

⎤

⎦ = T[P]

⎡

⎣

x
y
1

⎤

⎦ ,
(6)

where the transformation matrix T[P] is determined by

the following affine structure (Jain, 1989; Tsai et al.,

2003):

T[P] =

⎡

⎣

1 0 tx
0 1 ty
0 0 1

⎤

⎦

⎡

⎣

1 sx 0
sy 1 0
0 0 1

⎤

⎦

·

⎡

⎣

hx 0 0
0 hy 0
0 0 1

⎤

⎦ ·

⎡

⎣

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

⎤

⎦ .

(7)

The first matrix in Eqn. (7) is for x as well as y trans-

lations. The second one represents the shear transforma-

tion along the x and y directions. The third matrix is for

scaling along the x and y directions. Finally, the fourth

one is dedicated to rotation. Then, one of the training im-

ages is considered the reference (Ĩj) and the following

energy is minimized to find the efficient pose parameters

for image Ĩi (Tsai et al., 2003):

Ealign =

n
∑

i=1

n
∑

j=1,j �=i

∫ ∫

Ω

(

Ĩi − Ĩj
)2

dA
∫ ∫

Ω

(

Ĩi + Ĩj
)2

dA

, (8)

where Ω is the whole domain of the image. The gradient

descent algorithm is employed to find the optimum values

for the pose parameters, P. Therefore, the gradient of

Eqn. (8) with respect to P
i will be (Tsai et al., 2003)

∇i
P

Ealign

=

n
∑

j=1,j �=i

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2

∫ ∫

Ω

(

Ĩi − Ĩj
)

∇i
PĨidA

∫ ∫

Ω

(

Ĩi + Ĩj
)2

dA

−

2

∫ ∫

Ω

(

Ĩi − Ĩj
)2

dA

∫ ∫

Ω

(

Ĩi + Ĩj
)

∇P
iĨidA

(
∫ ∫

Ω

(

Ĩi + Ĩj
)2

dA

)2

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(9)

Stage 2. As the second stage, a distance map is computed

for each training shape. In this study, the signed distance

function (SDF) is employed to generate the distance maps,

i.e., there are {Ψ1, Ψ2, . . . ,Ψn} as SDFs for each aligned

image (Osher and Sethian, 1988; Tsai et al., 2003). The

zero levels of these SDFs are considered as the boundaries

of the training shapes.

Stage 3. Finally, PCA is employed to extract the

prominent shapes. First of all, the average of SDFs

is computed and removed from the distance functions,

{Ψ1, Ψ2, . . . ,Ψn}. The average is

Φ̄ =
1

n

n
∑

i=1

Ψi. (10)

Therefore, the average removed SDF is Ψ̄i = Ψi − Φ̄,

where i = 1, 2, . . . , n. {Ψ̄1, Ψ̄2, . . . , Ψ̄n} is the corre-

sponding set for SDFs (with zero mean) for each input

shape. Now a lexicographic ordering matrix, S, is gen-

erated from {Ψ̄1, Ψ̄2, . . . , Ψ̄n}, i.e., S = [Õ1Õ2 . . . Õn].
Then, the covariance of S has to be computed. k eigenvec-

tors corresponding to k greatest eigenvalues of the covari-

ance matrix are selected. Finally, the (reduced dimension)

shape matrix S̃ will be S̃ = S × A = [Õ′
1Õ

′
2 . . . Õ′

n].
A is a matrix containing k eigenvectors corresponding to

the most dominant shapes in the training set. The lexico-

graphic order matrix S̃ is transformed to its initial distance

maps set form, i.e., {Φ1, Φ2, . . . ,Φk}.

