
����������
�������

Citation: Alraho, S.; Zaman, Q.; Abd,

H.; König, A. Integrated Sensor

Electronic Front-Ends with Self-X

Capabilities. Chips 2022, 1, 83–120.

https://doi.org/10.3390/

chips1020008

Academic Editor: Gaetano Palumbo

Received: 27 June 2022

Accepted: 5 August 2022

Published: 12 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Integrated Sensor Electronic Front-Ends with Self-X Capabilities
Senan Alraho 1,2,†, Qummar Zaman 1,3,† , Hamam Abd 1,2,† and Andreas König 1,*,†

1 Lehrstuhl Kognitive Integrierte Sensorsystem (KISE), Fachbereich Elektrotechnik und Informationstechnik,
Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany

2 College of Electronics Engineering, Ninevah University, Ninevah 41002, Iraq
3 Department of Electronics Engineering, University of Engineering and Technology Taxila,

Taxila 47080, Pakistan
* Correspondence: koenig@eit.uni-kl.de
† Current address: KISE, Erwin-Schrödinger-Strasse, Gebäude 12, 67663 Kaiserslautern, Germany.

Abstract: The ongoing vivid advance in integration technologies is giving leverage both to computing
systems as well as to sensors and sensor systems. Both conventional computing systems as well
as innovative computing systems, e.g., following bio-inspiration from nervous systems or neural
networks, require efficient interfacing to an increasing diversity of sensors under the constraints
of metrology. The realization of sufficiently accurate, robust, and flexible analog front-ends (AFE)
is decisive for the overall application system and quality and requires substantial design expertise
both for cells in System-on-Chip (SoC) or chips in System-in-Package (SiP) realizations. Adding
robustness and flexibility to sensory systems, e.g., for Industry 4.0., by self-X or self-* features, e.g.,
self-monitoring, -trimming, or -healing (AFEX) approaches the capabilities met in living beings and is
pursued in our research. This paper summarizes on two chips, denoted as Universal-Sensor-Interface-
with-self-X-properties (USIX) based on amplitude representation and reports on recently identified
challenges and corresponding advanced solutions, e.g., on circuit assessment as well as observer
robustness for classic amplitude-based AFE, and transition activities to spike domain representation
spiking-analog-front-ends with self-X properties (SAFEX) based on adaptive spiking electronics as
the next evolutionary step in AFE development. Key cells for AFEX and SAFEX have been designed
in XFAB xh035 CMOS technology and have been subject to extrinsic optimization and/or adaptation.
The submitted chip features 62,921 transistors, a total area of 10.89 mm2 (74% analog, 26% digital), and
66 bytes of the configuration memory. The prepared demonstrator will allow intrinsic optimization
and/or adaptation for the developed technology agnostic concepts and chip instances. In future
work, confirmed cells will be moved to complete versatile and robust AFEs, which can serve both for
conventional as well as innovative computing systems, e.g., spiking neurocomputers, as well as to
leading-edge technologies to serve in SOCs.

Keywords: analog-front-ends (AFE); self-X properties; universal/generic sensor interfaces;
imperfect/robust observers; extrinsic/intrinsic optimization; spike-domain information presentation;
adaptive spiking AFEs

1. Introduction

The unabated surging advance in micro/nano integration and packaging technolo-
gies [1,2], and the associated advent of both a plethora of novel sensory concepts and tech-
nologies [3] and a new generation of integrated standard or reference elements (e.g., NIST-
on-a-Chip, NoaC [4]) have made increasingly complex and powerful yet affordable inte-
grated computing systems a reality. Allied with advanced information-processing technol-
ogy, commonly referred to these days as AI technology, the creation of smart or increasingly
cognitive pervasive systems has become feasible for an increasing domain of applica-
tions. Recent application fields include (I)IoT, AIoT, CP(P)S, Industry 4.0 [5], automation,
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autonomous driving, wearable electronics, AAL/healthcare assistance systems, point-of-
care-systems, etc. The aspired cognitive integrated sensory systems (CISS) for the named
application fields (among others) must meet the constraints of cost effectiveness, consis-
tent modeling, simulation and rapid design of heterogeneous systems, packaging/3D-
integration issues, effective wireless or other communication, node localization, energy
efficiency, and energy harvesting in their design. This already requires efficient design
automation techniques from circuit and layout synthesis to automated learning or opti-
mization of deep neural networks, e.g., [6], in particular, in their contemporary hardware
manifestation [7–10], or of hybrid intelligent systems [11–15] (see Figure 1) The extrinsic
optimization goals here are in finding at design time a new solution for a new problem or
tune a solution to a changed problem.
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Figure 1. Hybrid intelligent system design for CISS based on extrinsic and intrinsic optimization.

In addition to the design goals, long-term system reliability, dependability, accuracy,
and guaranteed uncertainty are of paramount importance. The robustness and adaptivity
met in natural beings to perform in a noisy, hostile, and changing environment on an
individual level and the evolutionary development on population level are properties
envied and coveted by engineers for decades. However, it must be remembered that
technical systems do not have a metabolism and observed regrowth of lost cells, tissues,
limbs, or even a whole entity in, e.g., axolotl salamanders or planarians, and can, as of yet,
only be rivaled to the extent of the redundancy supplied at manufacturing time.

Complementing activities of addressing the latter issues in the design phase (e.g., with
yield optimization in mind, such as MUNEDA’s WiCkeD [16]), and at a later stage in the
product life cycle by repeated calibration steps, more recently the realization of life-like
features in technical systems, i.e., based on so called self-X or -* features, such as self-
monitoring, -calibration, -trimming, -repairing, -healing, and the self-correction of each
instance, become the focus of the evolution of technical systems on all levels [17–20]. This
gives rise to growing and novel design challenges from the automated design of CISS and
related system, both for hybrid or deep neural architectures, with a run-time with intrinsic
optimization by reconfiguration and/or adaptation [12,14] (see Figure 1).

Particular emphasis is exerted on a suitable electronics design, as the lowest and
decisive system level in a self-X hierarchy (see Figure 2). In particular, integrated solutions
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can benefit greatly from the realization of such an approach, as the costly one-by-one
discrete calibration of systems will be replaced by an in-built redundancy, reconfiguration
and correction features based on adaptation or learning/optimization techniques on various
levels of abstraction. One prominent industrial example is the research of Synopsys,
including the former work from Moortec, with Silicon Lifecycle Management (SLM) based
on in-built sensing devices and corresponding control loops in their complex chips (SoCs)
along with long-term data collection [21–24].

For CISS, sensors and sensor electronics, embodied by so-called analog front-ends
(AFEs), are of major importance. Consequently, in the field of evolvable hardware (EHW)
numerous approaches for robust, fault-tolerant analog and mixed-signal systems, extended
by sensors, can be found, e.g., the work of Stoica et al. [25]. Related applicable concepts are,
thus, established and can be extended by including sensors themselves with the help of
auxiliary integrated actuation electronics in the named control loops [26,27]. The purpose
of self-X approaches mainly focuses on upkeeping the functionality of a once achieved
system under challenges of drift, aging, lesions or damage.
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Figure 2. Sensors and sensor electronics as lowest level of self-X hierarchy.

One interesting and crucial point, which is also part of the design and result section of
this paper, is the issue and realization of the observer required in the control or optimiza-
tion loop, commonly established from the same ’fallible flesh’ as the monitored circuits
themselves. Numerous application works bypass this issue by using monitoring devices,
e.g., ADCs, of better resolution and quality, than the monitored systems itself features, for
instance in [28]. This actually is impractical, as for a viable system realization, the observer
must be of the same make or origin as the remaining entity. Here, a relation to immune
systems in general, and artificial immune systems in particular [29–33], can be observed.

Further, in modern, leading-edge integration technologies, classical analog design
based on amplitude-domain information representation faces challenges that are increas-
ingly difficult to overcome. One escape route is to follow the natural evidence once again by
representing the information in the time, frequency, or spike domain, e.g., for light sensing
in [34] or the Dynamic Vision Sensor (DVS) of Delbrück et al. from 2005 (see, e.g., [35]).

