
1 6 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0 © 2 0 0 5 I E E E

and essential system characteristics such as
performance, security, and dependability. Re-
quirements engineering is the name given to a
structured set of activities that help develop
this understanding and that document the sys-
tem specification for the stakeholders and en-
gineers involved in the system development.

This short tutorial introduces the funda-
mental activities of RE and discusses how it
has evolved as part of the software engineering
process. However, rather than focus on estab-
lished RE techniques, I discuss how the chang-
ing nature of software engineering has led to
new challenges for RE. I then introduce a num-
ber of new techniques that help meet these
challenges by integrating RE more closely with
other systems implementation activities.

The fundamental process
The RE process varies immensely depend-

ing on the type of application being devel-
oped, the size and culture of the companies in-
volved, and the software acquisition processes
used. For large military and aerospace sys-
tems, there is normally a formal RE stage in
the systems engineering processes and an ex-
tensively documented set of system and soft-
ware requirements. For small companies de-
veloping innovative software products, the RE
process might consist of brainstorming ses-
sions, and the product “requirements” might
simply be a short vision statement of what the
software is expected to do.

Whatever the actual process used, some ac-
tivities are fundamental to all RE processes:

■ Elicitation. Identify sources of informa-
tion about the system and discover the re-
quirements from these.

■ Analysis. Understand the requirements,
their overlaps, and their conflicts.

■ Validation. Go back to the system stake-

focus 1
Integrated Requirements
Engineering: A Tutorial

B
efore developing any system, you must understand what the sys-
tem is supposed to do and how its use can support the goals of
the individuals or business that will pay for that system. This in-
volves understanding the application domain (telecommunica-

tions, railways, retail banking, games, and so on); the system’s operational
constraints; the specific functionality required by the stakeholders (the peo-
ple who directly or indirectly use the system or the information it provides);

requirements engineering

This tutorial introduces the fundamental activities of
requirements engineering and discusses recent
developments that integrate it and system implementation.

Ian Sommerville, Lancaster University

holders and check if the requirements are
what they really need.

■ Negotiation. Inevitably, stakeholders’
views will differ, and proposed require-
ments might conflict. Try to reconcile con-
flicting views and generate a consistent set
of requirements.

■ Documentation. Write down the require-
ments in a way that stakeholders and soft-
ware developers can understand.

■ Management. Control the requirements
changes that will inevitably arise.

These activities are sometimes presented as
if they occur in sequence, where you start with
elicitation and end with a documented set of
requirements that are then handed over for
implementation and managed as changes oc-
cur. In reality, whatever the details of the
process, RE is always a cyclic activity (see Fig-
ure 1). Individual activities repeat as the soft-
ware requirements are derived, and the itera-
tion continues during system implementation
and operation.

The outcome of the RE process is a state-
ment of the requirements (a requirements doc-
ument) that defines what is to be implemented.
The software engineering research community
has argued that the more complete and consis-
tent a requirements document, the more likely
that the software will be reliable and delivered
on time. So, we have a range of techniques—
from the use of special-purpose requirements
specification languages to structured model-
ing, to formal mathematical specifications—to
help us analyze requirements’ completeness
and consistency.

Academic research aimed at supporting
completeness and consistency hasn’t had a
major impact on practice. Requirements are
usually written in natural language and are of-
ten vague descriptions of what’s wanted rather
than detailed specifications. In situations
where requirements change very quickly, this
might be the right approach, because the costs
of maintaining a detailed specification are un-
justified. In other situations, however, failure
to define precisely what’s required results in
endless disputes between the client and the
system developer.

RE’s evolution
The need for RE became obvious in the last

century as the systems engineering discipline

developed. The RAND Corporation, founded
in 1946, introduced the notion of systems
analysis, which has evolved into RE. Under-
standing a problem and specifying its system
requirements became an inherent part of the
development process for complex military and
aerospace systems.

