
Integrated Resource Management for Cluster-based Internet Services

Kai Shen� Hong Tangy Tao Yangyx Lingkun Chuy

kshen@cs.rochester.edu htang@cs.ucsb.edu tyang@cs.ucsb.edu lkchu@cs.ucsb.edu

� Dept. of Computer Science, University of Rochester, Rochester, NY 14627
y Dept. of Computer Science, University of California, Santa Barbara, CA 93106
x Ask Jeeves/Teoma Technologies, Piscataway, NJ 08854

Abstract

Client request rates for Internet services tend to be bursty
and thus it is important to maintain efficient resource uti-
lization under a wide range of load conditions. Network
service clients typically seek services interactively and
maintaining reasonable response time is often impera-
tive for such services. In addition, providing differenti-
ated service qualities and resource allocation to multiple
service classes can also be desirable at times. This paper
presents an integrated resource management framework
(part of Neptune system) that provides flexible service
quality specification, efficient resource utilization, and
service differentiation for cluster-based services. This
framework introduces the metric of quality-aware ser-
vice yield to combine the overall system efficiency and
individual service response time in one flexible model.
Resources are managed through a two-level request dis-
tribution and scheduling scheme. At the cluster level,
a fully decentralized request distribution architecture is
employed to achieve high scalability and availability.
Inside each service node, an adaptive scheduling pol-
icy maintains efficient resource utilization under a wide
range of load conditions. Our trace-driven evaluations
demonstrate the performance, scalability, and service
differentiation achieved by the proposed techniques.

1 Introduction

Previous studies show that the client request rates for
Internet services tend to be bursty and fluctuate dra-
matically [5, 10, 11]. For example, the daily peak-to-
average load ratio at Internet search service Ask Jeeves
(www.ask.com) is typically 3:1 and it can be much
higher and unpredictable in the presence of extraordi-
nary events. As another example, the online site of En-
cyclopedia Britannica (www.britannica.com) was

taken offline 24 hours after its initial launch in 1999 due
to a site overload. Over-provisioning system resources
for a service site to accommodate the potential peak will
not be cost-effective. As a consequence, it is important
to maintain efficient resource utilization for those ser-
vices under a wide range of load conditions.

Network clients typically seek services interactively and
maintaining reasonable response time is imperative. In
addition, providing differentiated service qualities and
resource allocation to multiple service classes can also
be desirable at times, especially when the system is
reaching its capacity limit and cannot provide interactive
responses to all the requests. Quality of service (QoS)
support and service differentiation have been studied ex-
tensively in network packet switching with respect to
packet delay and connection bandwidth [12, 26, 37]. It
is equally important to extend network-level QoS sup-
port to endpoint systems where service fulfillment and
content generation take place. Those issues are es-
pecially critical for cluster-based Internet services in
which contents are dynamically generated and aggre-
gated [5, 17, 20, 33, 35].

This paper presents the design and implementation
of an integrated resource management framework for
cluster-based services. This framework is part of Nep-
tune system: a cluster-based software infrastructure for
aggregating and replicating partitionable network ser-
vices [34, 35]. Neptune has been successfully de-
ployed at Internet search engine Ask Jeeves [5] since
December 2001. Although cluster-based network ser-
vices have been widely deployed, we have seen lim-
ited research in the literature on comprehensive resource
management with service differentiation support. Re-
cent studies on endpoint resource management and QoS
support have been mostly focused on single-host sys-
tems [1, 2, 6, 7, 8, 27, 39] or clustered systems serving
static HTTP content [3, 32]. In comparison, Neptune
is intended for clustered services with dynamic service

Kai Shen
Typewritten Text

Kai Shen
Typewritten Text

Kai Shen
Typewritten Text

Kai Shen
Typewritten Text
In Proc. of the 5th USENIX Symp. on Operating Systems Design and Implementation (OSDI'02) 

Kai Shen
Typewritten Text

Kai Shen
Typewritten Text

Kai Shen
Typewritten Text

Kai Shen
Typewritten Text

Kai Shen
Typewritten Text

Kai Shen
Typewritten Text

Kai Shen
Typewritten Text



fulfillment or content generation. The work presented
in this paper addresses some of the inadequacy of the
previous studies and complements them in the following
three aspects.

Flexible resource management objectives. Most pre-
vious studies used a monolithic metric to measure re-
source utilization and define QoS constraints. Com-
monly used ones include system throughput, mean re-
sponse time, mean stretch factor [41], or the tail distri-
bution of the response time [28]. We introduce a uni-
fied quality-aware metric that links the overall system
efficiency with individual service response time. To be
more specific, we consider the fulfillment of a service
request produces certain quality-aware service yield de-
pending on the response time. The overall goal of the
system is to maximize the aggregate service yield result-
ing from all requests. As an additional goal, the sys-
tem supports service differentiation for multiple service
classes.

Fully decentralized clustering architecture with
quality-aware resource management. Scalability and
availability are always overriding concerns for large-
scale cluster-based services. Several prior studies re-
lied on centralized components to manage resources for
a cluster of replicated servers [3, 10, 32, 41]. In contrast,
our framework employs a functionally symmetrical ar-
chitecture that does not rely on any centralized compo-
nents. Such a design not only eliminates potential single
point of failure in the system, it is also crucial to ensur-
ing smooth and prompt responses to demand spikes and
server failures.

Efficient resource utilization under quality con-
straints. Neptune achieves efficient resource utilization
through a two-level request distribution and schedul-
ing scheme. At the cluster level, requests for each ser-
vice class are evenly distributed to all replicated service
nodes without explicit partitioning. Inside each service
node, an adaptive scheduling policy adjusts to the run-
time load condition and seeks high aggregate service
yield at a wide range of load levels. When desired, the
service scheduler also provides proportional resource al-
location guarantee for specified service classes.

The rest of this paper is organized as follows. Section 2
illustrates a target architecture for this work and then de-
scribes our multi-fold resource management objective.
Section 3 presents Neptune’s two-level request distribu-
tion and scheduling architecture. Section 4 illustrates the
service scheduling inside each service node. Section 5
presents the system implementation and trace-driven ex-
perimental evaluations. Section 6 discusses related work
and Section 7 concludes the paper.

2 Targeted Architecture and Resource
Management Objective

In this section, we first illustrate the targeted system ar-
chitecture of this work. Then we introduce the concepts
of quality-aware service yield and service yield func-
tions. Through these concepts, service providers can ex-
press a variety of quality constraints based on the service
response time. Furthermore, using service yield func-
tions and resource allocation guarantees, our framework
allows service providers to determine the desired level of
service differentiation among multiple service classes.

2.1 Targeted Architecture

Neptune targets cluster-based network services accessi-
ble to many users through an intranet or the Internet.
Inside those clusters, services are usually partitioned,
replicated, aggregated, and then delivered to external
clients through protocol gateways. Partitioning is intro-
duced when the service processing requirement or data
volume exceeds the capacity of a single server node.
Service replication is commonly employed to improve
the system availability and provide load sharing. Partial
results may need to be aggregated across multiple data
partitions or multiple service components before being
delivered to external users.

