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ABSTRACT

Identifying somatic mutations is critical for can-

cer genome characterization and for prioritizing pa-

tient treatment. DNA whole exome sequencing (DNA-

WES) is currently the most popular technology; how-

ever, this yields low sensitivity in low purity tumors.

RNA sequencing (RNA-seq) covers the expressed

exome with depth proportional to expression. We

hypothesized that integrating DNA-WES and RNA-

seq would enable superior mutation detection ver-

sus DNA-WES alone. We developed a first-of-its-

kind method, called UNCeqR, that detects somatic

mutations by integrating patient-matched RNA-seq

and DNA-WES. In simulation, the integrated DNA

and RNA model outperformed the DNA-WES only

model. Validation by patient-matched whole genome

sequencing demonstrated superior performance of

the integrated model over DNA-WES only models, in-

cluding a published method and published mutation

profiles. Genome-wide mutational analysis of breast

and lung cancer cohorts (n = 871) revealed remark-

able tumor genomics properties. Low purity tumors

experienced the largest gains in mutation detection

by integrating RNA-seq and DNA-WES. RNA provided

greater mutation signal than DNA in expressed mu-

tations. Compared to earlier studies on this cohort,

UNCeqR increased mutation rates of driver and ther-

apeutically targeted genes (e.g. PIK3CA, ERBB2 and

FGFR2). In summary, integrating RNA-seq with DNA-

WES increases mutation detection performance, es-

pecially for low purity tumors.

INTRODUCTION

Somatically acquired sequence mutations (nucleotide sub-
stitutions, insertions and deletions) fuel the initiation and
progression of cancer (1). Knowledge of mutations in pa-
tient specimens informs therapeutic management (2,3), and
in large patient cohorts, provides the basis to assess recur-
rently altered genes that may drive molecular pathogenesis
(1,4–5). DNAwhole exome sequencing (DNA-WES) is cur-
rently the popular technology to sequence cancer genomes
and has led to an abundance of discoveries in many can-
cer types (4,6–8). However, detecting somatic mutations by
DNA-WES with high sensitivity and speci�city remains a
challenge (7,9–10), as evidenced by validation rates of 73%
in repeated sequencing and by large inter-rater disagree-
ment among different groups analyzing the same sequenc-
ing data (7,10). The biggest challenge is high quality mu-
tation detection in low purity tumors (2,9,11), which are
prevalent in widespread cancer types such as breast and
lung (12). Advances in somatic mutation detection could
improve cancer genome characterization and lead to new
diagnostic and therapeutic targets.
Somatic mutation detection is dependent on tumor fea-

tures, the sequencing technology, and the method of statis-
tical modeling (8–9,13–17). To detect somatic mutations, al-
gorithms compare tumor and patient-matched germline se-
quencing based on a variety of models (4,6–7,9,13–17). A
tumor’s degree of normal contamination and clonal hetero-

*To whom correspondence should be addressed. Tel: +1 919 966 3098; Fax: +1 919 966 1587; Email: mwilkers@med.unc.edu
Correspondence may also be addressed to D. Neil Hayes. Tel: +1 919 966 3786; Fax: +1 919 966 1587; Email: hayes@med.unc.edu

C© The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

 at W
ash

in
g
to

n
 U

n
iv

ersity
, L

aw
 S

ch
o
o
l L

ib
rary

 o
n
 A

u
g
u
st 1

9
, 2

0
1
4

h
ttp

://n
ar.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://nar.oxfordjournals.org/


e107 Nucleic Acids Research, 2014 PAGE 2 OF 12

geneity decrease tumor purity. Low purity affects the frac-
tion ofmutatedDNAobserved out of all DNAat a genomic
site, themutant allele fraction (MAF) (8,12).MAF is not of-
ten 100%, can be slightly above zero in low purity tumors,
and varies across the genome depending on the prevalence
of clones possessing a given mutation and on copy number
alterations (7,9,12). DNA-WES targets roughly 200 000 ex-
onic regions and, in practice, can yield depths of 100X or
greater over targeted regions (4,6). DNA-WES has limita-
tions including variable capture-ef�ciency and incomplete
exome coverage (7,18). In cases of high MAF, mutation de-
tection is straightforward as only a small number of reads
are needed to detect themutationwith con�dence. The com-
bination of low depth and low MAF make mutation detec-
tion very dif�cult because of low statistical power, a result
of the scant sample size in which to observe and detect the
low prevalence mutation.
Increased mutation detection sensitivity and speci�city

could be achieved by statistical improvements, by increas-
ing sequencing quantity or by increasing sequencing qual-
ity. In cancer pro�ling projects such as The Cancer Genome
Atlas (TCGA) (4,6) and in clinical sequencing (2,19), DNA-
WES is utilized for mutation detection while RNA sequenc-
ing (RNA-seq) (20) is performed for gene expression, fusion
transcript and splicing analyses. Beyond those applications,
RNA-seq provides an observation of the underlying tumor
DNA sequence, via transcription, and can be used to de-
tect sequence variants (21). In fact, we have previously used
RNA-seq to con�rmmutations fromDNA-WES (4). A few
earlier studies have used RNA-seq alone for genome-wide
identi�cation of somatic mutations (22–25) and germline
variants (26,27). However, RNA-seq has challenges includ-
ing dependency on gene expression, which limits the genes
that can be measured for sequence mutations, and qual-
ity control requirements, which when not considered result
in abundant false positive variants (11,21,28–30). For these
reasons, RNA-seq has not been the standard for somatic
mutation detection.
Herein, we posed the original hypothesis that integrat-