2.3. Level set evolution. The extracted features from

the input image, explained in Section 2.1, and the dis-

tance maps, {Φ1, Φ2, . . . ,Φk}, discussed in Section 2.2,

are used in a variational framework to evolve the contour

implicitly using the level set. The level set update equa-

tion is as follows (Tsai et al., 2003):

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Φ[w,P](x, y) = Φ̄(x̃, ỹ) +
k
∑

i=1

wiΦi,

w = [w1, w2, . . . , wk] ,
k
∑

i=1

wi = 1,

(11)
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where x̃ and ỹ, and Φ̄ are computed using Eqns. (6) and

(10). Hence w is a vector used for weighing each signed

distance function. Moreover, Φi is the principal shape

computed using PCA. Considering Bayesian inference,

the energy function is minimized during the contour evo-

lution as (Rousson et al., 2003)

E (Ω1, Ω2) = −

∫

Ω1

log p1(u
′(x)) dx

−

∫

Ω2

log p2(u
′(x)) dx, (12)

where u(x) is the feature vector captured from nonlin-

ear diffusion (see Eqn. (5)) as u′. p1 and p2 are Gaus-

sian probability density functions (PDFs) with mean vec-

tor and covariance matrix {µ1, Σ1} and {µ2, Σ2}, respec-

tively (Rousson et al., 2003),

pi(u
′(x))

=
1

(2π)2|Σi|1/2

· exp

[

1

2
(u′(x) − µi)

T
Σ−1

i (u′(x) − µi)

]

,

(13)

where µi and Σi are a [1 × (n + 3)] vector and a [(n +
3) × (n + 3)] matrix, respectively. They are calculated

using the following equations (Rousson et al., 2003):
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

µi(Φ) =

∫

Ω

u′(x)ℵi dx
∫

Ω

ℵi dx

,

Σi(Φ) =

∫

Ω

(µi − u′(x)) (µi − u′(x))
T
ℵi dx

∫

Ω

ℵi dx

,

ℵ1(z) = Hǫ(z), ℵ2(z) = 1 − Hǫ(z).

(14)

Hǫ(z) and Φ are the Heaviside and level set functions, re-

spectively. The zero level for Φ corresponds to the contour

(Rousson et al., 2003):

Φ : Ω → R,

Φ(x) =

{

D(x, ∂Ω), x ∈ Ω1,
−D(x, ∂Ω), x ∈ Ω2.

(15)

D(x, ∂Ω) introduces the Euclidean distance between

x and ∂Ω. ∂Ω is the approximate boundary for the con-

tour. Finally, Ω1 and Ω2 represent the inside and outside

of the contour, respectively. The aim is to find the opti-

mized values for w and P that can be used in Eqn. (11)

to implicitly minimize Eqn. (12). This problem can be

solved using optimization algorithms such as gradient de-

scent, Levenberg–Marqurdt (LM) (Levenberg, 1944), ge-

netic algorithms (GA) (Goldberg, 1989), simulated an-

nealing (SA) (Kirkpatrick et al., 1983), and pattern search

(Torczon, 1997; Lewis et al., 1999). These global op-

timization approaches (compared with gradient descent,

which optimizes locally) are less sensitive to initialization,

but they have a very low convergence speed. The update

equation for w and P in the gradient descent method will

be (Tsai et al., 2003)

{

w
t+1 = w

t − αw∇wE,

P
t+1 = P

t − αP∇PE,
(16)

where αw and αp are coefficients that determine the con-

vergence rate of the gradient descent algorithm.

Also, the parameters using the LM algorithm can be

estimated in three steps (Levenberg, 1944):

1. With an initial estimate w, compute the gradient vec-

tor and Hessian matrix H as follows:

∇wE =

[

∂E

∂w1

∂E

∂w2
. . .

∂E

∂wk

]

,

HwE
= ∇T

w
E ∇wE

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

∂E

∂w1

)2
∂E

∂w1

∂E

∂w2
. . .

∂E

∂w1

∂E

∂wk

∂E

∂w2

∂E

∂w1

(

∂E

∂w1

)2

. . .
∂E

∂w2

∂E

∂wk

...
... . . .

...

∂E

∂wk

∂E

∂w1

∂E

∂wk

∂E

∂w2
. . .

(

∂E

∂wk

)2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(17)

2. Then, update the parameter w by

w
t+1 = w

t + (HwE + λI)
−1

∇T
w

E, (18)

where λ is a time-varying stabilization parameter.