The lifecycle model used in systems engi-
neering was the predominant influence on the
development of the waterfall model of software
engineering, first proposed by Winston Royce
in 1970. In this model, the process of under-
standing and documenting system requirements
is the first stage in the software engineering
process. This led to an assumption that RE was
something that you did before you started soft-
ware development and that, once discovered,
the software requirements would not change
significantly during the development process. It
also led to the assumption that RE should be
separated from system design. The system re-
quirements should define what the system
should do; the design should define how the
system should implement the requirements.

Work in the 1970s on requirements focused
on developing requirements statement lan-
guages, such as Dan Teichrow’s PSL/PSA
(Problem Statement Language/Problem State-
ment Analyzer), and methods of structured
analysis.1,2 Object-oriented modeling was de-
veloped in the 1980s, with Ivar Jacobson’s use
cases being a key element now embodied in
the Unified Modeling Language.3,4 The IEEE
standard on requirements documents was in-
troduced and refined,5 and the 1990s saw
much academic research on viewpoint-ori-
ented approaches to elicitation and analysis,6

J a n u a r y / F e b r u a r y 2 0 0 5 I E E E S O F T W A R E 1 7

Elicitation

AnalysisNegotiation

Validation

Documentation

Management

Figure 1. The
requirements
engineering
activity cycle.

formal mathematical methods,7 goal-oriented
approaches,8 and RE process improvement.9

We now know that the initial assumptions
that underpinned much RE research and prac-
tice were unrealistic. Requirements change is
inevitable, because the business environment
in which the software is used continually
changes—new competitors with new products
emerge, and businesses reorganize, restruc-
ture, and react to new opportunities. Further-
more, for large systems, the problem being
tackled is usually so complex that no one can
understand it completely before starting sys-
tem development. During system development
and operational use, your stakeholders con-
tinue to gain new insights into the problem,
leading to changes in the requirements.

Separating requirements and design means
that requirements engineers shouldn’t be influ-
enced by design considerations when setting
out a system’s requirements. Moreover, the re-
quirements shouldn’t limit designers’ freedom
in deciding how to implement the system. In
one of the first books on RE,10 Alan Davis ex-
plains why this is desirable: designers often
know more about technologies and implemen-
tation techniques than requirements engineers,
and the requirements shouldn’t stop them
from using the best available approach.

However, Davis also recognizes that this
ideal is impossible to achieve. What one person
might think of as a specification, another thinks
of as a design. Fundamentally, the processes of
understanding the problem, specifying the re-
quirements, and designing the system aren’t
discrete stages. They are all part of the general
process of developing a deeper understanding
of the business, the capabilities and structure
of the system being developed, and its operat-
ing environment.

RE for the 21st century
The 20th-century view of RE as something

you do before system development, and the
software requirements document as a com-
plete specification of the software to be imple-
mented, is no longer valid for many types of
system. New approaches to software develop-
ment and the need for businesses to respond
quickly to new opportunities and challenges
mean that we must rethink RE’s role in soft-
ware development.

Four key change drivers have forced this re-
think:

■ New approaches to systems development—
in particular, construction by configuration.
The dominant approach for many types of
system is now based on reuse, where exist-
ing systems and components are config-
ured to create new systems. The software
requirements depend on the existing sys-
tem capabilities and not just on what
stakeholders believe they need. The “Con-
struction by Configuration” sidebar dis-
cusses this important approach to systems
development in more detail.

■ The need for rapid software delivery. Busi-
nesses now operate in an environment that’s
changing incredibly quickly. New products
appear and disappear, regulations change,
businesses merge and restructure, competi-
tors change strategy. New software must be
rapidly conceived, implemented, and deliv-
ered. There isn’t time for a prolonged RE
process. Development gets going as soon as
a vision for the software is available, and
the requirements emerge and are clarified
during the development process.