ing patient-matched tumor RNA-seq and tumor DNA-
WES would enable superior mutation detection versus
DNA-WES alone. We developed a �rst-of-its-kind method,
UNCeqR, that simultaneously analyzes DNA-WES and
patient-matched RNA-seq to detect somatic mutations
genome-wide.UNCeqRwas applied to large breast and lung
cancer cohorts and evaluated with respect to simulation
and whole genome sequencing validation. Subsequently,
genome-wide analysis of UNCeqR mutations led to novel
discoveries in tumor genomics.

MATERIALS AND METHODS

Data sources

DNA-WES and RNA-seq alignments in BAM (31) for-
mat for 176 lung squamous cell carcinoma cases and for
695 breast cancer cases were acquired from TCGA at
https://cghub.ucsc.edu (Supplementary Table S1). RNA-
seq were paired 50 nt read from Illumina HiSeq, aligned by
MapSplice (4,32). DNA-WES were paired 76–100 nt reads
from Illumina Genome Analyzer, aligned by BWA (33).
All lung and breast cancer cases had germline DNA-WES,

tumor DNA-WES and tumor RNA-seq and were referred
to as the triplet cohorts. A subset of 12 lung and 91 breast
tumors also had germline RNA-seq available and were
referred to as the quadruplet cohorts. DNA whole genome
sequencing (DNA-WGS) was acquired from TCGA for
tumors in this cohort (breast: n = 43, lung: n = 17), which
consisted of BWA alignments of paired 100 nt reads. Exonic
coordinates were extracted from the TCGAGenomeAnno-
tation File (http://tcga-data.nci.nih.gov/docs/GAF/GAF.
hg19.June2011.bundle/outputs/TCGA.hg19.June2011.gaf)
and padded with 10 �anking positions, for a to-
tal of 222 055 exons. Published mutations (lung:
LUSC Paper v8.aggregated.tcga.somatic.maf, breast:
genome.wustl.edu BRCA.IlluminaGA DNASeq.Level 2.
5.1.0.somatic.maf), expression subtypes, DNA copy num-
ber calls and tumor purity calls (12) were obtained when
available from TCGA. Numerical purity calls of 1 with an
incongruent ‘Low purity’ categorical call were censored.

Sequencing quality �ltering

The high quality data �lter applies to alignments and ge-
nomic positions, similar to earlier studies (9,14). High qual-
ity sequenced bases from tumor alignments had base qual-
ity ≥20 and occurred in a parent alignment with the fol-
lowing properties: mapping quality ≥ 20, sum of reference
mismatches insertions and deletions ≤2, a proper pair ori-
entation, not a marked duplicate or qc-failure, not within
the terminal two bases, and the singular best alignment.
All bases from germline alignments were accepted. High
quality genomic positions were those with germline depth
≥10, tumor high quality depth ≥5 in RNA or DNA, no
homopolymer > 4 on either side of the site, proportion of
high quality bases ≥0.25 in RNA or DNA, and without an
insertion or deletion event at 10% allele fraction within 50
positions in germline sequencing. The high quality data �l-
ter was applied prior to detecting to tumor variant alleles.
The high quality variant �lter passes DNA or RNA variant
alleles without signi�cant strand bias compared to germline
alleles (chi-square P< 0.01), with at least one read on both
strands for indel variants, with major variant allele preva-
lence (the proportion of major variant reads out of all vari-
ant reads) ≥0.75, and a MAD of distance to the end of its
aligned read sequence ≥1.

Somatic mutation detection

TheUNCeqR algorithm detected somatic mutations within
exons based on input of tumor and patient-matched
germline sequence alignments. The algorithm applied the
following steps to each genomic site within exons:

(1) �lter for high quality data;
(2) identify germline alleles from germline reads that have

at least 2% allele prevalence;
(i) add population polymorphisms and mapping ar-

tifact alleles to germline alleles (see following sec-
tion ‘Population polymorphisms and mapping ar-
tifacts’).

(3) Using tumor sequences:
(i) let g be the number of reads matching germline al-

leles,
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(ii) determine most frequent allele, that does not match
germline alleles,

(iii) let k be the number of reads with this major variant
allele,

(iv) let n = k + g.
(4) If major variant allele is insertion or deletion, re-align

nearby indel alleles:
(i) scan 20 neighboring sites to �nd site s with maxi-

mum k and same major variant allele,
(ii) if current site is not s.

1. Movemajor variant read count from current site
to s by incrementing k at s and decrementing g
at s by current site’s major variant read count.

2. Continue to next site.
(5) If high quality variant �lter is passed, apply statistical

test, otherwise P = 1 if k = 0, else P = NA..