3. Go back to Step 1 until the estimate of w converges.

The same algorithm is employed to find the optimum

values of P in minimizing the energy function E:

P
t+1 = P

t + (HPE + λI)
−1

∇T
P

E (19)

The LM algorithm is a standard nonlinear optimiza-

tion approach which significantly surpasses the gradi-

ent descent method for medium sized problems (Roweis,

2010; Levenberg, 1944). Employing the knowledge about

the curvature as well as the gradient of the error sur-

face speeds up the minimization procedure. In fact, the

LM algorithm constitutes a trade-off between the Gauss–

Newton and the gradient descent. Using a small value of λ
forces the LM algorithm towards the Gauss–Newton one.
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Conversely, the LM algorithm with a large value of λ re-

sembles the gradient descent. Generally, the LM algo-

rithm is more suitable for multivariate function minimiza-

tion compared with the classic gradient descent. How-

ever, it is of greater computational complexity compared

with the gradient descent due to inversion of the Hessian.

Specially, by increasing the number of variables, the com-

plexity of computations grows drastically.

The update equations in the LM algorithm

(Eqns. (18) and (19)) adjust λ according to the changes

in the error function (Ranganathan, 2004). If the error

increases as a result of the update (meaning that the

quadratic approximation using the Hessian is not func-

tioning well and the working point is not likely near a

minimum), then restore the weights to their previous

values and increase λ. This shows that the LM algorithm

tends to a simple gradient descent. Conversely, if the error

decreases (indicating that the quadratic approximation

performs properly and the working point gets closer

to a minimum), then preserve the current weights and

decrease λ. This will thus result in allocating more weight

on the Hessian.

The variational framework for updating the level set

function (see Eqn. (11)), calculating the image statistics

(Eqn. (14)), computing the energy function (Eqn. (12))

and updating the weights and pose parameters (Eqn. (16)

or Eqns. (18) and (19)) is illustrated in Fig. 2.

Fig. 2. Variational framework used for level set evolution.

3. Experimental results

In this section, the results of the proposed method are pre-

sented. The algorithm has been tested on three categories

of images. The first one consists of outdoor images in

which the object of interest has a specific shape. The

second one includes cardiac magnetic resonance images

(MRI) where tissue segmentation is performed. Finally,

another application of our algorithm is investigated for

OCR.

3.1. Outdoor image segmentation. There are prob-

lems associated with segmenting outdoor images, such as

Fig. 3. Input image (a); results of nonlinear diffusion for L* (b),

a* (c) and b* (d) color channels.

Fig. 4. Results for directional derivatives with nonlinear diffu-

sion. The derivatives are computed for 0 (a), 30 (b), 60

(c), 90 (d), 120 (e), and 150 (f) degrees.
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the shadow effect, an inhomogeneous texture, occlusion

and camera imaging noise. Using color or texture fea-

tures is not sufficient for a suitable segmentation. A prior

knowledge of the object of interest should also be utilized

in segmentation to overcome these problems. Figure 3(a)

illustrates an outdoor image of a tiger with a specific tex-

ture in the foreground and a complicated background. Us-

ing only texture features to segment the tiger from the

background results in failure due to a high foreground tex-

ture and background complexity. However, incorporating

the tiger shape as prior knowledge for level set evolution

as well as color and texture features produces desirable

results.

Figures 3(b)–(d) illustrate the results of nonlinear dif-

fusion for L*a*b* color components, respectively. Fig-

ure 4 demonstrates the results of directional derivatives.

Directional derivatives are computed from Eqn. (1) with

θ0 = 0 and ∆θ = π/6. The results are used as u(x) in

Eqn. (13) to compute the energy function in Eqn. (12).

Due to background complexity, it can be simply veri-

fied from Fig. 4 that only using nonlinear diffusion out-

puts as inputs for a two-phase level set leads to over-

segmentation. A two-phase level set is an active contour

approach that considers only the background and the fore-

ground (two classes) for the final segmentation. There-

fore, the need for incorporating the prior shape knowledge

of the object of interest seems to be undeniable.

To solve this problem, 16 side view binary images

of a tiger with different poses are used as training shapes.