High-throughput low-
latency network

Service
cluster

Business
partner XML

gateway

XML
gateway

XML
gateway

Web
Server

Web
Server

Web
server

Index
server

Partition 1

Index
server

Partition 1

Index
server

Partition 1 Index
server

Partition 2

Index
server

Partition 2

Index
server

Partition 2

Doc
server

Partition 2

Doc
server

Partition 2

Doc
server

Partition 2

Doc
server

Partition 1

Doc
server

Partition 1

Doc
server

Partition 1

Doc
server

Partition 3

Doc
server

Partition 3

Doc
server

Partition 3

Business
partner

Figure 1: A targeted system architecture: search engine.

Figure 1 uses a prototype search engine to illustrate such
a targeted system architecture [5, 18]. In this exam-
ple, the service cluster delivers search services to con-
sumers and business partners through Web servers and
XML gateways. Inside the cluster, the main search tasks
are performed on a set of index servers and document
servers, both partitioned and replicated. Each search
query first arrives at one of the protocol gateways. Then



some index servers are contacted to retrieve the identifi-
cations of index documents related to the search query.
Subsequently some document servers are mobilized to
retrieve a short description of these documents and the
final results are returned through the original protocol
gateway. The resource management work in this study
focuses on resources and quality constraints inside the
service cluster. Issues related to wide-area network la-
tency or bandwidth is beyond the scope of this paper.

A large-scale service cluster typically consists of mul-
tiple groups of replicated service components. We call
each replication group a sub-cluster. For instance, the
replicas for partition 1 of the index servers in Figure 1
form one such sub-cluster. While Neptune supports the
construction of multiple sub-clusters, this paper focuses
on the resource management within a single sub-cluster.
Here we give a brief discussion on the formation of
sub-clusters. Each sub-cluster typically hosts a single
type of service for modularity and ease of management.
This scheme also allows for targeted resource alloca-
tion. For instance, machines with large number of CPUs
can be allocated for sub-clusters hosting CPU-intensive
service components while machines equipped with fast
I/O channels can be used for sub-clusters hosting I/O-
intensive components. Nonetheless, it is not uncommon
to co-locate multiple types of service components in a
single replication group to improve resource utilization
efficiency.

2.2 Quality-aware Resource Utilization

Most previous studies used a monolithic metric such as
system throughput, mean response time, mean stretch
factor [41], or the tail distribution of the response
time [28] to measure the efficiency of system resource
management. We use a more comprehensive metric by
conceiving that the fulfillment of a service request pro-
vides certain yield depending the response time. This
yield, we call quality-aware service yield, can be linked
to the amount of economic benefit or social reach result-
ing from serving this request in a timely fashion. Both
goals of provisioning QoS and efficient resource utiliza-
tion can be naturally combined as producing high aggre-
gate yield. Furthermore, we consider the service yield
resulting from serving each request to be a function of
the service response time. The service yield function is
normally determined by service providers to give them
flexibility in expressing desired service qualities. Let r1,
r2, � � � , rk be the response times of the k service ac-
cesses completed in an operation period. Let Y i() rep-
resent the service yield function for the ith service ac-
cess. The goal of our system is to maximize the aggre-

gate yield, i.e.

maximize
kX

i=1

Yi(ri): (1)

In general, the service yield function can be any
monotonically non-increasing function that returns non-
negative numbers with non-negative inputs. We give a
few examples to illustrate how service providers can use
yield functions to express desired service qualities. For
instance, the system with the yield functionY throughput de-
picted in Figure 2 (A) is intended to achieve high system
throughput with a deadline D. In other words, the goal
of such a system is to complete as many service accesses
as possible with the response time � D. Similarly, the
system with the yield function Yresptime in Figure 2 (B)
is designed to achieve low mean response time. Note
that the traditional concept of mean response time does
not count dropped requests. Y resptime differs from that
concept by considering dropped requests as if they are
completed in D.

We notice that Ythroughput does not care about the exact
response time of each service access as long as it is com-
pleted within the deadline. In contrast, Y resptime always
reports higher yield for accesses completed faster. As a
hybrid version of these two, Yhybrid in Figure 2 (C) pro-
duces full yield when the response time is within a pre-
deadline D0, and the yield decreases linearly thereafter.
The yield finally declines to a drop penalty C 0 when the
response time reaches the deadline D. This corresponds
to the real world scenario that users are generally com-
fortable as long as a service request is completed in D 0.
They get more or less annoyed when the service takes
longer and they most likely abandon the service after
waiting for D. C represents the full yield resulting from
a prompt response and the drop penalty C 0 represents
the loss when the service is not completed within the fi-
nal deadlineD. Figure 2 illustrates these three functions.
We want to point out that Ythroughput is a special case of
Yhybrid when D0 = D; and Yresptime is also a special case
of Yhybrid when D0 = 0 and C 0 = 0.

2.3 Service Differentiation

Service differentiation is another goal of our multi-fold
resource management objective. Service differentiation
is based on the concept of service classes. A service
class is defined as a category of service accesses that ob-
tain the same level of service support. On the other hand,
service accesses belonging to different service classes
may receive differentiated QoS support. Service classes
can be defined based on client identities. For instance,



0 D
0

C

Response time

(A) Maximize throughput

0 D
0

C

Response time

(B) Minimize mean response time

0 D' D
0

C'

C

Response time

(C) Hybrid

Y
throughput

Y
resptime

Y
hybrid








>

≤≤−=
.if0

,0if)1()(resptime

Dr

Dr
D

r
CrY









=

>

≤≤

≤≤

−

−
−−

.if

,'if

,'0if

0

)(
'

'
)'(hybrid

Dr

DrD

Dr

DD

Dr
CCC

C

rY




>
≤≤

=
.if0

,0if
)(throughput Dr

DrC
rY

Figure 2: Illustration of service yield functions.

a special group of clients may be configured to receive
preferential service support or a guaranteed share of sys-
tem resources. Service classes can also be defined based
on service types or data partitions. For example, a or-
der placement transaction is typically considered more
important than a catalog-browsing request.

We provide differentiated services to different service
classes on two fronts. First, service classes can ac-
quire differentiated service support by specifying differ-
ent yield functions. For instance, serving a VIP-class
client can be configured to produce higher service yield
than serving a regular client. Secondly, each service
class can be guaranteed to receive a certain portion of
system resources. Most previous service differentiation
studies have focused on one of the above two means of
QoS support [7, 24, 30, 40]. We believe a combina-
tion of them provides two benefits when the system is
overloaded: 1) the resource allocation is biased toward
high-yield classes for efficient resource utilization; 2) a
certain portion of system resources can be guaranteed
for each service class, if needed. The second benefit is
crucial to preventing starvation for low-priority service
classes.

3 Two-level Request Distribution and
Scheduling

In our framework, each external service request enters
the service cluster through one of the gateways and it
is classified into one of the service classes according to
rules specified by service providers. Inside the cluster,
service components are usually partitioned, replicated,
and aggregated to fulfill the request. In this section, we
discuss the cluster-level request distribution for a parti-

tion group or sub-cluster.