A set of mutation detectionmodels applied the algorithm
with different inputs and statistical models. UNCeqRDNA

takes tumor DNA-WES as input and models the corre-
sponding read counts by a beta-binomial distribution. For
a variant site with read count kDNA, the P-value to assess
whether this variant allele is a somatic mutation was calcu-
lated by

PDNA = 1 −
k−1
∑

i=0

(

nDNA

i

)

B (i + αDNA, nDNA − i + βDNA)

B(αDNA, βDNA)
,

where B is the beta function, and αDNA and βDNA are pa-
rameters of the null distribution where the variant allele is
not a somatic mutation. Speci�cally, αDNA and βDNA are
estimated using randomly sampled sites until 50 000 have
passed the high quality data �lter in both tumor DNA-
WES and tumor RNA-seq. In real data analysis, these sam-
pled sites may include real somatic mutations and thus the
estimates of α and β are conservative, which may lead to
conservative P-value estimates. However, based on muta-
tion rates reported in prior studies (8 mutations per 1 000
000 sites (4)), less than one mutation is expected in these
sampled sites, and thus our estimates of α and β would be
good approximations of the estimates from a set of non-
somatic mutation sites. The UNCeqRRNA model is identi-
cal to UNCeqRDNA substituting tumor RNA-seq for tu-
mor DNA-WES. The UNCeqRMETA model combines P-
values from UNCeqRDNA and UNCeqRRNA if RNA and
DNA have the same major variant allele irrespective of �l-
tering; otherwise the UNCeqRMETA P-value is set to that
of UNCeqRDNA. In effect, this condition precludes sites
with only RNA variant evidence, that are suggestive of
RNA-editing (34,35), from being called somatic mutations.
UNCeqRMETA combines P-values by the Stouffer method
(36–38) with weights of the root of their sample size (read
depth at the site) as follows:

PMETA = 1 −

Φ

(

Φ−1 (1 − PDNA)
√
nDNA + Φ−1 (1 − PRNA)

√
nRNA

√

nDNA + nRNA

)

,

where Φ is the standard normal cdf and Φ−1 is the inverse
of Φ, i.e. the quantile function of the standard normal dis-

tribution. If the RNA major variant equals the DNA ma-
jor variant and PDNA = NA, PMETA is set to PRNA. DNA
and RNA variant read counts among putative false posi-
tives were unassociated supporting the usage of Stouffer’s
method (Supplementary Figure S1). Due to possible am-
biguity around insertions and deletions (‘indels’) between
DNA and RNA alignments, high quality variant sites with
an insertion or deletion major variant allele in one align-
ment and with the same variant allele (insertion or deletion)
occurring within 20 sites as the major variant allele in the
other alignment were merged to have the same genomic po-
sition prior to statistical testing. This indel merge allowed
indel variants sites between DNA and RNA that represent
the same variant, to be recorded at the same site and allowed
UNCeqRMETA to combine thisDNAandRNAevidence de-
spite slightly different representation in the sequence align-
ments. UNCeqR software consisted of modi�ed samtools
(31), Perl, R and VGAM (39). The total number of applied
statistical tests is reported inUNCeqR output to provide in-
terested users the possibility of multiple testing adjustment.

Population polymorphisms and mapping artifacts

Population-level polymorphisms were acquired from db-
SNP common version 137 via the UCSC genome browser
(40). Variant alleles caused by ambiguousmapping artifacts
were calculated by BlackOps (41) using 2 × 50 paired-end
reads aligned by MapSplice. UNCeqR was applied to 45
TCGA RNA-seq of matched normal tissue specimens (not
part of the lung or breast cohorts) to detect non-reference
sequence variants, representing further germline polymor-
phic and alignment artifact alleles. These alleles always aug-
mented germline genotype inUNCeqR, thus preventing so-
matic mutation detections with these alleles even if unob-
served in a given germline sequencing.

Mutation annotation and analysis

Sequencemutationswere annotatedwith a gene, a predicted
transcript and protein alteration using Annovar (version
8/23/13) (42) and RefSeq gene models. Non-silent muta-
tions referred to non-silent substitution, insertion and dele-
tion mutations within translated regions and splice-site mu-
tations. MAFs were compared by one-sided Fisher’s exact
tests on mutant versus germline read counts with signif-
icant results having false discovery rate < 5%. Sequence
alignments were visualized using the Integrative Genomics
Viewer (43).

Germline variant analysis

Patient germline variants relative to the reference genome
were detected in germline DNA-WES and patient-matched
germline RNA-seq using UNCeqRMETA without popula-
tion polymorphism or mapping artifact allele augmenta-
tion, P ≤ 1.1e−9. Germline variant allele fractions were
de�ned and compared between DNA and RNA, using the
procedure described for somatic mutations.