They are aligned according to the procedure presented in

Section 2.2. As an example, one of the training images be-

fore and after alignment is plotted in Fig. 5. In the align-

ment procedure, one of the images is considered the ref-

erence (Fig. 5(c)) and the others are aligned according to

the reference. As an example, seven binary images are

plotted in Fig. 6(a). The corresponding aligned shapes are

visualized in Fig. 6(b). After alignment, PCA is utilized

to capture the prominent shapes. We choose k = 10 in

Eqn. (11), i.e., ten principal components are acquired from

training shapes. Finally, SDFs are set up according to the

principal shapes.

The distance functions are utilized as in Eqn. (11)

to evolve the contour implicitly. Φ̄ (Eqn. (10)) is plot-

ted in Fig. 7. The contour depicts the zero level set, i.e.,

Φ̄ ≈ 0. After computing SDFs from the training shapes,

the contour is updated according to Eqn. (11) implicitly in

a direction that minimizes the energy function (Eqn. (12)).

The result of segmentation is visualized in Fig. 8(b). Fig-

ure 8(c) provides evidence for a comparison between our

algorithm (a combination of bottom-up and top-down pro-

cedures) and those using texture features (a bottom-up or

blind segmentation procedure). Due to object and back-

ground complexity, texture features cannot lead to an ac-

ceptable segmentation and over-segmentation will occur.

Also, it is worth of noting that for updating the level set

function in Fig. 8(c), where the prior shape has not been

considered, the following level set equation is employed

(Rousson et al., 2003):

Φt(x) = δǫ (Φ(x))

(

v div

(

∇Φ

|∇Φ|

)

+ log
p1(u

′(x))

p2(u′(x))

)

,

(20)

where δǫ(z) is a regularized Dirac impulse function,

and p1(u
′(x)) and p2(u

′(x)) are computed according to

Eqn. (13). Here v determines the rate of active contour

evolution.

Our region-based method also exhibits robustness in

noisy image segmentation. Figures 9 (a)–(c) prove it. The

image is degraded by additive Gaussian noise. The peak

signal to noise ratio (PSNR) is 27.59 (dB). Moreover, in

the case of occlusion, our algorithm demonstrates desir-

able results. Figure 9(d) shows the same image occluded

by black horizontal lines. The result for segmentation is

plotted in Fig. 9(f). It is worth mentioning that in the ini-

tialization step (plotted in Figs. 9(b) 9(e)), two distance

maps from the training shapes are used to speed up the

segmentation. The initialization shown in Fig. 8(b) leads

to the same result. However, it takes much more time for

the contour to converge.

When computing the covariance matrix in Eqn. (14),

it is deducted that if we diagonalize (whiten) Σi, the result

will be better. In other words, the correlation reduction

in the feature vectors (Eqn. (5)) produces a more reason-

able result and fewer local minima will occur in the energy

function (Eqn. (12)).

Another important issue that must be taken into ac-

count is the computational cost of the algorithm and

the optimization method. We have compared five dif-

ferent optimization approaches in our work. They are

the gradient descent algorithm (refer to Section 2.3), the

Levenberg–Marquardt algorithm (Levenberg, 1944), ge-

netic algorithms (Goldberg, 1989), simulated annealing

(Kirkpatrick et al., 1983) and pattern search (Torczon,

1997; Lewis et al., 1999).

Among these algorithms, the gradient descent is the

fastest one. However, it is highly sensitive to initializa-

tion and local minima in the energy function. If the ini-

tialization is not near the final point (i.e., a global mini-

mum), it will never converge. This problem also exists for

the LM algorithm. It is slower than the gradient descent

because of its higher order partial derivative calculations

(Levenberg, 1944). On the other hand, compared with

the gradient descent algorithm, the convergence speed is

much lower for pattern search and SA. Conversely, they

are much less dependent on level set initialization and the

initial contour can be located freely on the test image. Fi-

nally, despite the GA’s ability to quickly scan a vast so-

lution set, its major problem is that it might never stop

evolution at the optimum point and the evolution may halt

at local minima (or may not stop at all). Table 1 shows the
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Table 1. Elapsed time for optimization algorithms.

