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Abstract 

Neural network algorithms have proven useful for recognition of individ

ual, segmented characters. However, their recognition accuracy has been 
limited by the accuracy of the underlying segmentation algorithm. Con

ventional, rule-based segmentation algorithms encounter difficulty if the 

characters are touching, broken, or noisy. The problem in these situations 

is that often one cannot properly segment a character until it is recog

nized yet one cannot properly recognize a character until it is segmented. 
We present here a neural network algorithm that simultaneously segments 

and recognizes in an integrated system. This algorithm has several novel 

features: it uses a supervised learning algorithm (backpropagation), but is 
able to take position-independent information as targets and self-organize 

the activities of the units in a competitive fashion to infer the positional 
information. We demonstrate this ability with overlapping hand-printed 
numerals. 

1 INTRODUCTION 

A major problem with standard backpropagation algorithms for pattern recognition 

is that they seem to require carefully segmented and localized input patterns for 

training. This is a problem for two reasons: first, it is often a labor intensive task 
to provide this information and second, the decision as to how to segment often 

depends on prior recognition. However, we describe below a neural network design 
and corresponding backpropagation learning algorithm that learns to simultane-
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ously segment and identify a pattern. 1 

There are two important aspects to many pattern recognition problems that we 
have built directly into our network and learning algorithm. The first is that the 
exact location of the pattern, in space or time, is irrelevant to the classification of 
the pattern; it should be recognized as a member of the same class wherever or 
whenever it occurs. This suggests that we build translation independence directly 
into our network. The second aspect is that feedback about whether or not a 
pattern of a particular class is present is all that should be required for training; 
information about the exact location and relationship to other patterns should not 
be required. The target information, thus, does not include information about 
where the patterns occur, only about whether a particular pattern occurs. 

We have incorporated two design principles into our network to deal with these 
problems. The first is to build translation independence into the network by us

ing linked local receptive fields. The second is to build a fixed "forward model" 
(c.f. Jordan and Rumelhart, 1990) which translates a location-specific recognition 
process into a location-independent output value. This output gives rise to a non
specific error signal which is propagated back through this fixed network to train 
the underlying location-specific network. 

2 NETWORK ARCHITECTURE AND ALGORITHM 

The basic organization of the network is illustrated in Figure 1. In the case of 
character recognition, the input consists of a set of pixels over which the stimulus 

patterns are displayed. We designate the stimulus pattern by the vector X. In 
general, we assume that any character can be presented in any position and that 
characters may overlap. The input image then projects to a set of hidden units 
which learn to abstract features from the input field. These feature abstraction 
units are organized into sheets, one for each feature type. Each unit within a sheet 
is constrained to have the same weights as every other unit in the sheet (to enforce 
translational invariance). This is the same method used by Rumelhart, Hinton and 
Williams (1986) in solving the so-called TIC problem and the one used by LeCun 
et aI. (1990) in their work on ZIP-code recognition. 

We let the activation value of hidden unit of type i at location i be a logistic 
sigmoidal function of its net input and designate it hi;. We interpret ~; as the 
probability that feature Ii is present in the input at position j. The hidden units 
then project onto a set of sheets of position-specific character recognition units, one 

sheet for each character type. These units have exponential activation functions and 
each unit in the sheet receives inputs from a local receptive field block of feature 
detection units as shown in Figure 1. As with the hidden units, the weights in each 
exponential unit sheet are linked, enforcing translational invariance. We designate 
as Xi,- the activation of the unit for detecting character i at location j, and define 

lThe algorithm and network design presented here was first proposed by Rumelhart 
in a presentation entitled "Learning and Generalization in Multilayer networks" given at 
the NATO Advanced Research Workshop on Neuro Computing, Algorithms, Architectures 
and Applications held in Lea Arcs, France in February, 1989. The algorithm can be viewed 
as a generalization and refinement of the TDNN of Lang, Hinton, && Waibel, 1990. 
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Figure 1: The Integrated Segementation and Recognition (ISR) network. The input 
image may contain several characters and is presented to the network in a two
dimensional array of grey-scale values. Units in the first block h!,y' have linked-local 

receptive fields to the input image, and detect features of type k. The exponential 
units in the next block receive inputs from a local receptive field of hidden sigmoidal 

units. The weights W~:~y' connect the hidden unit h!,y' to the exponential unit 

X~tI' The architecture enforces translational invariance across the sheets of units by 
linking the weights and shifting the receptive fields in each dimension. Finally, the 
activity in each individual sheet of exponential units is summed by the linear units Si 

and converted to a probability Pi. The two-dimensional input image can be thought 

of as a one-dimensional vector X as discussed in the text. For notational convenience 
we used one-dimensional indices (j) in the text rather than two-dimensional (xy) as 

shown in the figure. All of the mathematics goes through if one replaces i +-+ 2:y. 