■ The increasing rate of requirements
change. This is an inevitable consequence
of rapid delivery. If you don’t have time to
understand your requirements in detail,
you’ll inevitably make mistakes and have
to change the requirements to fix these
problems. More significantly, perhaps, the
changing business environment means
that new requirements might emerge and
existing requirements might change every
week or sometimes even every day.

■ The need for improved ROI on software
assets. Companies have enormous invest-
ments in their software and, understand-
ably, want to get as much return as possible
on that investment. So, when they need
new systems, there’s pressure to reuse exist-
ing software wherever possible. This intro-
duces the need for interoperability require-
ments that specify how the new and the
existing software should work together.

The emerging vision of Web Service archi-
tectures where programs can dynamically
search for available services and bind to them
at runtime poses further challenges for RE. In
the Web Services model, a system’s components
are services, defined by their interfaces. These
might be offered by external providers, and
many providers might offer the same service,

1 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Requirements
engineers

shouldn’t be
influenced
by design

considerations
when setting

out a system’s
requirements.

such as an ordering service for PCs. In princi-
ple, an executing program can use services from
different providers at different times without
user intervention.

Instead of thinking about requirements in
terms of system functionality or features, we’ll
have to think about systems in terms of services
provided and used. We’ll also need to find ways
to embed the requirements for the services that
a program itself needs so that these services can
be dynamically discovered and used.

Integrating RE with system
development

To address the system development chal-
lenges of the 21st century, we must integrate
the processes of RE and system implementa-
tion. The artificial separation of these activi-
ties leads to a situation where customers don’t
realize how much time and effort is required
to deliver their requirements, and where sup-
pliers can’t deliver the best value to customers
using their specialist knowledge and existing
software.

RE researchers and practitioners increas-
ingly recognize this. I don’t have space to dis-
cuss all the recent developments, so I’ll focus
here on three particularly important areas of
work:

■ Concurrent RE
■ Supporting trade-offs between require-

ments and design
■ RE and commercial off-the-shelf (COTS)

acquisition

Concurrent RE
Concurrent engineering is an approach to

product development where, instead of a se-
quential process of specification, design, manu-
facture, and so on, engineering process activities
are carried out concurrently with extensive feed-
back and iteration among the different teams
involved. In software engineering, agile devel-
opment methods such as Extreme Program-
ming (XP)11 embody a concurrent approach
that integrates the processes of RE, design, and
development.

Concurrent RE means that the starting
point for development is an outline of the soft-
ware. RE activities such as elicitation and val-
idation are carried out concurrently, and the
RE process is concurrent with other system
development processes. The system is devel-

oped and delivered in increments, with each
increment incorporating a useful subset of the
overall system functionality.

Concurrent RE offers several benefits:

■ Lower process overheads. You’ll spend
less time analyzing and documenting a
large body of requirements.

■ Early identification and implementation
of value-delivering requirements. Value-
delivering requirements are the most criti-
cal ones for the customer’s business—they
might allow new business processes to be
created or existing processes to be more
effective. A customer representative iden-
tifies the requirements that deliver the
most value and negotiates their implemen-
tation with the development team.

■ Responsiveness to requirements change.
Because you identify and document your
requirements iteratively, the overhead of
accommodating requirements change is

J a n u a r y / F e b r u a r y 2 0 0 5 I E E E S O F T W A R E 1 9

The central development in software engineering over the past 15 years
has been the divergence of approaches to software development for different
types of system. Before 1990, irrespective of application domain, most sys-
tems were designed and programmed in a generic or application-specific
programming language. Business systems were developed in Cobol, operat-
ing systems in C, many embedded systems in assembly language, and so on.
There was a shared development paradigm of specify, design, implement, test.

However, the past 10 years have seen remarkable changes. Pressured by
the need to cope with rapid change, the Y2K problem, and increasingly
complex distributed environments, businesses changed from building all
their software from scratch to an approach based on software reuse. For
business systems, the dominant development paradigm is no longer based
around programming but around reuse. Systems are developed by assem-
bling and integrating COTS, legacy systems, handwritten code, configured
enterprise resource planning (ERP) systems, and other software.