Gradient Descent LM GA SA Pattern Search

12 (sec) 36 (sec) 960 (sec) 1210 (sec) 1405 (sec)

elapsed time for the optimization algorithms to be con-

verged for segmenting Figs. 9(d)–(f). The algorithm was

implemented on an Intel Core 2 Due CPU (T7250) with

2024 MB RAM.

As another example, we chose the tiger’s image oc-

cluded by horizontal and vertical black lines as depicted

in Fig. 10(a). It is completely obvious that the continuity

of texture and color features was lost due to the occlusion.

On the other hand, using the prior shape knowledge of the

tiger can help to overcome this problem. The diffusion’s

result is an n + 3 feature vector. We have only demon-

strated the result of the L∗ channel. Figure 10(c) visual-

izes the result for the proposed method after solving the

nonlinear diffusion in the image domain. Moreover, the

same image is degraded by additive Gaussian noise with

the PSNR of 5.34 (dB) (Fig. 10(h)). It is clear that some

edges have been completely blurred due to the noise lead-

ing to a hard distinction between background and fore-

ground. However, employing the prior shape knowledge

of the object of interest with intrinsic features simultane-

ously can resolve the problem.

The results for diffusion and segmentation are plot-

ted in Figs. 10(i) and (j), respectively. To show the weak-

ness of using bottom-up (Cremers et al., 2007; Rous-

son et al., 2003) and top-down (Tsai et al., 2003) ap-

proaches solely for segmenting this image, the third and

fourth columns in Fig. 10 are dedicated to these segmen-

tation algorithms, respectively. It can be confirmed from

Figs. 10(d) and (k) that only texture features and color

components are not sufficient to segment such an inho-

mogeneous and complicated texture. Over-segmentation

is inevitable and in some regions the occlusion is consid-

ered a foreground (Fig. 10(g)). Furthermore, using only

shape prior knowledge (Tsai et al., 2003) cannot provide

the best result as can be verified from Figs. 10(e) and (l).

Morphological open-closing is also investigated as

an alternative (of nonlinear diffusion) for feature ex-

traction For this purpose, a rectangle structuring ele-

ment (1/18 of the size of the input image) is utilized

(Jain, 1989; Emambakhsh and Sedaaghi, 2009). The re-

sult is shown in Figs. 10(f) and (m). Similarly to nonlinear

diffusion, texture uniformity is obtained and the occlusion

has almost disappeared in the output image. But the prob-

lem in morphological filtering is its “blocking artifact” re-

sulting from masking the structuring element over the in-

put image. The masking generates unwanted rectangles in

Figs. 10(f) and (m). Also, some parts of the foreground

are merged into the background. This problem results in

over-segmentation as shown in Figs. 10(g) and (n). On

the other hand, nonlinear diffusion preserves image edges

more precisely while the noise effect simultaneously de-

creases. Generally, choosing a suitable structuring ele-

ment is very important when morphological operators are

used for feature extraction from the texture. The type of

structuring element highly depends on the texture. It will

be even much more complicated for inhomogeneous tex-

tures, such as in Fig. 10(a).

To evaluate the performance of our algorithm numer-

ically, the percentage of correct segmentation (PCS) is

computed. It is performed by comparing the ground truth

with the output of the proposed method. The noise power

is increased (which reasonably results in a PSNR de-

crease) and the PCS is calculated for segmenting the tiger

image shown in Fig. 10. The variation of the PCS vs. the

PSNR is plotted in Fig. 11 for our algorithm when feature

extraction is performed using three different methods: (i)

nonlinear diffusion (as explained in our algorithm in Sec-

tion 2.1.3), (ii) by computing morphological open-closing

with a structuring element whose size is equal to one eigh-

teenth of the input image’s size (Jain, 1989; Emambakhsh

and Sedaaghi, 2009), and (iii) by Gabor feature extrac-

tion (Andrysiak and Choras, 2005; Raja et al., 2010; San-

dler and Lindenbaum, 2006). Moreover, the results for

the bottom-up algorithm (Cremers et al., 2007; Rousson

et al., 2003) and the top-down approach (Tsai et al., 2003)

are plotted. As is clear from this figure, our approach (in-

tegrating intrinsic image features with prior shape knowl-

edge) achieved the best PCS. Furthermore, compared with

Gabor feature extraction and morphological open-closing,

nonlinear diffusion has produced a higher PCS. Morpho-

logical open-closing preserves image edges more pre-

cisely compared with Gabor feature extraction. Con-

versely, Gabor filtering reduces noise more accurately. On

the other hand, according to this figure, top-down meth-

ods show more robustness for noisy image segmentation

compared with the bottom-up approach, but still generate

a smaller PCS compared with our hybrid algorithm.

