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Integrated single-cell RNA sequencing analysis reveals distinct
cellular and transcriptional modules associated with survival in
lung cancer
Li Zhang1, Yiming Zhang 2, Chengdi Wang1, Ying Yang1, Yinyun Ni1, Zhoufeng Wang1, Tingting Song1, Menglin Yao1, Zhiqiang Liu1,
Ningning Chao1, Yongfeng Yang1, Jun Shao1, Zhidan Li2, Ran Zhou2, Li Chen2, Dan Zhang2, Yuancun Zhao2, Wei Liu2, Yupeng Li2,
Ping He2, Jing-wen Lin2, Yuan Wang 3, Kang Zhang4✉, Lu Chen 2✉ and Weimin Li 1✉

Lung adenocarcinoma (LUAD) and squamous carcinoma (LUSC) are two major subtypes of non-small cell lung cancer with distinct
pathologic features and treatment paradigms. The heterogeneity can be attributed to genetic, transcriptional, and epigenetic
parameters. Here, we established a multi-omics atlas, integrating 52 single-cell RNA sequencing and 2342 public bulk RNA
sequencing. We investigated their differences in genetic amplification, cellular compositions, and expression modules. We revealed
that LUAD and LUSC contained amplifications occurring selectively in subclusters of AT2 and basal cells, and had distinct cellular
composition modules associated with poor survival of lung cancer. Malignant and stage-specific gene analyses further uncovered
critical transcription factors and genes in tumor progression. Moreover, we identified subclusters with proliferating and
differentiating properties in AT2 and basal cells. Overexpression assays of ten genes, including sub-cluster markers AQP5 and
KPNA2, further indicated their functional roles, providing potential targets for early diagnosis and treatment in lung cancer.
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INTRODUCTION
Lung cancer remains the leading cause of malignant tumor-
related mortality worldwide, its etiological and biological hetero-
geneity contributes significantly to therapeutic failure and further
unfavorable survival outcomes.1 Lung cancer can be classified into
non-small cell lung cancer (NSCLC) and small cell lung cancer
(SCLC). NSCLC, accounting for 85% of the lung cancer cases,
predominantly consists of lung adenocarcinoma (LUAD) and lung
squamous carcinoma (LUSC), two subtypes defined according to
an integration of clinical and histologic features of tumors.2,3

Genetic, epigenetic, and microenvironmental characteristics
could influence cellular programs and lead to disparate disease
pathogeneses of NSCLC. Uniform therapeutic strategies might fail
due to the underlying heterogeneity, resulting in a poor
prognosis. There is a dichotomy between the therapeutic
response in LUAD and LUSC patients, indicating distinct cellular
compositions in these two subtypes of tumors. However, the
differences in heterogeneity and cellular compositions between
LUAD and LUSC and to what extent these cellular compositions
impact patients’ survival remains largely unexplored. Therefore, a
better understanding of the various sources of heterogeneity in
lung cancer, regarding genetic, epigenetic, cellular, and micro-
environmental characteristics, is a critical goal with broad
implications for therapy.

Single-cell RNA sequencing (scRNA-seq) has emerged as a
powerful method to comprehensively explore the cell-type
composition of NSCLC resection specimens, thereby overcoming
the technical barriers that have hampered understanding of intro-
NSCLC heterogeneity. Previous studies exploring lung cancer at
the single-cell level have primarily focused on immune and
infiltrating cell populations4 or have specifically targeted a subset
of readily identifiable cell types.5 A recent study used bulk RNA
sequencing to characterize 305 East Asian LUAD patients
genetically and transcriptionally,6 but did not characterize tumor
cell types due to a lack of information on cell composition at
single-cell resolution, leaving open the question of what cell types
comprise the tumor bulk. While scRNA-seq can address those
challenges, it is hindered by limited sample size and high financial
cost. Combining the scRNA-seq results of a limited number of
representative tumors with existing bulk data from large cohorts
can help decipher the differences between two major subtypes
of NSCLC.
Here, we used an integrative approach to understand NSCLC

heterogeneity, combining scRNA-seq from patients with LUAD
and LUSC at multiple tumor stages, as well as public bulk RNA-seq,
whole-genome sequencing (WGS), and ATAC-seq datasets. Our
scRNA-seq identified various cell types known to be present in
lung cancer, including type II alveolar cells (AT2), basal cells, and a
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variety of myeloid and lymphoid cells. We revealed distinct cellular
compositions in major lung cancer subtypes and investigated
identified poor-prognosis-related subgroups. Gene module analy-
sis and overexpression experiments revealed several important
genes that may play functional roles in the early stage of tumor
progression or subclusters of AT2 and basal cells, paving the way
for potential early-stage interventions against lung cancer.