Simulation analysis

A novel simulation strategy was followed (diagrammed in
Supplementary Figure S2). Using chromosome 2, simulated
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tumor genomes were generated by randomly sampling 500
sites from exons to de�ne positive mutation sites while the
remainder of exon sites served as negative mutations. For
the positive sites, mutant alleles (substitution, insertion or
deletion) were randomly sampled at rates 90, 5 and 5%.
For insertion and deletion alleles, allele lengths of 1–6 were
randomly sampled at rates 60, 20, 9, 5, 5 and 1%. Posi-
tive mutations were spiked into germline DNA-WES and
RNA-seq sequencing by editing a speci�ed MAF of read
alignments overlapping the site, producing simulated tumor
alignments. ‘V’ characters were used for substitutions and
insertions to avoid overlap with germline genotype. Sim-
ulated tumor alignments contained a subset of the total
positive mutations because the alignment may have mini-
mal or zero depth at some positive sites, re�ecting reality
that a sequencing technology does not cover every site in
the genome at high depth and enabling simulated muta-
tions to occur at RNA-seq and DNA-WES uniquely cov-
ered sites. Original tumor sequencing served as simulated
germline sequencing. Simulated germline sequencing con-
tained the original somatic mutations, which had the effects
of expanding germline genotype with additional alleles and
not triggering variant detection. UNCeqR models were ap-
plied to these simulated data. Limiting to sites with at least
a germline depth of 10, model detections were compared to
the truth to de�ne receiver operating characteristic (ROC)
curves (44). A pair of models was compared by their dif-
ference in area under the curve over the false positive rate
range of 0 to 1 × 10−5. A P-value was de�ned using a dis-
tribution of differences in area under the curve calculated
from 100 permutedmodels in which the rank of the discrim-
ination threshold (i.e. P-value) between the models at each
genomic site was randomly shuf�ed.

Mutation detection by other programs

Strelka v2.0.8 (17) was executed on tumor and germline
DNA-WES using recommended settings for BWA align-
ments (strelka con�g bwa default.ini), DNA-WES (is-
SkipDepthFilter = 1) and �ltering (passed). SNVMix2 (13)
was executed upon RNA-seq using default settings.

Validation analysis

Within exonic regions, true positive and false positive mu-
tation detections were de�ned using patient-matchedDNA-
WGS alignments based on a published procedure for exome
mutation validation (4). Tumor and germline DNA-WGS
BAM �les were downloaded from https://cghub.ucsc.edu.
Speci�cally, tumor and germline DNA-WGS were interro-
gated at each predicted mutation using samtools (31) with
no �ltering. True positive mutation predictions met one of
two conditions: (1) germline depth ≥ 10 and read count of
predicted mutant allele ≥1 in tumor and zero in germline;
or (2) germline depth ≥10, proportion of mutant allele in
germline sequencing not signi�cantly > 2% (proportions
test, P > 0.25) and proportion of mutant allele in tumor
signi�cantly greater than in germline (proportions test, P
< 0.05). Otherwise, false positive mutation predictions had
germline DNA-WGS depth ≥10, and had depth in tumor
DNA-WGS providing ≥80% power to detect the mutant

allele based the predicted MAF. Power was estimated by a
binomial distribution, a null probability of 3 × 10−3, an al-
pha of 0.05, the observed depth in DNA-WGS and an al-
ternate probability of the predicted DNA MAF. The num-
ber of true positives and false positives were tabulated at
each model discrimination threshold, i.e. P-value or score.
The step function of these points (number of false positives
versus number of true positives) generated a performance
curve in absolute counts that is equivalent to a ROC curve
without the denominators of total positives and negatives,
which were constant and unknown for the validation co-
hort. Between models, performance curves were compared
by area under the curve from 0 to 3000 false positives and
by the number of true positives (proportional to sensitiv-
ity) at �xed numbers of false positives (proportional to 1 −
speci�cities) of 250, 500 and 1000).P-values were calculated
to provide evidence for the change in area under the curve
and sensitivity estimates using permutation (see ‘Simulation
analysis’ methods).

RESULTS

Mutation detection models

Existing methods to detect somatic mutations are based
on either DNA sequencing alone or on RNA sequencing
alone and do not integrate more than one type of sequenc-
ing (9,13–17). In order to test whether integrating DNA-
WES and RNA-seq enables superior somatic mutation de-
tection versus the current standard of DNA-WES alone,
a new method was developed, called UNCeqR. UNCeqR
contains different models for detecting somatic mutations
based on different sequencing input and statistical mod-
eling. Brie�y, UNCeqRMETA integrates tumor DNA-WES
and RNA-seq, UNCeqRDNA uses tumor DNA-WES, and
UNCeqRRNA uses tumor RNA-seq. UNCeqR software is
available at http://lbg.med.unc.edu/tools/unceqr.

Evaluation in simulated tumor sequencing

To test our hypothesis that somatic mutation detection
based on integratedRNA-seq andDNA-WES is superior to
that based on DNA-WES alone, simulated tumor genomes
were generated so that the entire genome space is a com-
pletely de�ned truth of positive and negative somatic mu-
tations. In brief, for each patient’s sequencing, 500 mutant
sites were sampled, for each site a mutant allele was ran-
domly sampled, and then aligned reads in the real RNA-
seq and DNA-WES were edited to have the mutant allele at
a rate of a �xed MAF (Supplementary Figure S2). By us-
ing real sequencing as the basis of the simulation, authentic
sequencing depths, random errors (sequencing and align-
ment) and patients’ germline variants were preserved.
Sequencing from the lung cancer quadruplet cohort was

used for simulation. Patients’ DNA-WES and RNA-seq
had large and similar numbers of sequenced nucleotides
(DNA-WES median: 10.6 billion, RNA-seq median: 10.2
billion; Kruskal-Wallis P = 0.54) indicating no signi�cant
imbalance in total sequencing. UNCeqR models were ap-
plied to the simulated tumor sequencing and detectedmuta-
tions were compared against the truth by receiver operating
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Figure 1. Mutation detection performance in simulated tumor genomes.
Model performance is displayed as receiver operating characteristic curves.
Sensitivity plateaus below 1 because simulatedmutations include sites with
zero tumor sequencing depth in DNA and/or RNA (see ‘Simulation anal-
ysis’ methods).