Time-to-digital converters have successfully established themselves [36]. Spiking
AFEs (SAFEs) with adaptation features embedded in the same self-X concepts given above
for their conventional counterparts are a promising and potentially technology-agnostic
direction of development [37,38], interfacing to both conventional and neuro-inspired
computing systems (see Figure 3).

The goals of this paper are to contribute to established amplitude-domain representa-
tion AFEs with self-X features and an emphasis of a robust and inobtrusive observer as well
as a minimum of effective reconfiguration parameters, low-cost performance evaluation
set-up, and optimization techniques. After a brief survey of existing AFEs, including
several chips and systems of our group in Section 2, the named concepts for improved
AFE with self-X properties will be described as one part of a new chip design in Section 3.
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Further goals target on moving from a vulnerable amplitude domain to a robust spike-
based representation of sensory information and ensuing adaptive processing. This will be
outlined in Section 4 for the case of a particular adaptive neural ADC as the second part of
the mentioned new chip design. In Section 5, details of the chip design and the prepared
corresponding prototype system will be disclosed and discussed. In conclusion, a balance
of the achieved goals and on future plans and work for robust, technology-agnostic AFEs
as a base level of a self-X hierarchy will be presented.

Figure 3. AFEs with Self-X capabilities for both conventional and neural computing systems.

2. Survey of AFE in Industry and Research with Self-X Extension

The decisive front-end functionality has observed a realization in different complexity
and scope for industrial sensor electronics and research activities, in particular, on recon-
figurable analog and mixed-signal arrays, partly with self-X extension. A most recent
example is given, e.g., in [39]. Two distinct approaches can be found in the history of
the field. The first one relates to fault-tolerance and circuit creation or synthesis in the
widest sense and is primarily pursued in the fields of Evolvable Hardware and Evolutionary
Electronics based on reconfigurable analog arrays, predominantly on transistor level gran-
ularity [40–48], combined with algorithms of evolutionary optimization to configure and
reconfigure the degrees of freedom of the given hardware for continued goal or specification
fulfillment [19,20,49–64]. These approaches allow both the compensation of static instance
issues, e.g., defects and mismatch from manufacturing, as well as dynamic compensation
of temporal phenomena such as drift, aging, or damage of defect suffered in electronics’
service time. Exploiting this approach for sensory electronics has also been investigated
in our group in, e.g., [28,65,66] based on two chips with reconfigurable OpAmps and
InAmp in austriamicrosystems 0.35 µm CMOS technology and PSO-based optimization
under the ideal observer assumption. One of the chips was employed by Tawdross in an
intrisic evolution approach to both compensate static and dynamic issues by continuous
self-monitoring and -reconfiguration.

In the second one, rapid-prototyping and genericness of system solutions and the
AFE for interfacing a plethora of different sensors is in the focus on the level of cell level
granularity, which substantially reduces the degrees of freedom to be implemented and
determined by optimization. In general, in the industrial electronics community with
prevalent amplitude-domain representation, the rich degree of freedom in transistor level-
granularity was and is viewed as largely unrealistic due to excessive resource consumption,
e.g., chip area, and side effects due to the additionally introduced parasitics. Thus, in
commercial designs, only a minimum use of reconfiguration capabilities and related tuning
can be found. Commonly, offset and gain issues are tackled, e.g., in instrumentation
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amplifiers denoted as DigiTrim in [67], both for deviation compensation and optimum
fitting measurement signal to ADC input, denoted as Zooming ADC [68]. Moreover,
power consumption and related vigilance reconfiguration have observed implementation,
e.g., by programming the vertical currents in decisive parts of the amplifiers. Last not
least, additional functionality for electronics and sensor temperature tracking and related
compensation can be found, e.g., in [68–78].

More flexibility and complete AFE functionality was provided by Field-Programmable-
Analog-Arrays (FPAA), e.g., relevant FPAA commercial examples [79–84] and research
examples [85–95], and representative AFE implementations [96–101].

As can be observed, a plethora of activities in the field has and is taking place, but
linking these activities to self-X concepts and architecture is less common, e.g., in [102–105].
Thus, motivated from the obvious need in sensor and measurement systems, instrumenta-
tion, automation, IoT, and Industry 4.0, we pursued research on advanced sensor interfaces
or AFEs, both generic or universal, to deal with a rich collection of relevant different sensor
principles and add self-X features to these AFEs, both for stand-alone use as well as being
part of a more complex self-X hierarchy, as outlined in the introduction.

For the research demonstration, magneto-resisitive sensors were selected, e.g., AMR
and TMR, from the xMR options. These also offer integrated or embedded actutation
devices, e.g., flip and compensation coil in the case of AMR 755b Sensitec sensors, which
allows one to instantiate the self-X concepts outlined in Figure 2 with regard to including
both electronics and sensors in Self-x loops as evolved and reported in [26,27]. The first
chip in the family of Universal-Sensor-Interface-with-self-X- properties (USIX) was designed
by Rober Freier [106] in austriamicrosystems 0.35 µm CMOS technology. The simplified
block diagram of the USIX 1 chip is shown in Figure 4.
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Figure 4. Simplified block diagram of the USIX 1 chip (Adapted from: [106]).

The key features are the general reconfigurability of both connectivity and analog
properties as well as actuation options, e.g., the flip current control for AMR chips. Sensor
sensitivity could be self-monitored, and, in case of a saturation issue, restored by a flip
cycle (self-healing).

Figure 5 shows a chip photo of the fully functional design from [106]. It has ob-
served demonstrator implementation with a dedicated Arduino set-up and applied to
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activities such as foodscanner development, e.g., Lab-on-Spoon realization by USIX em-
ployment [107].

Figure 5. Chip photo of the USIX 1 chip (Reproduced with permission from Robert Freier: [106]).

The diagnostic capability and the improved integration in self-X optimization loops
were open issues for that chip generation and lead to the USIX 2 chip designed by Kammara,
Chinazzo, and Dobariya, as well as Gräf for the corresponding demonstrator setup [27].
The chip was also designed in austriamicrosystems 0.35 µm CMOS technology and featured
18 mm2 area and more than 50 k transistors. The corresponding block diagram of the USIX
2 chip is shown in Figure 6.
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The USIX 2, shown in Figure 7, was enriched with features such as TMR reset actuation,
more flexible connectivity generation, hotswap from up to four stored configurations, and
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first extension steps towards integrated impedance spectroscopy [108], which can serve both
as a measurement principle for itself or for sensor diagnosis in advanced self-monitoring.

Unfortunately, the complexity of the design under tight project timing constraints
led to two major design issues, rendering the chip, beyond the simulation results, not
useful in practical measurement. Though the issues were localized and a repair with the
Focused-Ion-Beam (FIB) method from NSC at TU Kaiserslautern was tried, it unfortunately
did not lead to testing success.

Figure 7. Photo of the USIX 2 chip on the wafer prober with test needle on FIB repair location.

In both USIX chips, several relevant technical problems for AFEs with self-X properties
have not found a comprehensive and sufficiently complete answer yet. In the light of
the design issues that unfortunately occurred in the USIX 2, the focus was shifted from
providing a complete USIX 3 chip to elaborating in more detail solutions and advance
for crucial cells and components in XFAB xh035 µm CMOS technology, validate those by
a more modest design, as detailed in Sections 3 and 5, and in a following step, use the
validated key cells to compile a complete USIX 3 chip. The main important issues relate to
determining the minimum number and optimum location of tuning knobs, improvement
of optimization techniques in the self-X loops, and last but not least, tackling imperfections
and obtrusiveness in the optimizer/observer [109–119] in the named self-X loops.