The dynamic partitioning approach proposed in a pre-
vious study adaptively partitions all replicas for each
sub-cluster into several groups and each group is as-
signed to handle requests from one service class [41].
We believe such a scheme has a number of drawbacks.
First, a cluster-wide scheduler is required to make server
partitioning decisions, which is not only a single-point
of failure, but also a potential performance bottleneck.
Secondly, cluster-wide server groups cannot be repar-
titioned very frequently, which makes it difficult to re-
spond promptly to changing resource demand. In order
to address these problems, Neptune does not explicitly
partition server groups. Instead, we employ a symmetri-
cal and decentralized two-level request distribution and
scheduling architecture illustrated in Figure 3.

Service

node

Service

client

Service

client

Service

client

Cluster-wide

request distribution

Service cluster

Service

node
Service

node
Service

node

Sub-cluster for the

requested service

Other

node

Other

node
… ...

Figure 3: Two-level request distribution and scheduling.

In this scheme, each service node in a sub-cluster can
process requests from all service classes. The resource
management decision is essentially made at two levels.
First, each service request is directed to one of the repli-
cated service nodes through the cluster-level request dis-
tribution. Upon arriving at the service node, the request



is then subject to a node-level service scheduling. At
the cluster level, Neptune employs a class-aware load
balancing scheme to evenly distribute requests for each
class to all replicas. Our load balancing scheme uses
a random polling policy that discards slow-responding
polls. Under this policy, whenever a client is about to
seek a service for a particular service class, it polls a
certain number of randomly selected service nodes to
obtain the load information. Then it directs the service
request to the node with the smallest number of active
and queued requests. Nodes that do not respond within
a deadline are discarded. This strategy also helps ex-
clude faulty nodes from request distribution. In practice,
we use a poll size of 3 in our system. The polling dead-
line is set to be 10 ms, which is the smallest timeout
granularity supported by select system call in Linux.
Our recent study shows that such a policy is scalable and
it performs well for services of small granularities [34].
Inside each service node, Neptune must also deal with
the resource allocation across multiple service classes.
This is handled by a node-level class-aware scheduling
scheme, which will be discussed in Section 4.

An Alternative Approach for Comparison. For the
purpose of comparison, we also designed a request
distribution scheme based on server partitioning [41].
Server partitioning is adjusted periodically at fixed inter-
vals. This scheme uses the past resource usage to predict
the future resource demand and makes different parti-
tioning decisions during system under-load and overload
situations.

� When the aggregate demand does not exceed the
total system resources, every service class acquires
their demanded resource allocation. The remain-
ing resources will be allocated to all classes pro-
portional to their demand.

� When the system is overloaded, in the first round
we allocate to each class its resource demand or its
resource allocation guarantee, whichever is smaller.
Then the remaining resources are allocated to all
classes under a priority order. The priority order
is sorted by the full yield divided by the mean re-
source consumption for each class, which can be
acquired through offline profiling.

Fractional server allocations are allowed in this scheme.
All servers are partitioned into two pools, a dedicated
pool and a shared pool. A service class with 2.4 server
allocation, for instance, will get two servers from the
dedicated pool and acquire 0.4 server allocation from the
shared pool through sharing with other classes with frac-
tional allocations.

The length of the adjustment interval should be cho-
sen carefully so that it is not too small to avoid exces-
sive repartitioning overhead and maintain system stabil-
ity, nor is it too large to promptly respond to demand
changes. We choose the interval to be 10 seconds in
this paper. Within each allocation interval, service re-
quests are randomly directed to one of the servers allo-
cated to the corresponding service class according to the
load balancing policy [34].

4 Node-level Service Scheduling

Neptune employs a multi-queue (one per service class)
scheduler inside each node. Whenever a service request
arrives, it enters the appropriate queue for the service
class it belongs to. When resources become available,
the scheduler picks a request for service. The scheduled
request is not necessarily at the head of a queue. Figure 4
illustrates such a runtime environment of a service node.

Class 1

Class 2

... ...
Class N

Service
scheduler
Service

scheduler

Figure 4: Runtime environment of a service node.

For a service node hosting N service classes:
C1; C2; � � � ; CN , each class Ck is configured with a ser-
vice yield function Yk and optionally a minimum system
resource share guarantee gk, which is expressed as a per-
centage of total system resources (

P
N

1 gk � 1). The
goal of the scheduling scheme is to provide the guaran-
teed system resources for all service classes and sched-
ule the remaining resources to achieve high aggregate
service yield. Figure 5 illustrates the framework of our
service scheduling algorithm at each scheduling point.
In the rest of this section, we will discuss two aspects of
the scheduling algorithm: 1) maintaining resource allo-
cation guarantees; and 2) achieving high aggregate ser-
vice yield.

4.1 Estimating Resource Consumption for Al-
location Guarantees

In order to maintain resource allocation guarantees, we
need to estimate resource consumption for each service
class at each scheduling time. This estimation should be
biased toward recent usage to stabilize quickly when the



1. Drop from each queue head those requests that
are likely to generate zero or very small yield
according to the request arrival time, expected
service time and the yield function.

2. Search for the service classes with non-empty
request queues that have an estimated resource
consumption of less than the guaranteed share.
(Section 4.1)

(a) If found, schedule the one with the largest
gap between the resource consumption and
the guaranteed share.

(b) Otherwise, schedule a queued request that
is likely to produce high aggregate service
yield. (Section 4.2)

Figure 5: The node-level service scheduling algorithm.

actual resource consumption jumps from one level to an-
other. It should not be too shortsighted either in order to
avoid oscillations or over-reactions to short-term spikes.
Among many possible functions that exhibit those prop-
erties, we define the resource consumption for class Ck

at time t to be the weighted summation of the resource
usage for all class Ck requests completed no later than
t. The weight is chosen to decrease exponentially with
regard to the elapsed time since the request completion.
For each request r, let ct(r) be its completion time and
s(r) be its measured resource usage (we will discuss
how to measure it in the end of this sub-section), which
is known after its completion. Equation 2 defines uk(t)
to be the resource consumption for class Ck at time t.
Note that the time in all the following equations is de-
nominated in seconds.

uk(t) =
X

frjr2Ck and ct(r)�tg

�t�ct(r)s(r);

0 < � < 1

(2)

Another reason for which we choose this function is that
it can be incrementally calculated without maintaining
the entire service scheduling history. If we adjust uk(t)
at the completion of every request and let t 0 be the previ-
ous calculation time, the resource consumption at time t
can be calculated incrementally through Equation 3.

uk(t) = �t�t
0

uk(t
0) + �t�ct(r)s(r) (3)

The selection of � should be careful to maintain the
smooth and stable reaction for both short-term spikes
and long-term consumption changes. In this paper we
empirically choose � to be 0.95. Since we use second

as the unit of time in those equations, this means a ser-
vice request completed one second ago carries 95% the
weight of a service request completed right now. With
the definition of uk(t), the proportional resource con-
sumption of class Ck can be represented by uk(t)P

N

k=1
uk(t)

.