characteristic curves. In simulations with a 10%MAF (Fig-
ure 1A), theUNCeqRMETA model had signi�cantly superior

performance overUNCeqRDNA (difference in area under the
curve, P < 0.01); in other words, UNCeqRMETA achieved
a greater true positive rate (greater sensitivity) at the same
false positive rate (same speci�city) than UNCeqRDNA. In
simulations with a 20% MAF (Figure 1B), UNCeqRMETA

continued to be superior toUNCeqRDNA (difference in area
under the curve, P < 0.01) although the gain in 20% MAF
simulations was less (roughly 50% less) than the gain in 10%
MAF simulations. This demonstrates that adding RNA-seq
improved sensitivity, particularly when the mutation sig-
nal, that is MAF, was low. UNCeqRMETA and UNCeqRDNA

had large and clear superior performance to UNCeqRRNA,
which incurred false positives at a higher rate. Alternative
ways to integrate RNA and DNA (taking the union or in-
tersection of UNCeqRDNA and UNCeqRRNA) were both in-
ferior to UNCeqRMETA (Supplementary Figure S3). There-
fore, in simulation,UNCeqRMETA achieved superior perfor-
mance overUNCeqRDNA, with the largest gains occurring in
mutations with low MAF.

Validation by whole genome sequencing

To validate the superior performance of integrated DNA-
WES and RNA-seq mutation detection (UNCeqRMETA)
over DNA-WES only detection (UNCeqRDNA), tumor and
germline whole genome DNA sequencing (DNA-WGS)
was used as an independent measure of truth for evalu-
ating DNA-WES and RNA-seq mutation detections. Fol-
lowing a published validation procedure (4), mutation de-
tections were interrogated in patient-matched DNA-WGS
to determine if a mutation detection was a true positive,
that is present in the tumor specimen and absent from the
germline specimen, or false positive, that is absent from
the tumor specimen or present in the germline specimen.
For each mutation model, true positives and false posi-
tives were summed at each discrimination threshold (e.g.
P-value) to generate a performance curve by which true
positive rates could be compared at the same false posi-
tive rates (seemethods for further description). These curves
demonstrated that UNCeqRMETA achieved overall superior
performance than UNCeqRDNA (difference in area under
the curve, P < 0.01) and at �xed false positive thresholds
(250, 500 and 1000), thus, validating the result from simu-
lated tumor genomes (Figure 2). Therefore, in real tumor
sequencing, integrated DNA and RNA mutation detection
byUNCeqRMETA outperformedDNA-onlymutation detec-
tion.
Other models displayed overall reduced performance

relative to UNCeqRMETA and UNCeqRDNA. As another
DNA-only control, a leading (45) DNA-WES mutation
caller from Illumina, Strelka (17), was run on the same
DNA-WES. Strelka exhibited inferior performance over-
all, smaller true positive rates at �xed false positive rates,
and never achieved the sensitivity of UNCeqRMETA or
UNCeqRDNA (Figure 2). Strelka had greater sensitivity than
UNCeqRMETA or UNCeqRDNA at the highest extreme of
speci�city; however, at UNCeqR’s minimum false positive
rate, Strelka’s sensitivity was only ∼70% of either UN-
CeqR model. Providing another DNA-only control, pre-
viously published mutations of this cohort made by het-
erogeneous pipelines (4,6,9,15–16) had reduced sensitivity
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Figure 2. Validation of mutation detection by whole genome sequenc-
ing. The number of true positives and false positives of mutation detection
models are plotted as step functions. At �xed false positive totals (250, 500
or 1000), each pair of models was compared for differences in number of
true positives (*). The published mutation set (4,6) did not include muta-
tion rankings and was not amenable to rank-based statistical analysis.

thanUNCeqRMETA andUNCeqRDNA at the same false pos-
itive rate (256 false positives). At this false positive rate, in-
del mutation detections were rare in all models (maximum
1.7%) with UNCeqRMETA and UNCeqRDNA having no sig-
ni�cant difference in indel precision (number of true pos-
itives divided by the sum of false positives and true posi-
tives, 92 and 96%, respectively) but both having greater in-
del precision than Strelka (83%) and previously published
mutations (82%) (proportions test, P < 0.001). Taking the
union or intersection of UNCeqRDNA and UNCeqRRNA

had higher false positive rates and inferior performance
than UNCeqRMETA or UNCeqRDNA (Supplementary Fig-
ure S4A). Integrating Strelka with an RNA-seq mutation
detector, SNVmix, did not result in superior performance
versus Strelka,UNCeqRDNA orUNCeqRMETA (Supplemen-
tary Figure S4A). Providing a separate source of validation,
UNCeqRMETA detected nearly all mutations that were pub-
lished as validated by targeted resequencing within this co-
hort (up to 97%, depending on themodel threshold; Supple-
mentary Figure S5). Repeating this analysis with a slightly
increased true positivity de�nition, minimum two con�rm-
ing tumor WGS DNA reads, maintained all �ndings listed
above (Supplementary Figure S4B).