We also evaluated our algorithm on a Caltech image

dataset (The-ViewCVS-Group, 2010) consisting of vari-

ous images of objects and animals. Since different im-

ages from a single object were presented in this dataset,

it is very useful to generate the training shape images

and consequently segment the test images according to

our algorithm. In our work, we selected rooster and

stegosaurus images. Prominent shapes are captured from

the dataset and SDFs are allocated to the resulting images.
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Fig. 5. Alignment procedure: before alignment (a), after align-

ment (b), reference shape (c).

Fig. 6. Example of binary images (7 out of 16) used to gener-

ate the prior shapes: unaligned (a) and aligned binary

images (b).

Fig. 7. Average of SDFs, Φ̄, computed using Eqn. (10).

Fig. 8. Initialization for the level set function (a), results for our

segmentation algorithm (b), algorithm without consider-

ing prior shape (c).

Fig. 9. Results of segmentation for the proposed method in two

different cases. The left column indicates the case when

the input image is corrupted by noise: noisy image (a),

initialization (b), segmented image (c). The right column

shows the results when the image is occluded: occluded

image (d), initialization (e), result of the segmentation

(f).
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Fig. 10. Comparison of different methods for segmentation.

The images in the left column of the figure correspond

to the case when the input image is occluded. The im-

ages in the right column correspond to noisy image:

The occluded and noisy input images (a) and (h), the

results for diffusion (b) and (i), the result of our hy-

brid method where intrinsic image features and prior

shape knowledge are simultaneously employed (c) and

(j), bottom-up approach (d) and (k), top-down method

(e) and (l), the results for open-closing, (f) and (m),

the hybrid segmentation’s result where morphological

open-closing is used in place of diffusion (g) and (n).

Figures 12(a) and (c) show nine sample images used as

training shapes as explained in Section 2.2. Also, sim-

ilar to Fig. 7, Φ̄ (Eqn. (10)) is computed and plotted in

Figs. 12(b) and (d), where the black enclosed contour rep-

resents the zero level.

Figure 13 is dedicated to four test images from this

dataset. Figures 13(a)–(d) are the input images. In order

Fig. 11. PSNR vs. the PCS for the tiger image in Fig. 10.

to demonstrate the robustness of our algorithm against oc-

clusion, rotation and noise, the images are degraded as in

Figs. 13(e)–(g). Figure 13(d), containing a complicated

texture with big variations in its pixel’s color, is utilized

without degradation. Figures 13(h)–(k) show contour ini-

tialization. Finally, the result for segmentation using the

proposed method is shown in the last column.

Also, we have claimed that the CIE L*a*b* color

space is much more suitable for setting up the feature

space than RGB. An RGB color system demonstrates

low detachability of the feature space. Also, there are a

few local maxima in the histogram of RGB color compo-

nents. This causes more complications in distinguishing

the background from the foreground in an image. Conse-

quently, segmentation based on the RGB color space pro-

duces a less precise result, as depicted in Fig. 14.

There are many different papers that analyzed the

effects of the color space for segmentation purposes,

(Skarbek and Koschan, 1994; Cheng et al., 2001). How-

ever, as completely discussed by Cheng et al. (2001), each

color space has its own advantages and disadvantages and,

still, there has not been a single color representation that

can surpass others for segmenting all sorts of color im-

ages (Cheng et al., 2001). It is understood that for out-

door image segmentation, where real colors are taken into

account, CIE L*a*b* (nonlinear color spaces) generates

more acceptable results compared with RGB (linear color

spaces). However, for artificial (synthetic) image segmen-

tation, where colors are not necessarily natural, the RGB

color representation may sometimes be preferred.