In step 2 of the service scheduling, this proportional
consumption is compared with the guaranteed share to
search for under-allocated service classes.

This resource consumption estimation scheme is related
to the exponentially-weighted moving average (EWMA)
filter used as the round-trip time predictor in TCP [14]. It
differs from the original EWMA filter in that the weight
in our scheme decreases exponentially with regard to the
elapsed time instead of the elapsed number of measure-
ment samples. This is more appropriate for estimating
resource consumption due to its time-decaying nature.

The detailed measurement of resource consumption s(r)
for each request r is application-dependent. Generally
speaking, each request can involve mixed CPU and I/O
activities and it is difficult to define a generic formula
for all applications. Our approach is to let application
developers decide how the resource consumption should
be accounted. Large-scale service clusters are typically
composed of multiple sub-clusters of replicated service
components [5]. Each sub-cluster typically hosts a sin-
gle type of service for modularity and ease of manage-
ment. Thus requests in the same sub-cluster tend to share
similar resource characteristics in terms of I/O and CPU
demand and it is not hard in practice to identify a suit-
able way to measure resource consumptions. In the cur-
rent implementation, we use the accumulated CPU con-
sumption for a thread or process acquired through Linux
/proc file system. The effectiveness of this account-
ing model is demonstrated in our performance evalua-
tion which contains a benchmark involving significant
disk I/O.

Using single dimension resources simplifies our re-
source accounting model. We acknowledge that it could
be desirable at times to co-locate CPU-intensive services
with I/O-intensive applications to improve resource uti-
lization efficiency. Accounting multi-dimension re-
sources is not directly tackled in this paper. However, we
believe a multi-dimensional resource accounting module
can be added into our framework to address this issue.

4.2 Achieving High Aggregate Yield

In this section, we examine the policies employed in
step 2b of the service scheduling to achieve high ag-
gregated yield. In general, the optimization problem



of maximizing the aggregate yield is difficult to solve
given the fact that it relies on the advanced knowl-
edge of the resource requirements of pending requests.
Even for the offline case in which the cost for each re-
quest is known in advance, Karp has shown that the
Job Sequence problem, which is a restricted case of
our optimization problem, is NP-complete [25]. Vari-
ous priority-based scheduling policies were proposed in
real-time database systems to maximize aggregate re-
alized value [22, 23]. Typical policies considered in
those systems include Earliest Deadline First scheduling
(EDF) and Yield or Value-Inflated Deadline scheduling
(YID). EDF always schedules the queued request with
the closest deadline. YID schedules the queued request
with the smallest inflated deadline, defined as the rela-
tive deadline divided by the expected yield if the request
is being scheduled.

Both EDF and YID are designed to avoid or minimize
the amount of lost yield. They work well when the
system resources are sized to handle transient heavy
load [22]. For Internet services, however, the client re-
quest rates tend to be bursty and fluctuate dramatically
from time to time [5, 10, 11]. Over-provisioning system
resources for a service site to accommodate the poten-
tial peak will not be cost-effective. During load spikes
when systems face sustained arrival demand exceeding
the available resources, missed deadlines become un-
avoidable and the resource management should instead
focus on utilizing resources in the most efficient way.
This leads us to design a Greedy scheduling policy that
schedules the request with the lowest resource consump-
tion per unit of expected yield. The Greedy method
typically performs well when the system is overloaded.
However, it is not optimal because it only maximizes the
efficiency for the next scheduled request without consid-
ering longer impact of the scheduling decision.

In order to have a scheduling policy that works well at
a wide range of load conditions, we further design an
Adaptive policy that dynamically switches between YID
and Greedy scheduling depending on the runtime load
condition. The scheduler maintains a 30-second window
of recent request dropping statistics. If more than 5% of
incoming requests are dropped in the watched window,
the system is considered as overload and the Greedy
scheduling is employed. Otherwise, the YID schedul-
ing is used.

All the above scheduling policies are priority-based
scheduling with different definition of priorities. Ta-
ble 1 summarizes the priority metrics of the four poli-
cies. Three of these policies require a predicted ser-
vice time and resource consumption for each request
at the scheduling time. For the service time, we use

Policy Priority (the smaller the higher)

EDF Relative deadline
YID Relative deadline divided by expected yield

Greedy Expected resource consumption divided by ex-
pected yield

Adaptive Dynamically switch between YID (in under-
load) and Greedy (in overload)

Table 1: Summary of scheduling policies.

an exponentially-weighted moving average of the ser-
vice time of past requests belonging to the same ser-
vice class. Resource consumption measurement is
application-dependent as we have explained in the pre-
vious sub-section. In our current implementation, such a
prediction is based on an exponentially-weighted mov-
ing average of the CPU consumptions of past requests
belonging to the same service class.

5 System Implementation and Experimen-
tal Evaluations

Neptune has been implemented on a Linux cluster. In
addition to the resource management framework de-
scribed in this paper, Neptune provides load balancing
and replication support for cluster-based services [34,
35]. Application developers can easily deploy services
through specifying a set of RPC-like access methods for
each service and the clients can access them through
a simple programming API. Neptune employs a sym-
metrical architecture in constructing the service infras-
tructure. Any node can elect to provide services and
seek services from other nodes inside the service cluster.
Each external service request is assigned a service class
ID upon arriving at any of the gateways. Those requests
are directed to one of the replicated service nodes ac-
cording to the class-aware load balancing scheme. Each
server node maintains multiple request queues (one per
service class) and a thread pool. To process each ser-
vice request, a thread is dispatched to invoke the applica-
tion service component through dynamically-linked li-
braries. The size of the thread pool is chosen to strike
the balance between concurrency and efficiency depend-
ing on the application characteristics. The aggregate
services are exported to external clients through pro-
tocol gateways. Neptune was subsequently ported to
Solaris platform. An earlier version of Neptune has
been successfully deployed at Internet search engine
Ask Jeeves [5] since December 2001. The resource man-
agement framework described in this paper, however,
has not been incorporated into the production system.



The overall objective of the experimental evaluation is
to demonstrate the performance, scalability, and service
differentiation achieved by the proposed techniques. In
particular, the first goal is to examine the system per-
formance of various service scheduling schemes over a
wide range of load conditions. Secondly, we will study
the performance and scalability of our cluster-level re-
quest distribution scheme. Our third goal is to investi-
gate the system behavior in terms of service differentia-
tion during demand spikes and server failures. All the
evaluations were conducted on a rack-mounted Linux
cluster with 30 dual 400 MHz Pentium II nodes, each of
which contains either 512 MB or 1 GB memory. Each
node runs Linux 2.2.15 and has two 100 Mb/s Ethernet
interfaces. The cluster is connected by a Lucent P550
Ethernet switch with 22 Gb/s backplane bandwidth.

5.1 Evaluation Workloads

Our evaluation studies are based on two service work-
loads. The first service is a Differentiated Search service
based on an index search component from Ask Jeeves
search. This service takes in a group of encoded query
words; checks a memory mapped index database; and
returns a list of URLs that are relevant to input query
words. The index database size is around 2.5 GB at
each node and it cannot completely fit in memory. The
mean service time for this service is around 250 ms in
our testbed when each request is served in a dedicated
environment.