Undergoing the transition from the vulnerable amplitude-domain to inherently more
robust time-, pulse-, or spike-domain for future robust and technology agnostic AFEs was
concurrently pursued in our group, e.g., reported in [38] with a focus on the sensor to
digital conversion step and the target to integrate in the self-X-architecture described above.
A first converter chip for a spiking AFE was designed by Kammara [38], as well as in
the austriamicrosystems 0.35 µm CMOS technology, and the basic functionality could be
confirmed from these chip samples. In Sections 4 and 5, the follow-up work including
adaptation mechanisms, and their circuit embodiment will be presented and discussed.

3. Amplitude Domain AFEs with Self-X Extension

This section will present the principle of the sensor analog interfacing in the amplitude
domain that belongs to part (a) of Figure 3. The major update of the recent work from the
former USIX 1.0 and USIX 2.0 can be outlined in four perspectives:

• The introduction of the fully differential analog circuits.
• The limitation of the reconfigurable circuit elements to the sensitive components only.
• The incorporation of cost-effective system performance evaluation setup based on

indirect measurement methods to support the automatic test equipment (ATE).
• Alleviation of the observer uncertainty, mainly due to imperfections of the sensor

and/or ADCs.
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The updated concept helps to reduce the overhead of implementing the self-X sensory
electronics, as presented in Figure 2, which provides the possibility of achieving higher
dynamic system performance due to reduction of the circuit parasitics and relaxation of the
requirements of the system performance evaluation unit.

3.1. Instrumentation Amplifier

The instrumentation amplifier (in-amp) is the critical component of the AFE for signal
conditioning in the amplitude domain for the sensors’ interface and readout circuitry [120,121].
Compared to the operational amplifier (op-amp), the main features of the in-amp are the
high input impedance and common-mode rejection ratio (CMRR), making it the best choice
for conditioning weak sensor signals in a noisy environment [122]. There are three major
topologies for realizing the in-amp circuits [123]; those are the capacitive coupling chopper-
stabilized in-amp (CCIA) [124,125], the conventional three op-amps based in-amp, and the
indirect current-feedback in-amp (CFIA) [126–128].

The CFIA utilizes the active feedback amplifier topology (AAF) [129], also known as a
differential-difference amplifier (DDF) [130]. Thus, it benefits from high input impedance,
high open-loop DC gain, and wide bandwidth [120,131–133]. The CFIA is more area and
power-efficient than 3-opamp in-amp because the input transconductance stages share the
same output driver stage [121]. The CFIA’s key feature is that the common-mode voltage
of the input stage is separated and isolated from the common-mode voltage of the feedback
stage by utilizing two balanced differential stages [134]. Therefore, it is possible to direct
the couples’ sensors having a common-mode voltage distinguished from the CFIA output
common-mode voltage without additional isolation or coupling techniques [129,135]. The
input and feedback transconductance convert the voltage signals to current signals and
reject the common-mode voltage, thus leading to higher CMRR than the 3-opamp in-
amp [128,136–138]. The mismatch in the feedback resistor results only in a closed-loop gain
error [139] and does not affect the CMRR performance.

Depending on the input stage type (NMOS or PMOS), the ability of the CFIA to
amplify sensors’ voltages that approach either of the CFIA supply rails makes it suitable
to condition universal types of sensors and measurements, e.g., current sensing mea-
surements [140,141], strain gauges [142], biomedical signals interface [139], micro-electro-
mechanical systems (MEMS) interface [143,144], magnetic field sensor interface [27,145,146],
electrical impedance spectroscopy (EIS) [147,148], etc. However, the CFIA suffers from two
issues relevant to the DDF core amplifier; the first one is the gain inaccuracy error because
of the mismatching between the input and feedback transconductance [140]. Therefore,
the same type of differential transistors with extra care on layout matching has to be taken
during the physical implementation; also, by using cascaded biasing currents, a better
degree of matching can be accomplished [121]. The second issue is due to the limited input
differential range of the input transconductance in open loop configuration [130], which
especially becomes a problem when interfacing high dynamic range sensors such as the
magnetoresistive sensors [149] in small node CMOS technology where the dynamic input
range is already reduced.

Classical linearization solutions can be found in the literature to extend the input differ-
ential range of the CFIA [150,151], but mostly tradeoff the amplifier dynamic performance,
reduce the ICMR and boost the power consumption. An innovative solution to this problem
was proposed in [152], which uses the advantages of fully differential signal properties and
the method to apply the negative feedback to the input and feedback transconductance
stages of the DDF to create a virtual short between each pair. We proposed in [153] a fully
differential CFIA based on the last solution. The reported post-layout simulations remarked
on a high dynamic performance to process a large differential voltage of 1.6 Vp−p and
achieved a total harmonics distortion (THD) of 0.95% at a signal frequency of 5 MHz, while
consuming only 2.55 mW and a layout area of 0.039 mm2.

To support self-X properties, we introduced configuration capability to the sensitive el-
ements of the CFIA circuit and to the elements having impact control over the circuit perfor-
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mance, serving as the design tuning knobs [154], as depicted in Figure 8. The configurable
elements are made of digitally weighted scalable arrays controlled by the configuration bits
from the optimization algorithm unit. The gate of the unselected transistor from the PMOS
array is shorted to VDD; similarly, the NMOS array is shorted to GND. It is important to
fully shutdown the unselected transistor and avoid partial conduction due to the residual
charge saved at the floating gate capacitance. Hot-swappable multi-row register-based
memory is used to save the configuration pattern and allows switching between different
saved solutions for supporting in situ calibration. In the proposed approach, the circuit’s
critical devices were first identified based on the simulation results and by considering the
process, voltage, and temperature (PVT) variations, while the remaining elements are fixed
to their optimum designed values. Compared to the fine-granular approach [45], where
every element in the circuit is made scalable, the proposed approach reached the required
flexibility in terms of circuit calibrating or changing the circuit performance according to
the signal requirements with the following advantages: (1) smaller design area; (2) fewer
switches parasitics, which led to improving the dynamic performance of the circuit; (3) less
configuration memory; and (4) faster optimization time.
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Generally, the CFIA’s gain-bandwidth product (GBW) is inversely proportional to
the closed-loop gain (ACL) [155,156] in the same fashion of the voltage-mode op-amps.
Therefore, amplifying weak but high-bandwidth sensor signals demand high GBW [132],
which costs more power dissipation. On the other hand, it is possible to only compensate
the amplifier for the high ACL using smaller compensation capacitors, which extends the
CFIA bandwidth and the slew rate as well. Nevertheless, the amplifier might not be stable
for low ACL, especially for a unity gain buffer configuration that demands the highest
compensation value. Our proposed design in [154] features GBW programmability by
configuring the compensation capacitors according to the required stability of the selected
gain. The gain can be programmed in eight levels, i.e., 1, 2, 4, 8, 16, 32, 64, and 128.
Furthermore, by programming the biasing circuit, the −3 dB cutoff frequency (f−3dB) can
be tuned up to 250 MHz with unity gain configuration and to 0.5 MHz at ACL = 128.

For precision amplification under high ACL, an additional scalable transconductance
stage (Gmos) with a scalable current source is added to the CFIA input stage to run the
digital-auto zeroing (DOZ) task using the optimization algorithm. Compared to our
former work implemented in [157], both minimized the offset voltage (VOS) below 100 µV.
However, the former design used switching-capacitor auto-zeroing, thus introducing the
spikes’ disturbance at the output. A total of 100 bits are used for the CFIA configuration. In
the recent chip, the in-amp is further supported by an automatic digital offset calibration
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scheme based on methodologies presented in [158–160], as shown in Figure 9. During
the design, the statistical offset voltage (VOS) of the CFIA is first concluded by running
the Monte Carlo simulation with a large number of samples (500 samples) under extreme
voltage, temperature, and process variation conditions. The autozeroing circuit is designed
and added to the CFIA to cope with the obtained maximum absolute value of VOS). Then,
the MC is repeated because the autozeroing circuit itself can change the original value
of the CFIA VOS. The post-layout simulation gives a maximum VOS of ±7 mV, while
the designed automatic DOZ can treat VOS up to ±14 mV. This should be enough to
mitigate the additional offset due to the fabrication, packaging, and aging effect. During
the calibration mode, the gain of the CFIA is set to the maximum (128). Therefore, the
offset voltage of the digital loop control will be divided by this value. Figure 10 shows the
offset correction under the imported worst statistical corner from MC samples. Considering
the CFIA setup gain, the result proved the offset voltage down to 65 µV. The physical
implementation of the complete circuit is shown in Figure 11, where the PMM stands for
the power monitoring module, which will be discussed later.
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Figure 11. Layout implementation of the CFIA with the automatic digital offset automatic and power
monitoring schemes.