Sometimes this still involves conventional programming but with extensive
component reuse. At other times, it means configuring an off-the-shelf system to
support a business process; in other cases, it might mean moving toward an ERP-
based solution where the software development involves constructing business
rules and business process descriptions. In all these cases, however, the freedom
of the system stakeholders and designers is limited by what is available.

Of course, other system classes, such as control systems and middleware,
are still developed according to the traditional paradigm. While this approach
will continue for some classes of system, I believe that software construction by
configuration rather than programming will be extended to other areas such
as systems software development and embedded systems.

Construction by Configuration

2 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

relatively low. It might simply involve
reprioritizing the development schedule to
incorporate a requirements change in the
next system increment or to implement a
newly emerged requirement.

For example, in XP, customer representa-
tives are key members of the development
team. Rapid iteration is the norm, with new
releases of the system delivered to the cus-
tomer at frequent intervals. The customer rep-
resentative’s role on the development team is
to identify the requirements that, at any point
in the development cycle, deliver the best
value and then to negotiate the implementa-
tion of these requirements with the developers.

The particular approach used in XP is based
on stories or scenarios, with each scenario writ-
ten on a card. The scenarios are written in user
terms and illustrate some required user func-
tionality. For example, Figure 2 shows a simple
scenario that might be used in implementing a
library system that provides access to paid-for
copyright articles from external providers.

Developers analyze the scenario, break it
down into tasks, and estimate the effort re-
quired to implement that scenario. Given this
information about the costs of implementing
each scenario, the customer representative then
decides which requirements should have prior-
ity for inclusion in the next system release.

Concurrent RE isn’t suitable for all types of
system. If you have to implement a critical sys-
tem where careful analysis of the interactions
and dependencies between requirements is es-
sential, you need a complete and detailed re-
quirements document before implementation
starts. However, many companies don’t be-

lieve that the benefits of creating a complete
requirements document for their business sys-
tems outweigh the time and effort costs re-
quired to create such a document.

Some RE researchers and practitioners are
concerned that XP’s informal approach makes
requirements analysis almost impossible. Be-
cause XP requirements aren’t formally docu-
mented, developers effectively discard them
after implementation, and they never deliver a
complete system specification to the customer.
I also have some doubts about the imperma-
nence of XP requirements, but I believe the
concurrent approach points the way forward
for using RE in volatile business systems.

Supporting requirements/design
trade-offs

A major difficulty in RE is that customers
don’t have the knowledge to estimate the dif-
ficulty and associated costs of implementing a
requirement. They might suggest an appar-
ently simple requirement that has major cost
repercussions, or they might unnecessarily
limit their requirements because they don’t
know what’s already available in off-the-shelf
products. Barry Boehm and his colleagues give
examples of situations in which such problems
arose:12

■ A customer asked for a natural language
interface to a relatively simple query sys-
tem. This resulted in major additional costs
and ultimate cancellation of the project.

■ In a project to digitize corporate records
using scanning and optical character
recognition, the customer failed to recog-
nize that the OCR technology didn’t work
well with tables, charts, and graphs.

Boehm argues that to deliver systems rapidly
that meet customer needs, a key challenge is to
reconcile customer expectations with developer
capabilities. He developed an approach to RE
called the WinWin approach,13 in which nego-
tiation between customers and software suppli-
ers is central. The aim is to ensure that all stake-
holders identify win conditions that can be
satisfied. The WinWin approach has now been
incorporated in a more general approach to RE
called MBASE (model-based architecting and
software engineering), which integrates RE and
systems design.

One of the most important aspects of the

First, you select the article that you want from a displayed list. You
then have to tell the system how you will pay for it – this can either
be through a subscription, through a company account, or by credit
card.

After this, you get a copyright form from the system to fill in and,
when you have submitted this, the article you want is downloaded
onto your computer.