Increased mutation signal in RNA-seq

To analyze integrated mutation detection across larger co-
horts, UNCeqR was applied to the lung and breast triplet
cohorts (n = 871) and using model thresholds with the
same empirically estimated speci�city (500 false positives
in DNA-WGS validation sequencing, marked as triangle
point in Figure 2, UNCeqRMETA P-value ≤ 1.1 × 10−9,
UNCeqRDNA P-value ≤ 9.3 × 10−9). About half (49%)
of UNCeqRMETA mutations had no RNA evidence and
were based only on DNA evidence. Surprisingly among
UNCeqRMETA expressed somatic mutations (those with
RNA and DNA mutant read evidence), the MAF in RNA
was often signi�cantly greater than in DNA (lung: 21%
of expressed mutations, breast: 17%, fdr < 0.05) (Figure
3A and Supplementary Figure S6A). This increase was
often >2-fold (lung: 12% of expressed mutations, breast:
11%). In contrast, DNA MAF was signi�cantly greater
than RNA MAF at much lower frequency (lung: 2% of
expressed mutations, breast: 3%, fdr < 0.05). As a con-
trol, germline variants were detected in germline DNA-
WES and patient-matched germline RNA-seq relative to
the reference genome byUNCeqRMETA under the same set-
tings as somatic mutation detection (Figure 3B and Supple-
mentary Figure S6B). In contrast to expressed somatic mu-
tations, expressed germline variants displayed rare signi�-
cant differences in allele fraction (RNA greater than DNA:
lung: 0.8%, breast: 0.7%; DNA > RNA: lung 0.1%, breast:
0.3%). Therefore, the prevalent, increased mutation signal
in RNA-seq was cancer-speci�c.
In addition to the genome-wide phenomenon, the in-

creased mutation signal in RNA versus DNA might ad-
ditionally be frequent in cancer driver genes. Lung and
breast cancer’s driver genes (4,6) with at least 10% preva-
lence were analyzed for differences in RNA to DNA MAF
across all mutations, whether expressed or not. Eight driver
genes had signi�cantly different MAF between DNA and
RNA (Wilcoxon signed rank test, fdr < 0.05; Figure 3C).
All of these genes had greater median MAF in RNA than
in DNA, including an oncogene, PIK3CA and tumor sup-
pressors, such as TP53. The TP53 MAF distributions of
lung and breast cancer had remarkable similarities (Fig-
ure 3D), in that nonsynonymous and splice site mutations
had extremely high RNA MAF relative to DNA MAF, of-
ten 2-fold greater. Stop-gain and frameshift mutations in
TP53 had greater MAF in DNA versus RNA but these de-
creases were less common and had a smaller magnitude in
MAF difference. The TP53 results extend an earlier report
in lung cancer using direct sequencing of TP53 RNA tran-
scripts which found mutant transcript predominant expres-
sion (46). In summary, expressed mutations tend to have
larger mutation signal in RNA than in DNA. Importantly,
this effect was common among driver genes, suggesting that
integratingDNAandRNA formutation detection provides
the best opportunity to identify cancer causing mutations.
Because DNA copy number can affect the quantity of

tumor versus germline DNA at a locus, tumor DNA copy
number alterations were compared among mutations with
a signi�cantly greater MAF in RNA versus DNA and vice
versa. Mutations with greater MAF in RNA exhibited a
small (roughly 5%) relative increase in DNA copy number
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Figure 3. Mutation signal in RNA versus DNA. Mutant allele fraction distributions of UNCeqRMETA expressed mutations from the lung triplet cohort
tumor sequencing (A). Germline variant allele fraction distributions of expressed germline variants from lung quadruplet cohort germline sequencing
(B). Diagonal lines indicate equal allelic fraction between DNA and RNA, with points above the diagonal having greater allelic fraction in RNA, below
the diagonal greater allelic fraction in DNA. Breast cancer somatic mutation and germline allele distributions in Supplementary Figure S6. Distributions
of MAF difference among driver genes having a signi�cant difference in MAF over all mutations (C). MAF distributions for all TP53 UNCeqRMETA

mutations, expressed and unexpressed (C and D).
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deletions (Supplementary Figure S7), suggesting that RNA
is bene�cial to detect mutations in regions of genome dele-
tion. MAF differences in TP53mutations did not associate
with either DNA ampli�cations or DNA deletions (Supple-
mentary Figure S7).