3.2. Anti-Aliasing Filter

The anti-aliasing filter comes in the next stage of the signal conditioning chain after
amplification to remove the signal noise from the Nyquist bandwidth prior the ADC
converter stage. To support an extensive bandwidth range also required for EIS, we
proposed in [161] a fully-differential fourth-order tunable continuous-time active low pass
filter based on the Sallen–Key structure with Butterworth approximation. The post-layout
simulations proved a frequency range from 30 Hz to 7 MHz with a resolution of 200 Hz,
while the filter quality factor is fixed to the well-matched capacitor ratios. This range is
achieved by modifying the MOS floating resistor from [162] and by varying the MOS-
resistor biasing current from 50 nA to 30µA, as shown from the schematic diagram in
Figure 12. However, tuning the filter in this range is quite challenging to perform. A
general optimization method can be followed, such as in [105,163] to tune the frequency
bandwidth. To reduce the measurement cost of the optimization process, we proposed
the indirect measurement principle based on non-intrusive sensors in our chip, as will
be discussed next. The core amplifier of the presented filter is the fully-differential DFF
used in the design of the CFIA. A modification is worked around to reduce the amplifier
output resistance as required by the Sallen–Key topology and also to extend the GBW
up to 250 MHz to cope with the required filter frequency. The filter circuit’s physical
implementation, including the programmable biasing current unit and the additional
sensors, is shown in Figure 13.
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3.3. Assessment Unit

The assessment unit consists of the essential measurement setup required for evaluat-
ing the reconfigurable hardware performance. It can be performed extrinsically, intrinsically,
or mixtrinsically [164]. The extrinsic evaluation is realized by the simulation-based mea-
surement setup, while the intrinsic evaluation is based on the real hardware measurement
setup. The mixtrinsic evaluation is the combination of both the real and simulation-based
measurements. The concept of mixtrinsic evolution is firstly proposed by authors in [165].
They used the genetic algorithm whose population contains both intrinsic and extrinsic in-
dividuals. In the former work at our institute [164], the concept of the mixtrinsic evaluation
is extended differently by performing the complex measurements (phase margin, open-loop
gain, etc.) extrinsically and executing the simple measurements (output voltage swing,
and common-mode range) intrinsically, which helped to reduce the complexity of the
assessment unit. However, both approaches in [164,165] rely partially on simulation-based
results, which are not accurate compared to the intrinsic evaluation with real hardware.
Furthermore, it drains for a considerable time, limited by the simulator’s processing power,
making it difficult to realize in situ calibration.

The intrinsic evaluation measurement setup cost is crucial for smart sensory electronics
(SSE), especially in escalating system complexity. The performance measurement setup of
the device under the test (DUT) can be divided into two fundamental categories based on
the evaluation principle of the desired performance parameters. The first classification uti-
lizes a direct performance measurement method to validate the target characteristics [105].
This category offers more accuracy and precision but raises the design complexity and
physical area [166]. The second category uses the indirect measurements approach, re-
lying on the statistical correlation between different DUT performance characteristics
and low-cost test stimulation, which provides a simultaneous estimation of various DUT
parameters [166–171]. We proposed in [168] a cost-effective indirect performance measure-
ment for the smart sensory electronic system. The reconfigurable fully differential CFIA
from [154] is employed as a test vehicle for the extrinsic evaluation. A sinusoidal signal
with predefined amplitude and frequency is applied to the CFIA during the optimization
process. Then, the THD is evaluated on the system response, which helps to predict most
of the CFIA characteristics at once. It mainly relies on the fact that the design imperfection,
such as slew rate, GBW, ICMR, the effective number of bits, full-power bandwidth, and
signal-to-noise ratio (SNR), can be translated as a nonlinear distortion at the output of the
closed-loop amplifier [172]. Unfortunately, the amplifier stability cannot be estimated from
the spectrum analysis acquired by the sinusoidal response. Therefore, it is mandatory to
evaluate the step response of the CFIA to predict its stability from the output response.
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Compared to the optimization of digital evolvable hardware such as the
field-programmable gate array (FPGA), the optimization of evolvable analog circuits at
the transistor level may result in harmful solutions in terms of excessive currents that
could cause a permanent failure of the DUT or reduce its life cycle. To alleviate this issue
and enhance the long-term reliability, we recently embedded the low-cost indirect power
monitoring module (PPM) with THD-based optimization methodology [173], as shown
in Figure 14. The PPM serves two essential functions. Firstly, it helps the optimization
algorithm to select the power-efficient solution. Secondly, it ensures accomplishing a safe
reconfiguration pattern for the DUT. Without the presence of PPM, it is also quite challeng-
ing to constrain the acceptable current density during the optimization process without
sacrificing the optimizer’s exploring capabilities.

Fitness FunctionOptimization Unit THD Measurements

Tuning Knobs

Power Monitoring Module

Test Stimuli 
Selection Analog to Digital 

Converter

Figure 14. Block diagram of the integration of the power monitoring with THD−based optmiza-
tion method.

The proposed approach mirrors a scaled-down value of the current of the power-
hungry branches of the circuit into the current-starved ring oscillator, and its schematic
diagram is given in Figure 15 (for simplicity, the current-starved oscillator, common-
mode feedback, biasing circuit, and offset-calibration circuits are not presented in the
figure). The current-starved ring oscillator [174] modulates the drawn current or the power
dissipation of DUT in the form of clock frequency. This frequency is directly proportional
to the consumed current; hence, this method can detect the desired power threshold level
and give a fair approximation of the power consumption between various optimization
solutions. Since the PPM mirrors the scaled-down current of the power-hungry branches,
it has negligible effects on the overall performance of the DUT. The transistors’ sizing
information are listed in Table 1.
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Figure 15. Transistor-level schematic diagram of CFIA along with power monitoring module.
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Table 1. MOSFET size ratios of the CFIA circuit.

Tr. Nr. W / L (µm/µm) Tr. Nr. W/L (µm/µm)

M1, M2 256/1 M21, M22 52/0.55
M3, M4 128/0.5 M23, M24 18/0.55

M5, M6, M13, M14 120/0.7 M25, M26 42/0.7
M7, M8, M15, M16 40/0.7 M25, M27, M30 50/1

M9, M10 40/0.5 M31 64/1
M11, M12 80/1 M32 32/0.35
M17, M18 300/1 M37 10/0.5
M19, M20 132/0.7 M38 20/1

MD1, MD3 240/0.35 M33 *, M34 * 64/0.5
MD2, MD4 80/0.35 M35 *, M36 * 128/0.5
MP1, MP3 1/0.35

where * represents scalable devices.

Another low-cost on-chip indirect measurement method using non-intrusive sensors
is presented in [166,167,175]. The non-intrusive sensors are electrically disconnected from
the main DUT but placed in close proximity to the DUT. Therefore, the optimization process
can be performed without interrupting the device’s operation or affecting its performance.
The operating conditions of these non-intrusive sensors are similar to the DUT, and their
performance is designed to be highly correlated to the performance characteristics of the
DUT. Hence, the DUT-targeted characteristics can be predicted from different characteristics
of the non-intrusive sensors measured economically. For non-intrusive sensor design, the
correlation among them should be as minimal as possible. Contrarily, their correlation with
the targeted characteristics of DUT should be as maximal as possible. As observed from
Figure 16, the correlation among the sensors themselves is significantly small, while it has
a good correlation with the performance characteristics of the CFIA.
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Figure 16. Correlation of the non-intrusive sensors with targeted performance characteristics of DUT.