3.2. Medical image segmentation. Medical image

analysis and segmentation is another field of study that

our algorithm can be applied in. There are many situa-

tions such as patient unwanted movements during imag-

ing, imaging noise, low contrast and occlusion resulted

by other body tissues. They all lead to an inaccurate seg-

mentation. Because of these problems, employing only

intensity is not sufficient for a reasonable segmentation.
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Fig. 12. Training shape images captured from rooster (a) and

stegosaurus datasets (b); (c) and (d) represent the aver-

age of SDFs computed according to Eqn. (10).

Fig. 13. Evaluation of the proposed method: input images (a)–

(d), occluded, rotated and occluded, and noisy images,

respectively (e)–(g), level set initialization (h)–(k), seg-

mentation’s result (l)–(o).

Fig. 14. Segmentation based on RGB color components.

Fig. 15. Ten samples of binary images used to generate the prior

shapes.

As a result, using the tissue’s prior shape knowledge can

be beneficial to resolve the problem. In our work, a car-

diac MRI sequence from York University (Andreopoulos

and Tsotsos, 2010) is evaluated. To segment a predefined
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Fig. 16. Result of segmentation for MRI sequences 120 to 135.

Fig. 17. Results of segmentation for noisy cardiac MRI: noisy

image (a), segmentation using: proposed method (b),

bottom-up algorithm (c), top-down technique (d), mor-

phological filtering (e), Gabor-based feature spaces (f).

tissue in cardiac MRI, first, some training images con-

taining the tissue’s different shapes are considered. For

this purpose, distance maps are generated using different

MRI sequences. Figure 15 shows ten binary images gen-

erated from the MRI cardiac sequence (Andreopoulos and

Tsotsos, 2010). Having used the binary images to make

the distance maps in Eqn. (11), the segmentation for se-

quences 120–135 is performed and depicted in Fig. 16.

Since the images are gray scale, the input of the nonlinear

diffusion equation in (3) is n-dimensional (unlike color

images having dimension (n + 3).
Our algorithm is more robust in the presence of noise

compared with the top-down algorithm (Tsai et al., 2003)

and the bottom-up approach (Cremers et al., 2007; Rous-

son et al., 2003) because of using both prior shape knowl-

edge and intrinsic image features. Moreover, our fea-

ture space, which is based on non-linear diffusion, gen-

erates a more acceptable result compared Gabor and

morphological-based feature spaces. To demonstrate it,

Fig. 17(a) shows another MRI degraded by speckle and

additive Gaussian noise. The PSNR is 25.81 (dB). The re-

sult for the proposed method is depicted in Fig. 17(b). The

results for bottom-up and top-down approaches are plot-

ted in Figs. 17(c) and (d). As is clear, bottom-up methods

cannot localize the object and, due to noise, contour evo-

lution in the top-down approach is trapped in a local mini-

mum. The results of morphological and Gabor-based fea-

ture spaces are shown in Figs. 17(e) and (f), respectively.

Because of the effects of blocking artifact in morphologi-

cal filtering and edge smoothing in Gabor, the cardiac tis-

sue is not determined precisely.

3.3. Special letter extraction. In Farsi (Persian) and

Arabic character recognition, there are some letters known

as special ones. These letters can be written in various

forms, depending on their location in a word, and this

makes their recognition very hard to attain. Pre-locating

(or detecting) these letters will ease the character recog-

nition procedure. However, it is a complicated task. In

previous works (Biasdy et al., 2006; Einsele et al., 2008),

morphological operators were used extensively to locate

these letters.

Morphological matching is highly sensitive to scal-

ing. To overcome the scaling obstacle, different scales of

the target letter are used as the structuring element (Biasdy

et al., 2006). However, this approach produces highly re-

dundant computations. Moreover, morphological match-

ing is deeply vulnerable to the rotation of the test image. A

slight paper rotation during scanning leads to a rotation in

characters and, consequently, the structuring element must

be rotated in various degrees to find the correct matching.

Our approach is considered a proper candidate for

such sophisticated application. For this purpose, first,

some binary images of the special letter are provided to

incorporate prior shape knowledge. These images are cre-

ated from the special letters with various font styles. For

example, in Fig. 18, one of these letters typed in vari-

ous fonts is plotted. Although the dictation is different

between the images, all of them represent a single let-

ter. These training binary images are used as prior shape

knowledge for segmentation. The result for special letter

detection is shown in Fig. 19. The test images are plotted

in Figs. 19(a)–(d). The fonts in test images are different
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Fig. 18. Separated form of the letter (a), first and second at-

tached form of the special letter, respectively (b), (c).

from those in training shapes.