Large gains in low purity tumors

Because low tumor purity (caused by normal contamina-
tion and multiple clones) can affect mutation detection
(2,8), the outcome of integrating RNA-seq and DNA-WES
inmutation detectionwas compared among tumors by their
purity. The rate of mutation gain after adding RNA-seq
to DNA-WES was non-uniform both in the breast and
lung triplet cohorts, such that the greatest gains occurred
in tumors having the lowest purity. Speci�cally, tumors’ to-
tal mutation ratio (the number of mutations detected by
UNCeqRMETA over UNCeqRDNA) had signi�cant negative
correlation with tumor purity in both lung and breast can-
cer (Figure 4A).Mutation gains were largest among tumors
with purity <40%. In addition, tumors’ average difference
in mutation signal between RNA and DNA (the mean dif-
ference of RNA MAF to DNA MAF across all expressed
UNCeqRMETA mutations) also had signi�cant negative cor-
relation with tumor purity both in lung and breast can-
cer (Figure 4B). Therefore, tumors with low purity had the
largest RNA-seq mutation signal and gained the most new
mutations after incorporation of RNA-seq evidence.
Examples of low purity tumors with large mutation gains

include a low purity breast tumor that had 1.8 total mu-
tation ratio and a mean 0.18 difference in mutation signal
among expressed mutations. Two of this tumor’s mutations
with much larger signal in RNA than DNA occurred in
PIK3CA (p.H1047R) and GATA3 (p.S412fs) (Figure 4C).
These mutations occur in major mutational hotspots (47)
and are also characteristic molecular drivers for the Lu-
minal A expression subtype (6,48) of which this tumor is
a member. Incorporation of RNA-seq evidence was essen-
tial to identify these two driving mutations; e.g. there was
only 1 DNA read with the PIK3CA mutation but 29 mu-
tant reads in RNA-seq (Figure 5). An example lung tumor
had a 1.2 total mutation ratio and an average 0.22 difference
in mutation signal among expressed mutations including
CDKN2A (p.H98P) and TP53 (p.R273H) which exhibited
very large RNA MAF (at 100 and 84%) relative to DNA
MAF (at 43 and 46%) (Figure 4D). ThesePIK3CA,GATA3
andTP53mutations were not detected by earlier studies uti-
lizingDNA-WES alone (4,6), emphasizing the advantage of
RNA integration. In summary, the addition of RNA-seq to
DNA-WES substantially boosted mutation sensitivity for
low purity tumors.

Increased mutation rates of driver and therapeutically-
targeted genes

To determine if UNCeqRMETA made new mutation dis-
coveries in patients’ tumor genomes, UNCeqRMETA muta-
tions were compared to previously published patient mu-
tation pro�les on the triplet cohorts (4,6). Speci�cally,
tumors’ non-silent mutations (those that change protein
sequence and can contribute to cancer development) of

Figure 4. Tumor purity effects on mutation detection. Lines summarize
breast and lung triplet cohorts, displaying total mutation ratios (A) or
mean mutant allele fraction difference within expressed mutations (B)
among tumors, binned by tumor purity quintile and plotted at midpoint.
Pearson’s correlation tests compared the association of mutation ratio and
MAF associations among triplet cohort tumors (P). MAF distributions
from two exemplar low purity tumors’mutations (C andD). Diagonal lines
indicate equal MAF in DNA-WES and RNA-seq, with mutations above
the diagonal having greater MAF in RNA, below the diagonal greater
MAF in DNA. Unexpressed mutations are marked along the horizontal
axes in (C and D).
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Figure 5. Example of somatic mutation only detectable byRNAandDNA
integration. Mutation detected by UNCeqRMETAP = 1e-16. Read align-
ment display from integrative genomics viewer (43) for a low purity breast
tumor at the major mutational hotspot of PIK3CA (47).

UNCeqRMETA that were novel compared to published pro-
�les were tabulated within genes known to be relevant in
cancer development (187 genes, from the Cancer Gene Cen-
sus (49) and published driver genes (4,6)). Five hundred and
sixty-seven novel mutations were detected covering 67% of
these cancer-relevant genes. 69% of these novel mutations
had DNA-WES and RNA-seq evidence, indicating that the
addition of RNA contributed to the vast majority of these
novel mutations. Grouped by patients, 44% of patients’ tu-

mors had an increase of at least one new mutation in this
cancer-relevant gene set, and among patient tumors with
zero published mutations in this gene set, 42% had at least
one new mutation discovered by UNCeqRMETA. Grouped
by gene, many of these novel mutations comprised large
gains in absolute counts and in percent increase (Figure 6A
and B), including MAP3K1 and GATA3 in breast cancer,
and NOTCH2 and CDKN2A in lung cancer. These gains
spanned all nucleotide mutation types (substitution, inser-
tion and deletion) and protein coding impacts; for instance,
novel GATA3 mutations had abundant novel frameshift
insertion, frameshift deletion, non-synonymous and non-
sense mutations (Supplementary Figure S8). Notably, mu-
tation rates for genes targeted by drugs were increased by
UNCeqRMETA, speci�cally, PIK3CA, FGFR2 and ERBB2.
Therefore,UNCeqRMETA largely advanced published, state-
of-the-art mutation pro�les with cancer-relevant mutations
by utilizing the integration of RNA-seq and DNA-WES.
Breast cancer subtypes (48) were previously found to have

distinct rates ofmutations across four genes (TP53,GATA3,
MAP3K1 and PIK3CA) and, in combination with other ev-
idence such as pathway alterations, are understood to be
driven by their distinct somatic alterations (6). Across these
four genes, novel mutations detected by UNCeqRMETA oc-
curred most frequently in tumors of the same expression
subtype as had been previously reported. Speci�cally, the
greatest number of novel mutations occurred in the fol-
lowing subtypes: TP53 in Basal, MAP3K1 in Luminal A,
PIK3CA in Luminal A and GATA3 in Luminal A and Lu-
minal B (Figure 6C). In lung cancer, there were appreciable
increases in NOTCH1 and NOTCH2. The largest numbers
of novelUNCeqRMETA NOTCH1 andNOTCH2mutations
occurred in different lung cancer expression subtypes (50)
of Classical and Basal, respectively (Figure 6D). Combin-
ing novel UNCeqR non-silent mutations with those previ-
ously reported, both of these genes now had signi�cant as-
sociation with expression subtype (NOTCH1 Fisher’s test
P < 0.02; NOTCH2 Fisher’s test P < 0.03). Therefore, the
advance of UNCeqRMETA over published mutation pro�les
included new subtype-speci�c driving mutations, new pu-
tative subtype-speci�c driver genes, and new patients with
mutations in driver genes.