RESULTS
Constructing a multi-omics atlas for LUAD and LUSC
To comprehensively interrogate the cell-type composition and
transcriptional profiles of NSCLC, we generated a single-cell and
multi-omics atlas for LUAD and LUSC. In total, 52 fresh surgical
resections of lung tumor and adjacent tissues were obtained
from 32 untreated patients at West China Hospital (WCH),
including 11 paired primary and adjacent LUAD samples, 8
unpaired LUAD and 2 adjacent samples, and 9 paired primary and
adjacent LUSC patients and 2 additional primary LUSC samples, in
a total of 21 lung adenocarcinoma and 11 squamous carcinoma
patients (Fig. 1a, b, Supplementary Fig. 1a, and Supplementary
Table 1). To perform scRNA-seq, cells were dissociated, sorted for
viability, and profiled using 10X Genomics protocol. A total of
220,716 cells passed the quality control, with 127,593 cells
originated from tumor tissues, and 93,123 from corresponding
adjacent lung tissues. In all, 17,277 genes were detected with
1424 genes per cell on average, highlighting the high quality of
our dataset. We also integrated our previous datasets including
whole-genome sequencing (WGS), ATAC-Seq, and bulk RNA
sequencing from an independent cohort of 45 lung cancer
patients (Fig. 1b) and 4 benign lung tumor patients.7 Taken
together, we constructed a multi-omics atlas for LUAD and LUSC
at both bulk and single-cell resolution.
To define each cell type, we used Seurat8 and Harmony9 to

process a total of 293,432 cells from ours and a previous study5 for
quality control, normalization, batch effect correction, and
clustering. All cells were visualized by Uniform Manifold Approx-
imation and Projection (UMAP)10 and clustered to specific cell
types based on the expression levels of signature genes with
known populations11 and every sample showed differences in cell
composition (Supplementary Fig. 1b). We identified 17 major cell
populations across tumor and adjacent tissues in LUAD and LUSC
(Fig. 1c, d and Supplementary Table 1), with an average of 5050
unique transcripts per cell type (Fig. 1e). All cell types were further
validated and refined by SingleR12 (Supplementary Fig. 1c, d) and
AUCell13 (Supplementary Fig. 1e). The classified cell populations
could be divided into two groups, the non-immune cells,
including basal cells (Basal), alveolar type II cells (AT2), alveolar
type I cells (AT1), ciliated cells (Cilia), club cells (Club), endothelial
cells (EC), fibroblasts (Fib), and neuroendocrine cells (NE). The
remaining cells were nine immune cell populations comprising
the tumor immune microenvironment, including B cells (B),
CD4+ T cells (CD4), CD8+ T cells (CD8), dendritic cells (DC),
granulocytes (Gran), mast cells (Mast), macrophages (Mφ), natural
killer cells (NK), and regular T cells (Tregs) (Fig. 1f). Finally, we
assigned each cell population to a tumor stage based on its
originated patient categorized by the 8th edition of TNM
classification of lung cancer.14 Cells from the early stage (stages
I and II) accounted for 63.2% of the cells in LUAD, whereas ~87%
of LUSC cells came from early-stage samples (Fig. 1g). Together,
our scRNA-seq analyses uncovered multiple immune and non-
immune cell types in both LUAD and LUSC, revealing intratumor
heterogeneity and the tumor microenvironment in different
subtypes of lung cancer.

Charting malignant cells heterogeneity in NSCLC
To interrogate both inter- and intratumoral heterogeneity on
malignant cells of NSCLC, we first classified cells into malignant

and non-malignant cell types (Fig. 2a). For each cell type, we
inferred copy-number variants (CNV) based on the average
expression of 100 genes in each chromosomal region using
inferCNV.15–19 For example, we identified large-scale amplifica-
tions in AT2 cells of LUAD patients, such as CD74, RPS14, GPX3,
TNIP1 of chr5, CSNK1D, CD7, CYBC1, NARF, FPXK2, TBCD of chr17,
and MED16, CFD, PTBP1 of chr19 (Fig. 2b), consistent with the
hallmarks from WGS of WCH7 and TCGA datasets.20