You then choose a printer and a copy of the article is printed. You
tell the system if printing has been successful.

If the article is a print-only article, you cannot keep the PDF version
so it is automatically deleted from your computer.

Downloading and printing an article

Figure 2. A story card
describing a usage
scenario of a digital
article library.

MBASE approach is its support for managing
expectations. To help with communication be-
tween customers and developers, Boehm and
his team have identified what he calls simpli-
fiers and complicators: things that make life
easier and things that make life harder, for
both developers and customers. These are or-
ganized and classified using domain-specific
headings and are used to help customers un-
derstand the problems developers face, and
vice versa.

For example, for COTS package extension,
developer-side simplifiers are

■ Clean, well-defined APIs
■ A single COTS package
■ Simple mappings of interface inputs and

outputs

and developer-side complicators include

■ Dynamic APIs
■ Natural language processing
■ Multiple, incompatible COTS packages
■ Volatile COTS packages
■ Complex exception handling

You can analyze simplifiers and complica-
tors from a customer perspective to assess the
associated customer risks and benefits. For ex-
ample, in an information retrieval system for a
digital library, an obvious simplifier is to use a
standard query language. However, the risk
from a librarian perspective is that this might
not be as effective as a specially designed query
system because users must know what they’re
looking for before they start searching.

Simplifiers and complicators are a simple
idea that you can easily incorporate in any RE
process. They make clear to customers that
different requirements choices have signifi-
cant implications for the system’s design and
implementation, and they provide a focus for
making requirements and design decisions
that reduce the risks for both software cus-
tomers and suppliers.

RE and COTS acquisition
COTS systems are now available in most

domains, so you can configure and adapt
generic products to different operational set-
tings. You can develop applications by acquir-
ing new COTS systems and configuring them
to interoperate with existing systems. Al-

though you shouldn’t underestimate the diffi-
culties of this approach, when it’s successful it
leads to lower development costs and acceler-
ated system deployment.

From an RE perspective, the traditional “re-
quirements first” approach poses real prob-
lems. If you develop a detailed set of require-
ments, you’ll probably find that no COTS
product meets your requirements. When select-
ing COTS software, you need to be flexible;
identify a set of critical requirements and
choose products that meet them. Then you can
adapt and extend your other requirements ac-
cording to the selected systems’ capabilities.

Two areas of RE research are particularly
important for COTS acquisition. The first deals
with COTS product selection: When many dif-
ferent products are available, how do you pick
the one that’s best for your requirements?
The second area is COTS interoperability:
How should you specify your requirements
so that your COTS software will work with
each other and with your existing operational
systems?

Selecting a COTS product
Neil Maiden and his colleagues have devel-

oped a systematic approach to COTS product
selection called PORE (procurement-oriented
requirements engineering).14 This approach
depends on eliciting key requirements from
stakeholders, then using these to identify a
candidate set of COTS software that meets or
partially meets these requirements. The candi-
date systems’ features and capabilities help
system stakeholders identify further require-
ments that they can then use to refine their se-
lection of COTS products. Figure 3 shows this

J a n u a r y / F e b r u a r y 2 0 0 5 I E E E S O F T W A R E 2 1

Acquire
customer

requirements

Check
compliance
with COTS
software

Explore
remaining

COTS software
candidates

Reject
noncompliant

systems

Figure 3. The cyclical
PORE (procurement-
oriented requirements
engineering) process
can help you select the
right COTS product.

cyclic process, in which the final result is se-
lection of the most suitable COTS system.

In the PORE process, you select candidates
through a three-stage process, in which each
stage develops the system requirements in
more detail and reduces the size of the COTS
candidates set. The stages are as follows:

1. Use publicly available information to select
candidate COTS software. Identify critical
requirements that you can employ to dis-
criminate between products using market-
ing literature and data sheets. Require-
ments at this stage might include cost
requirements, requirements for general ca-
pabilities, and interoperability require-
ments.