DISCUSSION

Herein, we sought to determine if adding patient-matched
RNA-seq to DNA-WES would improve somatic mutation
detection. To this end, we developed UNCeqR, a �rst-of-
its-kind method, that integrates RNA-seq and DNA-WES
to detect somatic mutations. By simulation and validation
in whole genome sequencing, theUNCeqRMETA model that
integrates DNA and RNA had signi�cantly superior per-
formance to models based on DNA alone (UNCeqRDNA,
Strelka and published mutation pro�les). Then, we applied
UNCeqR to large breast and lung cohorts (n= 871) and an-
alyzed their integrated RNA andDNAmutations, resulting
in several novel characterizations of tumor genomics.
We report for the �rst time a remarkable �nding that low

purity tumors experience the largest gains in total muta-
tions and in mutation signal (MAF) when adding RNA-seq
to DNA-WES. Also, we originally report that that MAF
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Figure 6. Novel mutation discoveries in cancer-relevant genes. Increases in mutation absolute count versus relative increase are displayed for selected genes
(A and B). Percentage increase is the number of novel UNCeqRMETA mutations over the number of published mutations (4,6)for a gene. Absolute counts
for select genes among breast (C) and lung (D) cancer expression subtypes.
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tends to be elevated in RNA versus DNA among expressed
genes, and that this phenomenon is cancer-speci�c. Based
on these observations, we conclude that rare cancerous cells
within a tumor may exhibit over-expression relative to the
tumor’s normal cells, which increases the concentration of
cancer cell’s mutations in a locus’ expressed transcripts, thus
boosting the RNA mutation signal. In contrast, low purity
tumors’ DNAmutation signal, even if copy number altered,
may be drowned out by the normal cell DNA and cannot
achieve the magnitude of the RNA mutation signal. High
purity tumors’ smaller increases in RNA mutant allele sig-
nal versus DNA could be caused by mutant allele-speci�c
expression or the presence ofminor cancer clones within the
tumor. In summary, RNA-seq when added to DNA-WES
is particularly useful for mutation detection in low purity
tumors.
For mutations with therapeutic signi�cance, highly sen-

sitive and speci�c assays are essential for informing patient
therapy and for clinical trials investigating new agents. Rela-
tive to published mutations derived fromDNA-WES alone,
theUNCeqRMETAmutations, derived frompatient-matched
DNA-WES and RNA-seq, increased the numbers of pa-
tients with mutations in genes that are targets for several
drugs in clinical trials, such as PIK3CA, and ERBB2, and
for drugs with correlative evidence, such as FGFR2 (51).
Clinical trials such as NCT01670877 which involve ERBB2
sequencing (52) may be in�uenced to include RNA-seq due
the largemutation rate increase reported here. Although the
relative increase in PIK3CA mutations was modest com-
pared to other genes in breast cancer, this improved sensi-
tivity is vital for affected patients and could lead to positive
clinical trial outcomes. For example, some novel canonical
mutations in PIK3CA had many mutant reads in RNA-seq
but only a few mutant reads in DNA-WES, such as the ex-
ample Luminal A tumor with a single DNA mutant read
in the PIK3CA hotspot. This study’s results support that
RNA sequencing could be bene�cial when added to DNA
sequencing in clinical settings.
Future studies could explore alternative ways to integrate

DNA and RNA sequencing, beyond UNCeqRMETA, which
is the �rst method of this kind. UNCeqRMETA applied the
same quality �lters for DNA and RNA, and potentially dif-
ferent �lters could be bene�cial. UNCeqRMETA includes a
basic indel realignment, and integrated DNA and RNA re-
assembly could potentially be bene�cial. Different statisti-
cal modeling could further advance the performance dis-
played by UNCeqRMETA over DNA only based methods.
Balancing sensitivity and speci�city is important in apply-
ing and developing mutation detectors. Receiver operating
characteristic curve analysis, such as that presented in this
study, enables assessment of sensitivity and speci�city trade-
offs between alternate models.
Integrated RNA-seq and DNA-WESmutation detection

is important because it boosts sensitivity in low purity tu-
mors, in therapeutically-relevant genes and in driver genes,
relative to DNA-only detection. Integrated mutation detec-
tion could also enable more inclusive cohort pro�ling stud-
ies that censor tumors based on purity and could lead to
more comprehensive characterizations of cancer genomes.
In conclusion, integrating DNA-WES and RNA-seq by

UNCeqRMETA increases mutation detection performance
and was extremely bene�cial for low purity tumors.
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