Differentiated Search distinguishes three classes of
clients, representing Gold, Silver, and Bronze member-
ships. We let the request composition for these three
classes be 10%, 30%, 60% respectively. The yield func-
tions of these service classes can be one of the three
forms that we described in Section 2.2, i.e. Y throughput(),
Yresptime(), or Yhybrid(). In each case, the shapes of the
yield functions for three service classes are the same
other than the magnitude. We determine the ratio of such
magnitudes to be 4:2:1 meaning that processing a Gold
request yields four times as much as a Bronze request at
the same response time. The deadline D is set to be 2
seconds. In the case of Yhybrid(), the drop penalty C 0 is
set to be half of the full yield and the pre-deadline D 0 is
set to be half of the absolute deadline D. Figure 6 illus-
trates the yield functions when they are in each one of
the three forms.

The request arrival intervals and the query words for the
three Differentiated Search service classes are based on
a one-week trace we collected at Ask Jeeves search via
one of its edge Web servers. The request distribution

among the edge Web servers are conducted by a bal-
ancing switch according to the “least connections” pol-
icy. Note that this trace only represents a fraction of the
complete Ask Jeeves traffic during the trace collection
period. Figure 7 shows the total and non-cached search
rate of this trace. The search engine employs a query
cache to directly serve those queries that have already
been served before and cached. We are only concerned
with non-cached requests in our evaluation because only
those requests invoke the index search component. We
use the peak-time portion of Tuesday, Wednesday, and
Thursday’s traces to drive the workload for Gold, Silver,
and Bronze classes respectively. For each day, the peak-
time portion we choose is the 7-hour period from 11am
to 6pm EST. The statistics of these three traces are listed
in Table 2. Note that the arrival intervals of these traces
may be scaled when necessary to generate workloads at
various demand levels during our evaluation.

Sun Mon Tue Wed Thu Fri Sat
0

5

10

15

20

25

S
ea

rc
h 

ra
te

 (
hi

ts
/s

ec
) total

non−cached

Figure 7: Search requests to Ask Jeeves search via one
of its edge web servers (January 6-12, 2002).

Number of accesses Arrival interval
Total (non-cached) Mean Std-dev

Gold 507,202 (154,466) 161.3ms 164.3ms
Silver 512,227 (151,827) 166.0ms 169.5ms
Bronze 517,116 (156,214) 161.3ms 164.7ms

Table 2: Statistics of evaluation traces.

The three service classes in Differentiated Search are
based on the same service type and thus have the same
average resource consumption. The second service we
constructed for the evaluation is designed to have dif-
ferent resource consumption for each service class, rep-
resenting services differentiated on their types. This
service, we call Micro-benchmark, is based on a CPU-
spinning micro-benchmark. It contains three service
classes with the same yield functions as the Differen-
tiated Search service. The mean service times of the
three classes are 400 ms, 200 ms, and 100 ms respec-
tively. We use Poisson process arrivals and exponen-
tially distributed service times for the Micro-benchmark
service. Several previous studies on Internet connections
and workstation clusters suggested that both the HTTP
inter-arrival time distribution and the service time distri-
bution exhibit high variance, thus are better modeled by



0 1 2 3
0

2

4

6

Response time (seconds)

S
er

vi
ce

 y
ie

ld

(A) Y
throughput

Y() for Gold
Y() for Silver
Y() for Bronze

0 1 2 3
0

2

4

6

Response time (seconds)

S
er

vi
ce

 y
ie

ld

(B) Y
resptime

Y() for Gold
Y() for Silver
Y() for Bronze

0 1 2 3
0

2

4

6

Response time (seconds)

S
er

vi
ce

 y
ie

ld

(C) Y
hybrid

Y() for Gold
Y() for Silver
Y() for Bronze

Figure 6: Service yield functions in evaluation workloads.

Lognormal, Weibull, or Pareto distributions [15, 21]. We
choose exponentially-distributed arrival intervals and
service times for the following reasons. First, a primary
cause for the high variance of HTTP arrival intervals is
the proximity of the HTTP request for the main page
and subsequent requests for embedded objects or im-
ages. However, if we only consider resource-intensive
service requests which requires dynamic content gen-
eration, HTTP requests for embedded objects are not
counted. Secondly, the service time distribution tends
to have a low variance for services of the same type.
Our analysis on the Ask Jeeves trace shows that those
distributions have similar variances as an exponentially
distributed sample would have.

5.2 Evaluation on Node-level Scheduling and
Service Differentiation

In this section, we study the performance of four service
scheduling policies (EDF, YID, Greedy and Adaptive)
and their impact on service differentiation. The perfor-
mance metric we use in this study is LossPercent [22],
which is computed as

LossPercent =
OfferedYield� RealizedYield

OfferedYield
� 100%

OfferedYield is the aggregated full yield of all arrived re-
quests and RealizedYield is the amount of yield realized
by the system. We choose the loss percentage as the
performance metric because this metric is effective in il-
lustrating performance difference in both system under-
load and overload situations. In comparison, the actual
rate (aggregate service yield in this case) is not as illus-
trative as the loss percentage when the system load is
below the saturation point.

Figure 8 shows the performance of scheduling policies
on Differentiated Search with 16 replicated servers. The
experiments were conducted for all three forms of yield
functions: Ythroughput(), Yresptime(), and Yhybrid(). Figure 9

0% 25% 50% 75% 100%
0%

2%

4%

6%

Arrival demand
Lo

st
 p

er
ce

nt

(A) Underload − Y
hybrid

EDF
YID
Greedy
Adaptive

100% 125% 150% 175% 200%
0%

15%

30%

45%

60%

Arrival demand

Lo
st

 p
er

ce
nt

(B) Overload − Y
hybrid

EDF
YID
Greedy
Adaptive

Figure 9: Performance of scheduling policies on Micro-
benchmark (16 servers).

shows the performance of scheduling policies on Micro-
benchmark with 16 servers. Only the result for yield
functions in Yhybrid() form is shown to save space. In
each case, we show the performance results with a vary-
ing arrival demand of up to 200% of the available re-
sources. The demand level cannot simply be the mean
arrival rate times the mean service time due to various
system overhead. We probe the maximum arrival rate
such that more than 95% of all requests are completed
within the deadline under EDF scheduling. Then we
consider the request demand is 100% at this arrival rate.
The desired demand level is then achieved by scaling
the request arrival intervals. The performance results are
separated into the under-load (arrival demand � 100%)
and overload (arrival demand � 100%) situations. We