2. Use product demonstrations to narrow the
set of possible systems and to stimulate the
elicitation of new requirements. The prod-
uct demonstrations should show how each
system meets the initial requirements and
demonstrate each system’s overall capabili-
ties. This gives you information on how to
refine your initial requirements and gener-
ate new requirements that let you pick the
systems that go forward to the next stage.

3. Use hands-on product evaluation to further
refine your choice of system and your system
requirements. By this stage, you effectively
have a prototype system for experiment, and
you can use this with stakeholders to drive
the requirements elicitation process. Because
they can see what features and capabilities
each system offers, stakeholders can priori-
tize their requirements accordingly. Once
you’ve narrowed the choice to two or three
systems, you might perform more extensive
trials to assess the emergent properties of can-
didates such as performance, reliability, and
so on.

The PORE method provides active guid-
ance for each of these stages. It’s been used
successfully to procure different types of sys-
tems, including requirements management
systems and telecommunications systems for
securities trading.

Interoperability requirements
All companies now use a range of different

software systems, and a critical business re-
quirement in many situations is that new soft-
ware systems should interoperate with those

that are already in place. For example, a desk-
top e-procurement system might have to work
with an existing supplier database to provide
supplier information and with an existing or-
dering and invoicing system to manage orders,
payments, and deliveries.

In the RE research community, there’s
been a prevailing view that we can achieve
interoperability by using open interfaces and
standards, and that simply specifying open-
ness as a requirement solves the problem.
Experience has shown this isn’t true. Boehm
and Chris Abts have reported on some of the
practical difficulties in integrating COTS
systems.15

Soren Lausen, in a recent paper,16 discusses
the problems of specifying interoperability re-
quirements and choosing systems that meet
these requirements. He introduces a new type
of requirement called an open-target require-
ment, which tries not to exclude any possible
technical solution. It defines customer expec-
tations and, critically, requires potential
suppliers to explain how they’ll meet those
expectations.

He proposes five guidelines for interoper-
ability requirements specification:

1. Use open-target requirements and develop
a structured framework for evaluating
and scoring suppliers’ responses to these
requirements.

2. Express the interoperability requirement as
a user request rather than as a technical
requirement.

3. Be flexible in the degree of integration that
you can live with.

4. Think about product evolution, and write
requirements that ensure that someone
apart from the original supplier can extend
the product.

5. Write a trial period into the system contract
to demonstrate that the supplier can handle
the project’s high-risk areas.

To illustrate open-target requirements, con-
sider a sample e-procurement system that
must interoperate with an existing supplier
database:

R1: The e-procurement system shall not
maintain supplier addresses separately but
shall retrieve supplier addresses from the ex-
isting supplier database.

2 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Over the next
few years,

integrated RE
will become the
preferred mode
of development
for most types

of system.

Expressing the requirement in this way is un-
duly restrictive and might exclude many possi-
ble e-procurement COTS solutions that in-
clude their own data management system. An
alternative specification would be to focus on
the consistency of the information:

R1a: The supplier addresses displayed by the
e-procurement system shall be consistent with
the customer addresses in the supplier database.

This is a more open requirement but again
might be unduly restrictive. It excludes the
possibility, for example, of simply displaying
the supplier name and supplier reference and
then adding the address from the supplier
database when the order is actually generated.

R1b: The e-procurement system shall share
supplier data with the current supplier data-
base. Supplier addresses on orders and invoices
must be consistent. The system provider shall
explain the proposed sharing mechanism.

This open-target requirement is more flexible;
it states why the requirement is included and
explicitly requires an explanation from the
system provider of how this will be ensured.
Such requirements are a way of ensuring in-
teroperability without overprescribing and ex-
cluding systems that might viably meet other
important system requirements.