It is a quite challenging task to model the performance characteristics of the DUT
analytically [166]. Therefore, an artificial neural network is generally employed as a regres-
sor to approximate this regression task. We proposed the indirect measurement method
based on non-intrusive sensors in [175]. During the training phase, the non-intrusive
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sensors and DUT are simulated and subjected to the same PVT operating conditions using
the combination of Monte Carlo (MC) and worse case corners (WCC). Then, 80% of the
data samples are randomly selected for the training, while the remaining 20% are used to
assess the regressor performance. In the testing phase, the outputs of the non-intrusive
sensors are passed to the pre-trained regressor, which indirectly predicts the performance
characteristics of DUT. The achieved correlation performance metric (adjusted r squared) is
91.68% [175].

3.4. Optimization Unit

For the in-field optimization process, an AI agent is required to be embedded inside the
ATE, similar to the SLM agent proposed by Synopses (Concertio) [176,177]. The AI agent
can be placed at different levels of the system hierarchy, for example, at the application
layer, operating system, firmware, or hardware level [23,177], as shown in Figure 17. In
our proposed methodology [168], the AI agent is placed at the closest level to the DUT, i.e.,
at the hardware level. Regarding the selection of AI-based optimizers, derivative-based
optimization techniques cannot be used because of discontinuous objective space [115].
Alternatively, meta-heuristic optimization algorithms (MHOAs) perform impressively re-
gardless of discontinuous objective space. There are numerous types of MHOAs available in
the literature [178]. We selected particle swarm optimization (PSO) as an optimization unit
mainly because of its easy implementation and fast convergence speed [179]. The PSO was
firstly presented in [180]. Later on, several improved modifications of the PSO algorithm
have been presented in the literature [181–184] to improve its exploring capability and
decrease the trapping possibility into the local optima. We recently proposed a modified
PSO version, named the experience replay particle swarm optimization (ERPSO) [168]. The
ERPSO extended the selection producer of the traditional PSO by introducing an experience
replay buffer intending to lower the trapping probability at the local optimum. The experi-
ence replay buffer is the archive of the previously discovered global best positions, while its
selection is based on an adaptive epsilon greedy approach in the velocity update equation.

Application

Operating 

System

Firmware

Hardware

AI Agent

Figure 17. Possibilities of AI agent placements at different levels of the system hierarchy.

The optimized results are summarized in Table 2. The optimization is performed on
the schematic level, and the solutions are evaluated on the post layout level. Though there
must be a difference, as can be observed from the table, it is computationally expensive and
time-consuming to run the optimization process on the post layout level due to the large
netlist size with RC extractions. For this experiment, a sinusoidal signal with a frequency
of 100 kHz and amplitude of 2 Vp−p is applied as a test stimulus for the targeted THD
value of −70 dB. For the stability test, a step stimuli with a period of 1 µs and amplitude
of 2 Vp−p is used. The power threshold is assigned to 6 mA (20 mW), as per the safe
operational current range of the CFIA. As it can be observed from the table, the proposed
design effectively optimizes the DUT for the targeted power and THD requirements. The
optimization process is run independently five times for the typical mean condition, and its
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statistical information has presented in the table. For all those independent tests, the power
dissipation of the CFIA is within the safe limits, and the THD value indirectly satisfied the
other performance characteristics of CFIA. With the addition of PMM, the average power
consumption for the nominal operating conditions is reduced by roughly 25% compared to
our previously reported work [168]. Other performance characteristics, especially slew rate
and GBW, slightly declined due to lower power consumption, but they still fulfilled the
desired performance requirement. The tested schematic solutions on the layout level show
slight and acceptable differences. Hence the optimization on the schematic level for this
circuit can be faithfully acknowledged.

Table 2. CFIA post layout characteristics based on schematic level optimization solutions.

CFIA Design Parameter Statistical Information (Schematic Level) Statistical Information (Post Layout Level)
Mean Min Max Mean Min Max

Differential DC gain (AVD) 94.80 dB 92.19 dB 97.70 dB 94.73 dB 92.16 dB 97.72 dB
Gain bandwidth product (GBW) 47.75 MHz 26.35 MHz 102.18 MHz 39.41 MHz 25.1 MHz 82.32 MHz
Phase margin (PM) 73.22◦ 63.22◦ 81.32◦ 60.47◦ 47.12◦ 72.49◦

Slew rate (SR) ±63.38 V/µs ±29.40 V/µs ±165.12 V/µs ±60.34 V/µs ±28.55 V/µs ±155.17 V/µs
PMM output frequency (fck) 347.18 kHz 218.3 kHz 607.7 kHz 377.48 kHz 211.2 kHz 593 kHz
Static power dissipation (PD) 4.17 mW 2.07 mW 8.76 mW 4.16 mW 2.06 mW 8.76 mW

The CFIA circuits have been tested on the chip level by running various optimization
solutions obtained from the circuit level. As it can be visualized in Figure 18, the CFIA
received two different solutions with a gain setting of 1 and 2, respectively. Initially, the CFIA
is powered down, and the output of the SIPO is disabled to ground until 65 µs, whereby
this time, the first row of the SIPO receives the complete optimization pattern. After that,
the SIPO output from the first row is shifted to the CFIA in enabled mode, while the writing
of the next optimization solution is carried out in the second row parallelly. Similarly, for
the time from 115 µs, the second optimization pattern is transferred to the CFIA, which
changes the gain by a factor of 2, and the writing of the next optimization solution is now
performed on the third row of the SIPO. The most significant bit of the selected row of
SIPO has been exposed to the chip output to debug the downloaded configuration data
on the SIPO memory, as shown in Figure 19. It can also be used for handshaking or as an
acknowledgement in the communication protocol between the DUT and demonstration
board. In a similar approach used for the CFIA, the filter circuit is tested for two different
configuration patterns to change the cutoff frequency, as shown in Figure 20.

Figure 18. CFIA chip−level post layout simulation result with two different optimization solutions.
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Figure 19. Chip−level simulation result of the SIPO debugging output bit.

Figure 20. Filter chip−level post layout simulation result with two different configurations.

3.5. Observer Imperfections

To address the observer imperfections, we explored the concept of robust optimization
in [109,110]. The robust optimization can be split into two categories [116,185]. The first
category is known as archive-based robust optimization [109,185]. This approach works
specifically well with the meta-heuristic optimization algorithms because of the enormous
exploring capability of the searching agents during the optimization activity. However,
it costs extra memory reserves. At the beginning of the optimization process, optimizer
exploitation is high. The optimizer might choose a false optimum solution because of
the observer’s non-idealities, but as the exploration increases, it quantifies the solution’s
correctness with the archive’s help [109]. This phenomenon is graphically illustrated in
Figure 21 using the two-dimensional Griewank objective function. As the exploration of
the search particles is extensively condensed around the global best position, this helps
MHOAs to minimize the effects of observer imperfections with the passage of iterations.
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Figure 21. Visualization of the exploration capabilities of the PSO after 100 number of iterations.

The second category is based on the surrogate-based robust optimization method [185].
The famous Bayesian statistical regression process, more precisely, the Gaussian process
regression (GPR) [110,117,118], falls under this umbrella. The GPR has been commonly
used for error quantification and design optimization. The uncertainty is usually well
modelled using GPR; hence, these models could better approximate the uncertainty [119].
Furthermore, it also provides the confidence interval for the estimated values [118]. The
GPR model can be expressed as

f (x) ∼ GP
(
m(x), κ

(
x, x′

))
(1)

where κ(x, x′) represents the kernel function and m(x) denotes the mean function. The
GPR is optimized by adapting the kernel and mean value according to the training data
set. Figure 22 compares the distorted output signal of the CFIA and the predicted output
signal of the robust optimizer using GPR with 95% confidence intervals [110]. As observed
from the figure, in addition to uncertainty level prediction, the GPR helps forecast the
data, which can considerably minimize the transmission power of wireless sensor network
applications. For the intrinsic evaluation of the proposed robust optimization concept,
the non-idealities or uncertainty of the analog to digital converts for sampling the output
response of CFIA, as shown in Figure 14, will serve as the source of observer imperfections.