0% 25% 50% 75% 100%
0%

2%

4%

6%

Arrival demand

Lo
st

 p
er

ce
nt

(A) Underload − Y
throughput

EDF
YID
Greedy
Adaptive

0% 25% 50% 75% 100%
0%

10%

20%

30%

40%

Arrival demand

Lo
st

 p
er

ce
nt

(B) Underload − Y
resptime

EDF
YID
Greedy
Adaptive

0% 25% 50% 75% 100%
0%

3%

6%

9%

Arrival demand

Lo
st

 p
er

ce
nt

(C) Underload − Y
hybrid

EDF
YID
Greedy
Adaptive

100% 125% 150% 175% 200%
0%

15%

30%

45%

60%

Arrival demand

Lo
st

 p
er

ce
nt

(D) Overload − Y
throughput

EDF
YID
Greedy
Adaptive

100% 125% 150% 175% 200%
0%

25%

50%

75%

100%

Arrival demand

Lo
st

 p
er

ce
nt

(E) Overload − Y
resptime

EDF
YID
Greedy
Adaptive

100% 125% 150% 175% 200%
0%

20%

40%

60%

Arrival demand

Lo
st

 p
er

ce
nt

(F) Overload − Y
hybrid

EDF
YID
Greedy
Adaptive

Figure 8: Performance of scheduling policies on Differentiated Search (16 servers).

employ no minimum resource guarantee for both ser-
vices to better illustrate the comparison on the aggregate
yield. From these results, we observe that YID outper-
forms Greedy by up to 49% when the system is under-
loaded and Greedy performs up to 39% better during
system overload. The Adaptive policy is able to dy-
namically switch between YID and Greedy policies to
achieve good performance on all studied load levels.

To further understand the performance difference among
the scheduling policies and the impact on service
differentiation, Figure 10 lists the per-class perfor-
mance breakdown for Differentiated Search service with
Yhybrid() yield functions under 200% arrival demand. For
the per-class response time, we show both the mean val-
ues and the 95th percentile values. We choose a high
arrival demand (200%) for this experiment because ser-
vice differentiation is more critical at higher load. Ex-
traordinary events can cause such severe system over-
load and shorter-term spikes can be more widespread
in practice. From Figure 10, we observe that all four
policies achieve similar aggregate throughput, however,
Greedy and Adaptive policies complete more requests
of higher-priority classes, representing more efficient re-
source utilization. In terms of the mean response time,
Greedy and Adaptive policies complete requests with
shorter mean response time, representing better quality

for completed requests.

5.3 Evaluation on Request Distribution across
Replicated Servers

Figure 11 illustrates our evaluation results on two re-
quest distribution schemes: class-aware load balancing
(used in Neptune) and server partitioning. For each
service, we show the aggregate service yield of up to
16 replicated servers under slight under-load (75% de-
mand), slight overload (125% demand), and severe over-
load (200% demand). The Adaptive scheduling policy
is used in each server for those experiments. The ag-
gregate yield shown in Figure 11 is normalized to the
Neptune yield under 200% arrival demand. Our result
shows that both schemes exhibit good scalability, which
is attributed to our underlying load balancing strategy,
the random-polling policy that discards slow-responding
polls [34]. In comparison, Neptune produces up to 6%
more yield than server partitioning under high demand.
This is because Neptune allows the whole cluster-wide
load balancing for all service classes while server parti-
tioning restricts the scope of load balancing to the spe-
cific server partition for the corresponding service class,
which affects the load balancing performance.



EDF YID GreedyAdaptive Demand
0

50

100

150

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

on
d)

(A) Throughput breakdown

Gold
Silver
Bronze

EDF YID Greedy Adaptive
0

0.5

1

1.5

2

2.5

R
es

po
ns

e 
tim

e 
(s

ec
on

d)

(B) Response time breakdown (mean & 95th percentile)

Gold mean
Gold 95%
Silver mean
Silver 95%
Bronze mean
Bronze 95%

Figure 10: Per-class performance breakdown of Differ-
entiated Search at 200% arrival demand.

5.4 Service Differentiation during Demand
Spikes and Server Failures

In this section, we study the service differentiation dur-
ing demand spikes and server failures. We use the Dif-
ferentiated Search service with 20% resource guarantee
for each class. In order to produce constantly control-
lable demand levels, we altered this service to generate
fixed interval request arrivals. Figure 12 illustrates the
system behavior of such a service under Neptune and
server partitioning approaches in a 16-server configu-
ration. For each service class, we show the resource
demand and the resource allocation, measured in two-
second intervals, over a 300-second period.

Initially the total demand is 100% of the available re-
sources, with 10%, 30%, and 60% of which belong to
Gold, Silver, and Bronze class respectively. Then there
is a demand spike for the Silver class between time
50 and time 150. We observe that Neptune promptly
responds to the demand spike by allocating more re-
sources to meet high-priority Silver class demand and
dropping some low-priority Bronze class requests. This
shift stops when Bronze class resource allocation drops
to around 20% of total system resources, which is its
guaranteed share. We also see the resource allocations
for Silver and Bronze class quickly stabilize when they

0 5 10 15 20
0

5

10

15

20

Number of servers

A
gg

re
ga

te
 y

ie
ld

 (
no

rm
al

iz
ed

)

(A) Differentiated Search

Neptune, 200%
Partitioning, 200%
Neptune, 125%
Partitioning, 125%
Neptune, 75%
Partitioning, 75%

0 5 10 15 20
0

5

10

15

20

Number of servers
A

gg
re

ga
te

 y
ie

ld
 (

no
rm

al
iz

ed
)

(B) Micro−benchmark

Neptune, 200%
Partitioning, 200%
Neptune, 125%
Partitioning, 125%
Neptune, 75%
Partitioning, 75%

Figure 11: Performance and scalability of request distri-
bution schemes.

reach new allocation levels. In comparison, the server
partitioning scheme responds to this demand spike in a
slower pace because it cannot adjust to immediate de-
mand changes until the next allocation interval. We
also observe that the resource allocation for the highest-
priority Gold class is isolated from this demand spike
under both schemes.

At time 200, one server (allocated to the Gold class un-
der server partitioning) fails and it recovers at time 250.
Immediately after the server failure, we see a deep drop
of Gold class resource allocation for about 10 seconds
under server partitioning. This is again because it cannot
adjust to immediate resource change until the next allo-
cation interval. In comparison, Neptune exhibits much
smoother behavior because losing any one server re-
sults in a proportional loss of resources for each class.
Also note that the loss of a server reduces the avail-
able resources, which increases the relative demand to
the available resources. This effectively results in an-
other resource shortage. The system copes with it by
maintaining enough allocation to Gold and Silver classes
while dropping some Bronze class requests.



0 50 100 150 200 250 300
0%

5%

10%

15%

20%

R
es

ou
rc

e 
de

m
an

d/
al

lo
ca

tio
n

(A) Gold class

Resource demand
Neptune
Server partitioning

0 50 100 150 200 250 300
0%

20%

40%

60%

80%

100%

R
es

ou
rc

e 
de

m
an

d/
al

lo
ca

tio
n

(B) Silver class

Resource demand
Neptune
Server partitioning

0 50 100 150 200 250 300
0%

20%

40%

60%

80%

100%

Timeline (seconds)

R
es

ou
rc

e 
de

m
an

d/
al

lo
ca

tio
n

(C) Bronze class

Resource demand
Neptune
Server partitioning

Figure 12: System behavior during demand spike and server failure with 16 servers. Differentiated Search with 20%
resource guarantee for each class is used. One server (allocated to the Gold class under server partitioning) fails at
time 200 and it recovers at time 250.