560 Keeler, Rumelhart, and Leow 

Xi; = e'1ii, where the net input to the unit is 

'Ii; = L Wilehle; + Pi (1) 
Ie 

and Wile is the weight from hidden unit hie; to the detector Xi;. As we argue in Keeler 
Rumelhart and Leow (1991), 'Ii; can usefully be interpreted as the logarithm of the 
likelihood ratio favoring the hypothesis that a character of type i is at location i of 
the input field. Since Xi; is the exponential of 'Ii;, the X units are to be interpreted as 
representing the likelihood ratios themselves. Thus, we can interpret the output of 
the X units directly as the evidence favoring the assumption that there is a character 
of a particular type at a particular location. If we were willing and able to carefully 

segment the input and tell the network the exact location of each character, we could 
use a standard training technique to train the network to recognize characters at 
any location with any degree of overlap. However, we are interested in a training 

algorithm in which we don't have to provide the network with such specific training 
information. We are interested in simply telling the network which characters are 
present in the input - not where each character is. This approach saves tremendous 
time and effort in data preparation and labeling. To implement this idea, we have 

built an additional network which takes the output of the X units and computes, 
through a fixed output network, the probability that a given character is present 

anywhere in the input field. We do this by adding two additional layers of units. 

The first layer of units, the S units, simply sum the activity of each sheet of the 
X units. The activity of unit Si can, under certain assumptions, be interpreted as 
the likelihood ratio that a character of type i occurred anywhere in the input field. 
Finally in the output layer, we convert the likelihood ratio into a probability by the 
formula 

Si 
Pi = 1 + Si . (2) 

Thus, Pi is interpreted as representing directly the probability that character i 
occurred in the input field. 

2.1 The learning Rule 

On having set up our network, it is straight-forward to compute the derivative of 

the error function with respect to 'lii. We get a particularly simple learning rule if 
we let the objective function be the cross-entropy function, 

l = L tilnPi + (1 - ti)ln(1 - pd (3) 
i 

where ti equals 1 if character i is presented and zero otherwise. In this case, we get 
the following rule: 

~ = (ti - Pi) Xi; . (4) 
a'li; Lie X ile 

It should be noted that this is a kind of competitive rule in which the learning is 

proportional to the relative strength of the activation at the unit at a particular 
location in the X layer to the strength of activation in the entire layer. This is valid 
if we assume that either the character appears exactly once or not at all. This ratio 
is the conditional probability that the target was at position i under the assumption 
that the target was, in fact, presented. It is also possible to derive a learning rule 
for the case where more than one of the same character is present[3]. 
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3 EXPERIMENTAL RESULTS 

To investigate the ability of this network to simultaneously segment and recognize 
characters in an integrated system, we trained the network outlined in section 2 on 
a database of hand-printed numerals taken from financial documents. We used a 
training and test set of about 9,000 and 1,800 characters respectively. We placed 
pairs of these grey-scaled characters on the input plane at positions determined by a 
distance parameter which tells how far apart to place the centers of the characters. 
We used a distance parameter of 1.2 which indicates that the centers were about 1.2 
characters apart with an added random displacement in the x and y dimensions by 
±.25 and ±0.15 of the leftmost character size respectively. With these parameters, 
the characters touch or overlap about 15% of the time. The network had 10 output 
units and the target was to tUrn on the units of the two characters in the input 
window, regardless of what order or position they occurred in. Thus the pair (3,5) 

has the same target as (5,3): target = (0001010000). 