Training and Forecast Split

Figure 22. The predicted output with 95% confidence interval and illustration of the data forecasting
capabilities by the application of GPR block.
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4. Spiking AFEs with Self-X Extension

This section targets to move the AFE design from the vulnerable amplitude domain
to a robust spike-based representation of sensory information, as referred to in Figure 3
part (c), with self-X properties for leading-edge integration technologies. Nevertheless,
the focus is placed on the appropriate electronics design, as the system’s lowest and most
critical level in the self-hierarchy, as shown in Figure 2. The former sensor to spike to
digital converter (SSDCα) chip introduces the SAFE inspired by human hearing acoustic
localization. However, SSDCα did not make use of adaptivity as desired, e.g., to deal with
challenges in advanced node CMOS technology. In this work, we pursue building blocks of
the concept of robust adaptive spiking sensor systems where the essential SAFE building
blocks are implemented in the recent chip. It has two different levels of adaptivity. The
first level is completely local and self-adaptive, i.e., unsupervised in the classical sense.
The second level is based on supervised learning and exploiting the optimization/learning
using more sophisticated population-based metaheuristic algorithms.

Implementing the mixed-signal systems in the leading-edge technologies has power
and speed gain advantages [186]. It is mainly due to the lower supply voltage and decreased
capacitance value. On another side, many challenges imposed on the circuit design,
e.g., lower supply voltage, decreased signal swing, manufacturing deviations, reduced
intrinsic device gain, noise, and aggravated device mismatch [187], which complicities the
signal processing in amplitude domain. Especially the complex mixed-signal system such as
ADC faces the mentioned challenges when migrating to the smaller technology [186–189].

Several ADCs structures are introduced in the literature to address and attempt to
overcome these challenges. One example is synthesizable stochastic flash ADC architec-
ture, which requires many resources to implement, e.g., 3840 comparators for 5.3 bits of
resolution [186,187]. However, stochastic ADCs still use amplitude-coded signals that
face challenges in advanced node CMOS technology. This motivated the researchers to
design electronic sensor systems using a spike or time-coded signals with a technology
agnostic property, which is robust to technology scaling [37,38,190–192]. One model is
the ADC-based current sensing [190]. Its architecture is based on a current-to-frequency
converter implemented using the Izhikevich neuron model and frequency-to-digital con-
version implemented by digital blocks. Authors in [193] proposed a scalable ADC based
on the neural engineering framework. It takes advantage of parallelism inherent in neu-
ral networks. The encoder and neurons are designed in the analog domain, whilst the
decoding and signal reconstruction are implemented in the digital domain. Likewise,
the authors in [191,192] proposed a synthesizable ADC inspired by a neural network. It
uses the resistive random-access memory (RRAM) crossbar architecture in a dual-path
configuration. The overall architecture of their ADC realizes a three-layer of general neural
network hardware substrate, the input, hidden, and output layer. To overcome these
challenges, the former SSDCα chip has emulated the acoustic localization by using the
spike timing to represent the information. The implementation of a SAFE inspired by
acoustic localization needs two stages sensor-to-spike converter (SSC), and spike-to-digital
converter (SDC) [38]. In the recent chip, we pursue the design of SAFE based on robust
adaptive spiking electronics inspired by acoustic localization.

4.1. Natural Sensory Systems Evidence

Organisms use the time difference of the signals reaching the ears, which invoke
interaural time differences (ITDs) to determine the sound source. Jeffress presented the
acoustic localization in 1948 [194]. Jeffreys’ theory is based on three basic assumptions:
delay lines, coincidence detectors, and place map [195]. Acoustic localization is a clear
adaptive spiking neural network (SNN) model, as shown in Figure 23a. We proposed SAFE
with adaptation features based on the two-stage to emulate Jeffress’s model [194], as shown
in Figure 23b. The first stage (SSC) converts the sensor signal into two spikes with ITD, and
the ITD value changes with the sensor signal. The second stage, the self-adaptive spike-
to-digital converter (SA-SDC), generates digital code depending on the ITD value. The
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SA-SDC has three fundamental assumptions of Jeffress’s theory. These are implemented by
synapses weights, an array of adaptive coincidence detection and winner-take-all (WTA)
with memory. The primary goal of this work is to implement the fundamental building
block of SAFE, which is SA-SDC.
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Figure 23. (a) Acoustic localization model. The brain locates the voice’s position using interaural
time differences (ITDs). (b) The main blocks of proposed SAFE architecture.

4.2. Proposed Self-Adaptive Spike-to-Digital Converter (SA-SDC)

The proposed SA-SDC has two parts, the self-adaptive spike-to-rank coding (SA-SRC)
and winner-take-all (WTA) with memory, as shown in Figure 24. The first one generates
spike orders that reflect the value of ITD. The second one is a digital circuit that converts
those orders into respective digital codes. The proposed SA-SRC is implemented by sixteen
adaptive coincidence detection (ACDs). The ACD has two adaptive synapses (AS) and one
neuron (N). The adaptive synapse is based on the CMOS memristor, which emulates the
long-term plasticity (LTP) and short-term plasticity (STP) of biological synapse [196].

Numerous neuron models are available in the literature [197]. The leaky integrate
and fire (LIF) neuron model of Indiveri neuron model has components for modulating
the neuron’s threshold voltage, spike frequency adaptation, setting an arbitrary refractory
period, membrane capacitor, positive feedback, a digital inverter for pulse generation, and
a transistor for controlling the current leakage [198]. The neuron properties required for
the ACD are to perform the time delay of a neural network with an inverse relationship
between the incoming charge magnitude and the time of the first spike. These are the
essential characteristics that are available with any neural spiking model. Indiveri’s neuron
model has been modified to meet the requirements of ACD, as shown in Figure 25. The
proposed neuron has two variables and sixteen transistors; on the other side, the Indiveri
model has four variables and twenty transistors. This results in a 20% reduction in power
consumption, speed gain with the factor of eight, a 30% reduction in area, and an eight
times higher rate of a spike compared to the Indivery model. During the SA-SRC design
process, the transistor sizes of the neuron were initially found based on empirical results
and observations from simulations. The final values are tuned again with the help of
simulation to generate the spike order that works appropriately against the PVT corners,
as enumerated in Table 3. The layouts of the proposed adaptive coincidence detection
and self-adaptive spike-to-rank coding are shown in Figures 26 and 27, respectively. The
SA-SRC consumed a total area of 0.98 mm2 with 4-bits resolutions, while the previous
work SSDCα presented by our research group consumed 8.5 mm2 with 8-bits resolutions.
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value of the transistors in µm). It has been used in the ACD block.

We have built SAFE with two levels of adaptivity, as shown in Figure 24. The first one
is at the level of ACD, and the second one is at the level of SA-SDC. The second adaptation
level is responsible for adapting the variables vg1, vg2, VLEAK and VRFR, and it runs above
the first level. For each modification in these variables; the first level participates in the
adaptation process, and the second level waits until the first level completes the solution.
If the solution corrects the synapse weight, the adaptation process ends; otherwise, the
second level updates the variables (vg1, vg2, VLEAK, VRFR) and turns on the adaptation for
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the next round, and so on. In the first level, the adaptation circuit is completely local and
automatically adapts the synapses’ weight. Moreover, in the first level, the adaption works
simultaneously for all ACD. Therefore, the number of the SA-SDC variables in the second
level is equal to the variables of one ACD (vg1, vg2, VLEAK, and VRFR).
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Figure 26. The layout of adaptive coincidence detection.
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Figure 27. The layout of self-adaptive spike-to-rank coding.