Our algorithm was also compared with correlation-

based matching. The results for the proposed method

and the correlation-based algorithm are visualized in

Figs. 19(e)–(h) and 19(i)–(p), respectively. In the cor-

relation method, the correlation map is first computed

according to the normalized cross correlation equation

(Jain, 1989) (The arrows in Figs. 19(i)–(l) indicate the

locations with maximum correlation.) Then, ellipses are

plotted on the highest correlated points (Figs. 19(m)–(p)).

The semi-minor and semi-major axes are allocated ac-

cording to the template size. It is clear from the result

that the exact boundary of the letter cannot be detected by

correlation-based algorithms. Moreover, for rotated im-

ages, exact matching cannot be provided by these algo-

rithms as has been depicted in Fig. 19(p). Finally, auto-

matic detection of the threshold in correlation maps for

locating matching points is a highly complicated task.

Fig. 19. Results for special letter detection: test images (a)–(d),

the proposed method (e)–(h), the correlation maps (i)–

(l), the correlation-based matching detection (m)–(p).

4. Conclusion

The main contribution of this research is the integration

of color components and texture features with shape prior

knowledge for region-based image segmentation. Our

method consists of building a feature space based on non-

linear diffusion of CIE L*a*b* color components and di-

rectional derivatives, making an energy function, distance

map generation, and level set evolution. It is applicable

to outdoor and medical images and special letter (char-

acter) segmentation. Compared with previous top-down

and bottom-up algorithms (Cremers et al., 2007; Rousson

et al., 2003; Tsai et al., 2003), the proposed method is

much more robust for noisy and occluded images. This is

evaluated by computing the PCS. Calculating the PCS for

different noise powers show that our algorithm is superb

for segmenting noisy images with a very low PSNR (even

less than 3.5 dB). The advantages of our algorithm are as

follows:

(i) Using shape prior knowledge and nonlinear diffusion

makes our region-based algorithm robust for noisy

images.

(ii) Compared with Gabor filters and structure tensors,

the proposed feature space has lower dimensionality.

Moreover, using nonlinear diffusion preserves image

edges to a greater degree.

(iii) Incorporating prior shape knowledge improves the

robustness of the proposed segmentation against oc-

clusion. Moreover, prior knowledge can be used to

overcome shadow effects in outdoor images.
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(iv) Computing directional derivatives is very important

for segmenting complicated and inhomogeneous tex-

tures more successfully.

(v) Compared with the RGB color space (and, gener-

ally, its linear transforms), employing nonlinear color

spaces, especially CIE L*a*b* color components,

produces better and more reasonable results since it

generates a more detachable and uncorrelated feature

space.

(vi) We have used the gradient descent algorithm, which

locally minimizes the energy function and has a

low computational complexity. However, genetic

and pattern search algorithms (Torczon, 1997; Lewis

et al., 1999), which are well-known global optimiza-

tion methods, can be used to minimize the energy

function. Unlike gradient descent methods, they are

less sensitive to initialization but have a high compu-

tational complexity and a low convergence speed.

Our work can also be employed for other applica-

tions such as object detection and recognition. In fact,

having an appropriate segmentation eases feature extrac-

tion in object recognition and highly improves the result.

Moreover, the proposed algorithm can be utilized in mo-

tion segmentation. The feature space may be enlarged to

a combination of color, texture and motion vectors, cap-

tured from consecutive video frames where prior shape

knowledge of the object of interest is also incorporated.

Finally, as indicated in the proposed method, the dis-

tribution of the feature space is estimated to follow a mul-

tivariate Gaussian model. In other words, a parametric

model is employed and feature vectors are fit by a multi-

variate Gaussian function. However, there are some appli-

cations where other distributions might be suitable. There-

fore, a more general approach is to estimate the distribu-

tion of the feature space with a non-parametric model. Of

course, this will increase the computational complexity,

but on the other hand, it can raise the generalization of

segmentation.
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