6 Related Work

Software infrastructure for clustered services. Previ-
ous studies have addressed the scalability and availabil-
ity issues in providing software infrastructure for cluster-
based network services [17, 20, 35]. In particular,
TACC employs a two-tier architecture in which the ser-
vice components called “workers” run on different back-
ends while accesses to workers are controlled by front-
ends [17]. Our work in this paper complements these
studies by proposing an integrated resource management
framework that addresses quality specification, efficient
resource utilization under quality constraints, and ser-
vice differentiation support. There are a number of re-
cent studies on replication support for services with fre-
quent updates on persistent service data [19, 33, 35]. The
focus of these studies is to support replica consistency in
addition to the existing requirements of scalability and
availability. The resource management framework pro-
posed in this paper has only been evaluated with read-
only workload. The impact of update-intensive work-
load remains to be addressed in the future.

Quality-of-service support and service differentia-

tion. The importance of providing QoS support and
service differentiation has been recognized in the net-
working community and the focuses of these studies is
network bandwidth allocation and packet delay [26, 37].
The methods for ensuring bandwidth usage include de-
laying or dropping user requests [12, 27, 32] or reducing
service qualities [1, 9]. Recent studies on endpoint re-
source management and QoS support have been mostly
focused on single-host systems [1, 2, 6, 7, 8, 27, 39] or
clustered systems serving static HTTP content [3, 32].
In comparison, Neptune focuses on achieving efficient
resource utilization and providing service differentiation
for cluster-based services in which contents are dynam-
ically generated and aggregated. Recent advances in OS
research have developed approaches to provide QoS sup-
port at OS kernel level [6, 8, 13, 29, 36, 39]. Our work
can be enhanced by those studies to support hard QoS
guarantees and service differentiation at finer granulari-
ties.

The concept of service quality in this resource manage-
ment framework refers to only the service response time.
Service response time is important for many applica-
tions such that the proposed techniques can be widely
applied. However, we acknowledge that service quality



can have various application-specific additional dimen-
sions. For instance, the partial failure in a partitioned
search database results in a loss of harvest [16]. Further
work is needed to address additional application-specific
service qualities.

Resource management for clustered services. A large
body of work has been done in request distribution
and resource management for cluster-based server sys-
tems [3, 4, 10, 31, 38, 41]. In particular, demand-
driven service differentiation (DDSD) provides a dy-
namic server partitioning approach to differentiating ser-
vices from different service classes [41]. Similar to a few
other studies [3, 10], DDSD supports service differentia-
tion in the aggregate allocation for each service class. In
comparison, this paper presents a decentralized architec-
ture to achieve scalability while deploying quality-aware
resource management.

Locality-aware request distribution. Previous
study has proposed locality-aware request distribution
(LARD) to exploit application-level data locality for
Web server clusters [31]. Our work does not explicitly
consider data locality because many applications are not
locality-sensitive. For example, the critical working set
in many Ask Jeeves service components are designed
to fit into the system memory. Over-emphasizing on
application-level service characteristics may thus limit
the applicability of our framework. Nonetheless, it will
be a valuable future work to incorporate locality-aware
heuristics into our cluster-level request distribution and
evaluate its impact on various applications.

Service scheduling. Deadline scheduling, proportional-
share resource scheduling, and value-based scheduling
have been studied in both real-time systems and general-
purpose operating systems [7, 22, 23, 24, 30, 36, 40].
Client request rates for Internet services tend to be bursty
and fluctuate dramatically from time to time [5, 10, 11].
Delivering satisfactory user experience is important dur-
ing load spikes. Based on an adaptive scheduling ap-
proach and a resource consumption estimation scheme,
the service scheduling in Neptune strives to achieve ef-
ficient resource utilization under quality constraints and
provide service differentiation.

7 Concluding Remarks

This paper presents the design and implementation of an
integrated resource management framework for cluster-
based network services. This framework is flexible in al-
lowing service providers to express desired service qual-

ities based on the service response time. At the cluster
level, a scalable decentralized request distribution archi-
tecture ensures prompt and smooth response to service
demand spikes and server failures. Inside each node, an
adaptive multi-queue scheduling scheme is employed to
achieve efficient resource utilization under quality con-
straints and provide service differentiation. Our trace-
driven evaluations show that the proposed techniques
can efficiently utilize system resources under quality
constraints and provide service differentiation. Compar-
ing with a previously proposed dynamic server partition-
ing approach, the evaluations also show that our system
responds more promptly to demand spikes and behaves
more smoothly during server failures.

Acknowledgment: This work was supported in part
by NSF CCR-9702640, EIA-0080134, ACIR-0082666
and 0086061. We would like to thank Anurag Acharya,
Josep Blanquer, Apostolos Gerasoulis, Klaus Schauser,
our shepherd Jim Gray, and the anonymous referees for
their valuable comments and help.

Project Web site:
www.cs.ucsb.edu/projects/neptune

References

[1] T. F. Abdelzaher and N. Bhatti. Web Server QoS Man-
agement by Adaptive Content Delivery. In International
Workshop on Quality of Service, London, UK, June 1999.

[2] J. Almeida, M. Dabu, A. Manikutty, and P. Cao. Pro-
viding Differentiated Levels of Service in Web Content
Hosting. In Proc. of SIGMETRICS Workshop on Internet
Server Performance, Madison, WI, June 1998.

[3] M. Aron, P. Druschel, and W. Zwaenepoel. Cluster
Reserves: A Mechanism for Resource Management in
Cluster-based Network Servers. In Proc. of the 2000
ACM SIGMETRICS Intl. Conf. on Measurement and
Modeling of Computer Systems, pages 90–101, Santa
Clara, CA, June 2000.

[4] M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel.
Scalable Content-aware Request Distribution in Cluster-
based Network Services. In Proc. of the 2000 USENIX
Annual Technical Conf., San Diego, CA, June 2000.

[5] Ask jeeves search. http://www.ask.com.

[6] G. Banga, P. Druschel, and J. C. Mogul. Resource Con-
tainers: A New Facility for Resource Management in
Server Systems. In Proc. of the 3rd USENIX Symposium
on Operating Systems Design and Implementation, pages
45–58, New Orleans, LA, February 1999.

[7] N. Bhatti and R. Friedrich. Web Server Support for
Tiered Services. IEEE Network, 13(5):64–71, Septem-
ber 1999.

[8] J. Bruno, E. Gabber, B. Ozden, and A. Silberschatz. The
Eclipse Operating System: Providing Quality of Ser-
vice via Reservation Domains. In Proc. of USENIX An-
nual Technical Conf., pages 235–246, Orleans, LA, June
1998.



[9] S. Chandra, C. S. Ellis, and A. Vahdat. Differenti-
ated Multimedia Web Services Using Quality Aware
Transcoding. In Proc. of IEEE INFOCOM’2000, Tel-
Aviv, Israel, March 2000.