The first level autonomous control circuit, as shown in Figure 28, uses the time of
neuron fire to determine the weight of the synapse. It fundamentally relies on the fact that
the timings of neuron fires depend on its input current, and the synapse’s weight controls
this input current. Therefore, the synapse’s weight is proportional to the timing of the
neuron’s firing. This first level of the autonomous circuit adapts the weight of the first
synapse of all ACDs simultaneously by connecting the first synapse and disconnecting the
second synapse of all ACDs. Similarly, the second synapse’s weight will be adapted.

The second adaptation level will explore optimization possibilities by using two
different methods. Firstly, the population-based metaheuristic algorithms, more specifically,
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the ERPSO proposed recently by our research group. The SAFE output will serve as the
cost or fitness function for the optimization unit. Meanwhile, the four variables (vg1, vg2,
VLEAK, and VRFR) will serve as tuning knobs for the optimization process to adjust the
desired output of SAFE. The second approach will be based on supervised learning in
which the pretrained regression model will be used to provide the new values of the four
variables depending on the device’s operating conditions. Unfortunately, these possibilities
are harder to perform using cadence simulations due to the simulation time demand of the
transient simulations. On the other hand, verifications of these approaches can be evaluated
on the fabricated prototyping chip in a reasonable time frame. The second adaptation level
will be implemented on the field programmable gate array (FPGA) board.
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Figure 28. Autonomous control circuit. It implements the self-adaptation of the first level for the
synapses’ weights.

4.3. The Experimental Results

Figure 29 shows the post-layout simulation of ACD representing the basics of three
states of acoustic localization. These states depend on the ITD value between the input
spikes, where the ITD value determines the timing of the output spike generation. In
the case of a larger ITD value (above 200 ns in this design), the output spike will not
be generated.

Membrane potential

ITD=200nsITD=140ns
 ITD=0

Figure 29. The post−layout simulation of the adaptive coincidence detection.
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The proposed SA-SRC can generate up to sixteen different spike order codes that
reflect the ITD values at its input. The value of ITD changes from −120 ns to 120 ns by
the step size of 15 ns. It is equivalent to 4-bits in binary coding. The Figure 30 presents
the post-layout simulation result of the SA-SRC under nominal operating conditions. For
this test, two pulses are applied to the input of SA-SRC with different values of ITD. The
SA-SRC generates different codes for every value of ITD. The outputs from out1 to out16
represent the one spike order code. In total, it has eight spike order codes. The numbers
labelled on the output waveforms represent the spike order sequence with respect to the
other outputs. The post-layout simulation of SA-SRC has been run under extreme process,
voltage, and temperature (PVT) corners, as listed in Table 3. The capability of measuring
ITD is increased by cascading more ACDs. The number of bits (NOB) can be calculated,
as follows:

NOB =
ln (number o f ACDs)

ln 2
(2)
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Figure 30. The simulation of SA-SRC at circuit conditions: temperature = 27 ◦C, Vdd = 3.3 V and on
the nominal process. Every column represents one code and reflects one value of ITD.

The differential non-linearity (DNL), integral non-linearity (INL), and a number of
missing codes (NOMC) parameters have been simulated under corner case number (5) in
Table 3. Their values are 0.96 LSB, 4.5 LSB, and seven missing codes, respectively. However,
these values are compensated by adapting the variables VLEAK, VRFR, vg1, and vg2, and
running the automatic adaptation of the first level, as shown in corner number 5 in the
table. The values of the parameters NOMC, DNL, and INL after adaptation are no missing
code, 0.25 LSB and 0.44 LSB, respectively.
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Table 3. The post-layout performance of SA-SRC under worst-case process corners. Where
Tmax = +85 ◦C, Tmin = −40 ◦C, VDD(typ) = 3.3 V, VDD(max) = +10% VDD(typ),
VDD(min) = −10% VDD(typ), WP: worst-case power, WS: worst-case speed, WZ: worst-case
zero and WO: worst-case one.

Corner No. Process TEMP VDD vg1 (V) vg2 (V) V_leak (V) V_ref (V)

1 TM typical typical 1.8 220 m 700 m 750 m
2 WO min max 1.8 220 m 700 m 750 m
3 WO min min 2.2 0 700 m 650 m
4 WO max max 1.8 220 m 700 m 750 m
5 WO max min 2.1 10 m 700 m 590 m
6 WP min max 1.8 660 m 700 m 700 m
7 WP min min 1.8 220 m 700 m 750 m
8 WP max max 1.8 220 m 700 m 750 m
9 WP max min 1.2 0 700 m 750 m
10 WS min max 1.2 50 m 700 m 800 m
11 WS min min 2.5 100 m 700 m 700 m
12 WS max max 2 70 m 700 m 720 m
13 WS max min 2.2 120 m 700 m 600 m
14 WZ min max 1.9 100 m 700 m 780 m
15 WZ min min 1.8 100 m 700 m 740 m
16 WZ max max 1.8 100 m 700 m 830 m
17 WZ max min 1.8 130 m 700 m 610 m

5. Chip and Demonstration Prototyping Board Design

The amplitude and spike domain AFEs circuits presented in Sections 3 and 4 are
integrated into a single prototyping chip. For the amplitude domain AFE, two separate
reconfigurable fully-differential CFIA modules have been designed, as it can be observed
in Figure 31. Each module has its own hot-swappable shift registers and PMM. The shift
register has Din pin to shift the configuration data serially to the memory, W0,1 for selecting
the row to perform the writing operation, R0,1 to select the corresponding row for data
reading, DoutDebug for debugging the written data, and finally En for enabling or disabling
the register. The second CFIA module has an additional digital offset autozeroing scheme.
This autozeroing can be performed autonomously or with the help of an optimization
unit. In the next stage of AFE, the tunable anti-aliasing filter is integrated into the chip. In
order to reduce the number of I/O chip pins, the register memory of the CFIA passes the
data internally to the register memory of the filter. Three non-intrusive sensors, including
the temperature sensor, are designed and integrated near the filter circuit to support the
indirect measurement by monitoring the chip PVT conditions for the filter tuning. The
output type of these sensors is in quasi-digital form. Hence, the digital processing unit,
the red pitaya board in our prototype, makes it easy to demodulate the PVT information.
Furthermore, the temperature sensor will also be used for the chip thermal monitoring.

The second main part of the chip is for the spike domain AFE implementation. We
designed the essential SAFE blocks, neuron, synapse, ACD and SA-SRC, as shown in
Figure 31. The neuron block has I/O pins and two controlling variables pins (vrfr, vleak) to
characterize its basic operation on the physical hardware level. Likewise, the synapse cell
has its basic I/O pins plus one controlling variable for adjusting the weight. The ACD cell
includes the four variable voltages (vleak, vrfr, vg1,vg2 ) that will serve as a tuning knobs for
the optimization algorithm. The Adapt output signal from the ACD becomes active after
completing the unsupervised adaptation of the first level. Similarly, the SA-SRC cell has
four variable voltages as tuning knobs, sixteen outputs pins for generating the spikes order
codes, and Adapt for indicating the adaptation end.
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Figure 31. Simplified block−diagram of the prototyping chip layout.

The circuits were designed using the XFAB 0.35 µm CMOS NWELL technology and
Cadence design tools. The chip occupies a total area of 10.89 mm2 with 100 input/output
pads, as shown in Figure 32. The former USIX 1.0 and USIX 2.0 consumed a total area
of 11.59 mm2 and 18 mm2, respectively. These chips provide a complete solution for the
sensor’s interface and deal with different mixed-signal cells in the readout circuit path,
while the current work is focused on essential cells for both AFEX and SAFEX in a cost-
effective prototyping chip. A short description of the individual chip cells is given in Table 4.
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During the layout design, matching with common-centroid interdigitation is followed for
the analog cells. Four metal layers are used to complete the chip, where up to metal3 is
used to layout and route the cells in the lower design hierarchy, and the thick metal4 is used
to route the power rings in the highest hierarchy due to its high current density. Eleven
pads are reserved for powering the chip to avoid the local IR drop on the supply rails and
to avoid exceeding the driving capability of the single power pad. The substrate contacts
are generously distributed between the cells to assure uniform bulk potential throughout
the chip area and prevent latch-up problems. Every cell is supported with a power-down
scheme to enable or disable the cell in standby mode for power energy saving. Moreover, it
is necessary to keep the cells in standby mode while writing the first configuration pattern
to guarantee safe operating conditions rather than passing unknown values from the SIPO
memory, which might be physically harmful.
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Figure 32. The physical implementation of the prototyping chip.