B usiness demands for faster delivery of
systems that cost less and are more
responsive to changing requirements

mean that the traditional “requirements first”
approach to software engineering has to
evolve. Requirements engineering has to be
more tightly integrated with system implemen-
tation to take advantage of reuse and to let
systems evolve to reflect changing require-
ments. Business system developers have al-
ready embraced these changes. I predict that
over the next few years, integrated RE will be-
come the preferred mode of development for
most types of system.

However, we should not underestimate the
real barriers to this integration that will slow
its introduction. Many system acquisition
processes require a detailed requirements docu-
ment as the basis of the contract between client
and supplier. Outsourced development also re-

lies on the remote development team working
from a detailed specification. Integrated RE will
require acquisition processes to evolve to reflect
the fact that close cooperation between clients
and suppliers is the best hope we have for more
effective software engineering.

References
1. D. Teichrow and E.A. Hershey, “PSL/PSA: A Computer

Aided Technique for Structured Documentation and
Analysis of Information Processing Systems,” IEEE
Trans. Software Eng., vol. SE-3, no. 1, 1977, pp. 41–49.

2. T. DeMaro and P.J. Plauger, Structured Analysis and
System Specification, Prentice Hall, 1979.

3. I. Jacobson, Object-Oriented Software Engineering: A
Use-Case Driven Approach, Addison-Wesley, 1992.

4. G. Booch, J. Rumbaugh, and I. Jacobson, The Unified
Modeling Language User Guide, Addison-Wesley, 1998.

5. IEEE Std IEEE-Std-830-1998, IEEE Recommended
Practice for Software Requirements Specification, IEEE
CS Press, 1998.

6. I. Sommerville and P. Sawyer, “Viewpoints: Principles,
Problems and a Practical Approach to Requirements
Engineering,” Annals of Software Eng., vol. 3, 1997,
pp. 101–130.

7. A. Hall, “Using Formal Methods to Develop an ATC
Information System,” IEEE Software, vol. 13, no. 2,
1996, pp. 66–76.

8. A. Van Lamsweerde, “Goal-Oriented Requirements En-
gineering: A Guided Tour,” Proc. 5th Int’l IEEE Re-
quirements Eng. Conf., IEEE CS Press, 2001, p. 249.

9. I. Sommerville and P. Sawyer, Requirements Engineer-
ing: A Good Practice Guide, John Wiley & Sons, 2000.

10. A. Davis, Software Requirements: Analysis and Specifi-
cation, Prentice Hall, 1990.

11. K. Beck, Extreme Programming Explained: Embrace
Change, Addison-Wesley, 2000.

12. B. Boehm et al., “Requirements Engineering, Expectations
Management and the Two Cultures,” Proc. 7th Int’l Symp.
Requirements Eng., IEEE CS Press, 1999, pp. 14–22.

13. B. Boehm et al., “Using the WinWin Spiral Model: A
Case Study,” Computer, vol. 31, no. 7, 1998, pp. 33–44.

14: N.A. Maiden and C. Ncube, “Acquiring COTS Soft-
ware Selection Requirements,” IEEE Software, vol. 15,
no. 2, 1998, pp. 46–56.

15. B. Boehm and C. Abts, “COTS Integration: Plug and
Pray?” Computer, vol. 32, no. 1, 1999, pp. 135–138.

16. S. Lausen, “COTS Tenders and Integration Require-
ments.” Proc. 12th IEEE Int’l Requirements Eng.
Conf., IEEE CS Press, 2004, pp. 166–175.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

J a n u a r y / F e b r u a r y 2 0 0 5 I E E E S O F T W A R E 2 3

About the Author

Ian Sommerville is a professor of software engineering in the Computing Department
at Lancaster University. His research interests include requirements engineering, system de-
pendability, service-oriented software engineering, and social informatics. He received his PhD
in computer science from St. Andrews University, Scotland. He is a Fellow of the British Com-
puter Society and IEE and a member of the IEEE Computer Society and ACM. Contact him at the
Computing Dept., Infolab21, Lancaster Univ., Lancaster, LA1 4WA, UK; is@comp.lancs.ac.uk.