[10] J. S. Chase, D. C. Anderson, P. N. Thakar, and A. M. Vah-
dat. Managing Energy and Server Resources in Hosting
Centers. In Proc. of the 18th ACM Symposium on Oper-
ating Systems Principles, Banff, Canada, October 2001.

[11] M. E. Crovella and A. Bestavros. Self-similarity in World
Wide Web Traffic: Evidence and Possible Causes. IEEE/
ACM Transactions on Networking, 5(6):835–846, 1997.

[12] C. Dovrolis, D. Stiliadis, and P. Ramanathan. Propor-
tional Differentiated Services: Delay Differentiation and
Packet Scheduling. In Proc. of ACM SIGCOMM’99,
pages 109–120, Cambridge, MA, August 1999.

[13] P. Druschel and G. Banga. Lazy Receiver Processing
(LRP): A Network Subsystem Architecture for Server
Systems. In Proc. of the 2nd USENIX Symposium on
Operating Systems Design and Implementation, Seattle,
WA, October 1996.

[14] J. Postel Ed. Transmission Control Protocol Specifica-
tion. SRI International, Menlo Park, CA, September
1981. RFC-793.

[15] A. Feldmann. Characteristics of TCP Connection Ar-
rivals. Technical report, AT&T Labs Research, 1998.

[16] A. Fox and E. A. Brewer. Harvest, Yield, and Scalable
Tolerant Systems. In Proc. of HotOS-VII, Rio Rico, AZ,
March 1999.

[17] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and
P. Gauthier. Cluster-Based Scalable Network Services. In
Proc. of the 16th ACM Symposium on Operating System
Principles, pages 78–91, Saint Malo, October 1997.

[18] Google search. http://www.google.com.

[19] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and
D. Culler. Scalable, Distributed Data Structures for In-
ternet Service Construction. In Proc. of the 4th USENIX
Symposium on Operating Systems Design and Implemen-
tation, San Diego, CA, October 2000.

[20] S. D. Gribble, M. Welsh, E. A. Brewer, and D. Culler.
The MultiSpace: An Evolutionary Platform for Infras-
tructural Services. In Proc. of the USENIX Annual Tech-
nical Conf., Monterey, CA, June 1999.

[21] M. Harchol-Balter and A. B. Downey. Exploiting Pro-
cess Lifetime Distributions for Dynamic Load Balancing.
ACM Transactions on Computer Systems, 15(3):253–
285, 1997.

[22] J. R. Haritsa, M. J. Carey, and M. Livny. Value-Based
Scheduling in Real-Time Database Systems. VLDB Jour-
nal, 2:117–152, 1993.

[23] J. Huang, J. Stankovic, D. Towsley, and K. Ramam-
ritham. Experimental Evaluation of Real-Time Transac-
tion Processing. In Proc. of the Tenth IEEE Real-Time
System Symposium, pages 144–153, Santa Monica, CA,
1989.

[24] M. B. Jones, D. Rosu, and M.-C. Rosu. CPU Reser-
vations and Time Constraints: Efficient, Predictable
Scheduling of Independent Activities. In Proc. of the
16th ACM Symposium on Operating Systems Principles,
pages 198–211, Saint-Malo, France, October 1997.

[25] R. M. Karp. Reducibility among combinatorial prob-
lems. In Complexity of Computer Computations, pages
85–103, March 1972.

[26] J. Kurose. Open Issues and Challenges in Providing
Quality of Service Guarantees in High-Speed Networks.
ACM Computer Communication Review, 23(1):6–15,
1993.

[27] K. Li and S. Jamin. A Measurement-Based Admission-
Controlled Web Server. In Proc. of IEEE INFO-
COM’2000, pages 651–659, Tel-Aviv, Israel, March
2000.

[28] Z. Liu, M. S. Squillante, and J. L. Wolf. On Maximiz-
ing Service-Level-Agreement Profits. In Proc. of 3rd
ACM Conference on Electronic Commerce, pages 14–17,
Tampa, FL, October 2001.

[29] J. Mogul and K. K. Ramakrishnan. Eliminating Re-
ceive Livelock in an Interrupt-driven Kernel. In Proc.
of USENIX Annual Technical Conf., San Diego, CA, Jan-
uary 1996.

[30] S. Nagy and A. Bestavros. Admission Control for
Soft-Deadline Transactions in ACCORD. In Proc. of
IEEE Real-Time Technology and Applications Sympo-
sium, pages 160–165, Montreal, Canada, June 1997.

[31] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum. Locality-Aware Request
Distribution in Cluster-based Network Servers. In Proc.
of the ACM 8th Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems, pages
205–216, San Jose, CA, October 1998.

[32] R. Pandey, J. F. Barnes, and R. Olsson. Supporting
Quality of Service in HTTP Servers. In Proc. of 17th
ACM Symposium on Principles of Distributed Comput-
ing, pages 247–256, Puerto Vallarta, Mexico, June 1998.

[33] Y. Saito, B. N. Bershad, and H. M. Levy. Manageabil-
ity, Availability, and Performance in Porcupine: a Highly
Scalable, Cluster-based Mail Service. In Proc. of the
17th ACM Symposium on Operating Systems Principles,
pages 1–15, Charleston, SC, December 1999.

[34] K. Shen, T. Yang, and L. Chu. Cluster Load Balanc-
ing for Fine-grain Network Services. In Proc. of Inter-
national Parallel & Distributed Processing Symposium,
Fort Lauderdale, FL, April 2002.

[35] K. Shen, T. Yang, L. Chu, J. L. Holliday, D. A. Kuschner,
and H. Zhu. Neptune: Scalable Replication Manage-
ment and Programming Support for Cluster-based Net-
work Services. In Proc. of the 3rd USENIX Symposium
on Internet Technologies and Systems, pages 197–208,
San Francisco, CA, March 2001.

[36] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu,
and J. Walpole. A Feedback-driven Proportion Allocator
for Real-Rate Scheduling. In Proc. of 3rd USENIX Op-
erating Systems Design and Implementation Symposium,
New Orleans, LA, February 1999.

[37] I. Stoica and H. Zhang. LIRA: An Approach for Service
Differentiation in the Internet. In Proc. of Nossdav, June
1998.

[38] D. G. Sullivan and M. I. Seltzer. Isolation with Flexi-
bility: A Resource Management Framework for Central
Servers. In Proc. of the 2000 USENIX Annual Technical
Conf., San Diego, CA, June 2000.

[39] T. Voigt, R. Tewari, D. Freimuth, and A. Mehra. Kernel
Mechanisms for Service Differentiation in Overloaded
Web Servers. In Proc. of USENIX Annual Technical
Conf., Boston, MA, June 2001.

[40] C. A. Waldspurger and W. E. Weihl. Lottery Schedul-
ing: Flexible Proportional-Share Resource Management.
In Proc. of USENIX Operating Systems Design and Im-
plementation Symposium, pages 1–11, Monterey, CA,
November 1994.

[41] H. Zhu, H. Tang, and T. Yang. Demand-driven Service
Differentiation for Cluster-based Network Servers. In
Proc. of IEEE INFOCOM’2001, Anchorage, AK, April
2001.