• or 
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Figure 2.: The ISR network's performance. This figure 
shows two touching characters (06, shown at left) in the 
input image and the corresponding activation of the 
sheets of exponential units. The network was never 
trained on these particular characters individually or as a 
pair, but gets the correct activation of greater than 0.9 
on the 6 and 0.8 on the 0 with near 0.0 activation for 
all other outputs . Note the sharp peaks of activity in 
the 0 and 6 layers approximetely above the center of the 
characters, even though they are touching. In this case 
the maximum activity of the 6-sheet was about 14,000 
and had to be scaled by a factor of about 70 to fit in the 
graph space. The maximum activity in the 0 sheet was 
approximately 196. 
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After training on several hundred thousand of the randomly sampled pairs of num
bers from the 9,000, the network generalized correctly on about 81% of the pairs. 
This pair accuracy corresponds to a single-character recognition accuracy of about 
90%. The network recognizes isolated single characters at an accuracy of about 

95%. Note that this is an artificially generated data set, and by changing the dis
tance parameter we can make the problem as simple or as difficult as we desire, up 
to the point where the characters overlap so much that a human cannot recognize 
them. Most conventional segmentation algorithms do not deal with touching char

acters, and so would presumably miss the vast majority of these characters. To see 

how overlap affects performance, we tested generalization in the same network on 
100 pairs with the distance parameter lowered to 1.0 and 0.95. With a distance 

parameter of 1.0, the characters touch or overlap about 50% of the time. Of those, 

the network correctly identified 80%. Of the 20% that were missed, about 1/2 were 
unrecognizable by a human. With a distance parameter of 0.95, causing about 
66% of the characters to touch, about 74% are correctly identified. As one expects, 

performance drops for smaller distance parameters. 

The qualitative behavior of this system is quite interesting. As described in section 
2, the learning rule for the exponential units contains a term that is competitive in 
nature. This term favors "winner-take-all" behavior for the units in that sheet in 
the sense that nearly equal activations are unstable under the learning rule: if one 

presents the same pattern again and again, the learning rule will cause one activation 
to grow or shrink away from the other at an exponetial rate. This causes self

organization to occur in the exponential sheets, and we would expect the exponential 

units to organize into highly-localized activations or "spikes" of activity on the 
appropriate exponential layers directly above the input characters. This is exactly 

the behavior that is observed in the trained network, as exemplified in Figure 2. In 
this figure we see two overlapping characters in the input image (06). The network 
generalized properly with output activity of about 0.8 for zero 0.99 for 6 and about 
0.0 for everything else. Note that in the exponential layer, there are very sharp 
spikes of activity directly above the 0 and the 6 in the appropriate layers. Indeed, it 
has been our experience that even with quite noisy input images, the representation 

in the exponential layer is very localized, and we could presumably recover the 
positional information by examining the activity of the exponential units. We can 
thus think of these spikes in the exponential layer as "smart histograms": the 

exponential units in each sheet learn to look for specific combinations of features 
in the input layer and reject other combinations of inputs. This allows them to 
respond correctly even if there is a significant amount of noise in the input image, 
or if the characters happen to be touching or broken. 

4 DISCUSSION 

The system presented here demonstrates that neural networks can, in fact, be used 
for segmentation as well as recognition. We have by no means demonstrated that 
this method is better than conventional segmentation/recognition systems in over

all performance. However, most conventional systems cannot deal with touching, 
broken, or noisy characters very well at all, whereas the present system handles all 
of these cases and recognition in a single, integrated fashion. This approach not 
only offers an integrated solution to the problems at hand, it also has the properties 
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of being translation invariant, trainable with minimal information, and could be 
implemented in hardware for extremely fast feed-forward performance. 

Note that the architecture discussed here is similar in some respects to the neocog
nitron model of Fukushima (1980). However, the system is different in several im

portant aspects. First of all, the features here are learned through backpropagation 
rather than hand-coded as in the neocognitron. Second, the neural network self
organizes positional information via localized activation in the exponential layers. 
Third, the network is all feed-forward in its run-time dynamics. 

Finally, it is worth pointing out that there are other aspects of the problem that 
we have not dealt with: Our network was trained on approximately the same size 

characters - to within 40% in height and no normalization in the x-dimension. 
We have not dealt here with the aspects of normalization, attentional focusing, or 
recovery of positional information, all of which would be needed in a functioning 
system. 
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