Table 4. Individual cells of the designed and under manufacturing chip with self-X capabilities.

Cell Nr. Cell Label Description

1 CFIA1 CFIA circuit with manual offset calibration
2 CFIA2 CFIA circuit with auto-digital offset autozeroing
3 Filter Active filter circuit with non-intrusive sensors
4 SIPO The configuration memory for the corresponding cell
5 Neuron Modified leaky integrate-and-fire spiking model
6 Adaptive synapse Emulated biological synapse using emulating CMOS memristor
7 ACD Two adaptive synapses (AS) and one neuron (N)
8 SA-SRC Self-adaptive spike-to-rank coding

For the intrinsic evaluation of the proposed indirect measurement methods, the FPGA
evaluation board from red pitaya is selected as an edge computing device for the demon-
stration prototyping. The architecture of our demonstration board is quite similar to the
ATE proposed by the Synopses for an infield optimization process [176]. The digital signal
synthesizer (DSS) provided by the Xilinx Vivado IP blocks will be used to generate the de-
sired sinusoidal and pulse test stimuli signals for the THD-based measurements. Similarly,



Chips 2022, 1 110

RF ADCs available on the red pitaya board will be used to sample the output response of
the DUT. The discrete Fourier transform (DFT) IP block from Xilinx Vivado shall be used
to perform the THD measurement. Since the outputs of the PPM and the non-intrusive
sensors are quasi-digital, these can be directly interfaced to the programmable logic fabric
of red pitaya via general-purpose digital input output pins. The ERPSO algorithm is being
implemented on the FPGA by using Verilog hardware descriptive language. Additionally,
a parallel-in-serial module is also designed at the output of ERPSO to transfer the parallel
configuration bits generated by the ERPSO to the SIPO units of the DUT. The control
module is responsible for supervising the infield optimization process, and to perform
the data collection and processing. In order to perform the intrinsic robust optimization
for the observer imperfections, the control module will pass the output of the ADCs to
the shared random access memory (RAM) of the programmable logic (PL) and processing
subsystems (PS) available on red pitaya. The concept of robust optimization using the GPR
and archive-based will be performed on the PS. After performing the robust optimization,
the result will be passed back to the PL, where ERPSO will take its following action based
on the cost function of the current solution. In the case of optimization for block cells, 4 to
8 shown in Table 4, all outputs of the DUT are digital. Therefore, those outputs can be
interfaced directly to the general purpose I/O pins of the FPGA board. Moreover, the WTA
module will be implemented by Verilog language instead of the DFT IP block in Figure 33.
Furthermore, the DACs available on the red pitaya board will be used to control the four
voltages variables (vg1, vg2, VLEAK, VRFR) for the adaptation purpose explained in the
previous section.

Optimization 
Algorithm + DFT/

WTA 

Control 
Module

USB/
Ethernet

DUT
 AXI 

Red Pitaya Board

DAC

ADC

Figure 33. Demonstration board for the designed chip prototype.

Due to the current global chip shortage issue, the chip delivery is delayed; hence, the
test result is not yet available. The red pitaya-based demonstration board is prepared for
the chip evaluation, as shown in Figure 34a. To replace the breadboard, the PCB design is
completed to attach the chip, which shall be housed using a chip zip socket provided by 3M
incorporation [199] for the CPGA100 package type as shown in Figure 34b. An appropriate
PCB with textool socket will extend the Red Pitaya system to complete the demonstration
board, which will be used to explore the following possibilities on our prototyping chip:

• Investigation of the intrinsic optimization of our InAmp to retrieve extrinsic results
for the manufactured instance.

• Applying the concept of robust optimization (archive-based and surrogate-based) for
addressing the observer imperfections issues.

• Exploration of the LPF indirect performance optimization by using non-intrusive
PVT sensors.

• Characterizing the basic operation of the neuron and synapse on the physical hard-
ware level.

• Exploring the supervised and unsupervised optimization possibilities for the ACD
and the SA-SRC.
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Figure 34. (a) Photo of demonstration board with chip zip socket, (b) Layout of PCB design for
13 × 13 chip zip socket for the demonstration board.

6. Conclusions

The interface to the real-world by sensors and suitable sensor electronics is of paramount
importance for both conventional information processing and computing systems as well
as innovative computing systems, e.g., following bio-inspiration from nervous systems or
neural networks. The ongoing remarkable rapid advance in integration technologies is
giving leverage both to computing systems as well as to an increasing diversity of sensors
and sensor systems. Thus, both genericness and robustness as well as efficiency in the
interfacing of sensors under the constraints of metrology is required.

The work reported in this paper targets on providing generic, sufficiently accurate,
and robust analog front-ends (AFE) for general and intelligent (AI) application systems.
Aspired robustness and flexibility are added by self-X (or self-*) properties to AFEX units
as the lowest level of a self-X-hierarchy in an advanced application system design. This is
pursued in two approaches, the first follows conventional amplitude-domain information
representation and processing. The focus in this part of the work is on improvements of
circuit assessment and observer robustness, as well as the employed supervised optimiza-
tion techniques and the finding of the minimum of most sensitive and useful tuning knobs.
The second follows pulse or spike domain information representation, largely inspired
by nervous systems and neural networks, and introduces the concept of Spiking AFE
with self-X properties (SAFEX) by employing both unsupervised neural adaptation and
supervised adaptation of system parameter as in the first conventional approach. This is
exemplified for the case of an adaptive spike-to-digital converter.

The concepts presented in this work, have been embodied in cells designed in XFAB
0.35 µm xh035 CMOS technology and carefully validated. Extrinsic optimization runs have
been carried out, confirming the chosen approach. Essential cells for both AFEX and SAFEX
have been combined in a cost-effective prototype chip. For AFEX, two fully differential
CFIAs (internal and external offset calibration) and an anti-aliasing filter including the
biasing circuits are implemented. It also incorporates the design of on-chip non-intrusive
sensors for PVT monitoring to enable cost-effective indirect measurement. A memory size
of 66 bytes is designed using SIPO registers to support hot-swappable programming for
the in situ configuration/calibration of the AFEX cells. For SAFEX, we implemented the
4-bits SA-SRC to perform the main functionality of the signal conditioning in the spike
domain. Furthermore, the three basic cells of the SA-SRC, i.e., neuron, synapse, and ACD
are integrated on the chip to examine their characterization independently. The total chip
area is 10.89 mm2 consisting of 62,921 transistors and 100 pads. The pad frame is designed
to fit the chip to the CPGA100 package with 61 digital I/O pads, 28 analog pads and
11 power pads. The chip sample is submitted for handling and ensuing manufacturing, but
unfortunately will be returning with three months delay in about October. A demonstrator
system, including intrinsic optimization of the AFEX and SAFEX components, has been
prepared. All extrinsic activities are scheduled to be repeated in the intrinsic mode with one
or several chip instances and under varying environmental conditions.
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In future work, depending on the test result analysis, after possible redesign to cells,
following USIX 1 and 2, a complete USIX 4.0 chip is aspired for the conventional amplitude
domain representation with the new concepts and cells. For the SAFEX, as a mid to long
term research activity with the potential to be technology agnostic, a complete adaptive
sensor-to-spike and spike-to-digital design will be pursued for the selected sensor(s).
Extensions to complete generic as well as robust and adaptive SAFEX will be pursued in
ongoing and following research.
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SDC Spike-to-digital converter
ITDs Interaural time differences
SA-SDC Adaptive spike-to-digital converter
SA-SRC Self-adaptive spike-to-rank coding
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