To explore the propensity of malignant cells in all non-immune
cell types, we compared the ratio of malignant cells to non-
malignant cells. The dominant malignant cells in LUAD and LUSC
were AT2 and basal cells, respectively (Fig. 2c, d), suggesting the
importance of AT2 and basal cells in the formation of
heterogeneity of lung cancer. According to the inferred CNVs,
we divided each cell type into subclones (Fig. 2e, f). To further
identify the key driver genes and potential therapeutic targets of
each sub-clone, we calculated the amplification of the genes with
critical clinical values, including EGFR, KRAS, BRAF, ERBB2, and MET
(Supplementary Fig. 2a and Supplementary Table 2). For example,
we revealed the peaked amplification of EGFR in subclones 2 and
7 of AT2 (Fig. 2g) and sub-clone 1 of AT1 cells, sub-clone 5 of NE
cells (Supplementary Fig. 2a). The majority of the cells from these
subclones are from LUAD patients, consistent with the notion that
AT1 could be renewed by mature AT2 cells through the EGFR-
KRAS pathway21 (Fig. 2g). Furthermore, targeted therapies have
shown better progression-free survival (PFS) and higher objective
response rate (ORR) compared with conventional cytotoxic
therapy, and EGFR amplifications were found to be related to
the sensitivity to TKI therapies.2 We also found that MET
amplification was enriched in subclones 3 and 6 of basal cells,
which were mainly from LUSC patients (Fig. 2h), in line with the
role of MET as a prognostic of LUSC could promote a progressive
tumor phenotype.22 Taken together, our results suggested that
specific subclones of AT2 and basal cells might be the potential
therapeutic targets of EGFR and MET in lung cancers, which could
further enhance our understanding of the different responses in
clinical therapy.

Identifying recurrent cellular composition modules
To comprehensively represent the intratumoral heterogeneity
among the malignant cells, we identified cellular compositions in
scRNA-seq and then sought to discover the recurrent cellular
composition modules in large cohorts from bulk RNA-seq. We first
hierarchically clustered the samples based on the compositions of
all non-immune cells in LUAD and LUSC in scRNA-seq. Notably,
LUAD and LUSC tended to cluster together, indicating that these
two subtypes had distinct cellular compositions (Fig. 3a).
To validate this observation, we sought to assess the cell

compositions from large cohorts with tumorous and normal lung
bulk RNA-seq, including TCGA (n= 1116), WCH RNA-seq (n= 49),
East Asians group (n= 260), CHOICE (n= 490), and GTEx (n= 427)
(Supplementary Table 3). Since the bulk samples consisted of a
heterogeneous mixture of various cell types, we developed a
deconvolution workflow inferCC (infer cellular composition based
on scRNA-seq expression signatures) to evaluate the relative
fractions of diverse cell types (Fig. 3b, see “Methods”). We found
that the cell compositions were highly consistent despite different
sources of bulk RNA-seq in LUAD, LUSC, and normal lung (Pearson
correlation r > 0.8, Fig. 3c). Indeed, the cell composition could
distinguish the LUAD and LUSC in WCH (Fig. 3d), TCGA (Fig. 3e),
and CHOICE (Supplementary Fig. 2b), and the LUAD and adjacent
tissue in an East Asian cohort (Supplementary Fig. 2c). We next
confirmed the reliability by the area under the curve (AUC)
analysis of our deconvolution method. Based on these cell
compositions, we were able to correctly classify the lung cancer
subtypes with high accuracy using a support vector machine
(SVM) (Fig. 3f, AUC= 0.89, SD= 0.01), suggesting the cellular
compositions deconvoluted by inferCC could be used to classify
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the lung cancer patients. Taken together, our analyses revealed
that LUAD and LUSC harbored distinct cellular compositions,
which played important roles in forming their heterogeneity.
To prioritize the cell types most responsive to biological

perturbations in our scRNA-seq data, we performed Augur23

among LUAD, LUSC tumor tissues, and corresponding adjacent
samples. Notably, the non-immune cells showed higher rankings
(using AUC as proxy) than immune cells when comparing LUAD
to LUSC. We further identified that basal is one of the main
sources of heterogeneity between LUAD and LUSC, whereas
fibroblast and NE are the key cell types that distinguish two
tumor subtypes from their adjacent tissues, indicating that these
cell types are of importance in NSCLC (Fig. 3g). Next, we sought
to identify subgroups of LUAD and LUSC based on their cellular
compositions. In LUAD, we identified four groups: AT2-high, Fib-
high, AT1-high, and NE-high (Fig. 3h) in our scRNA-seq. These
four subtypes were further confirmed using the TCGA cohort
(Fig. 3i). Notably, the patients classified as Fib-high were related
to poor prognosis in LUAD in TCGA (P= 0.016, log-rank test, Fig.
3l), while other groups were not related to the survival
(Supplementary Fig. 2d–f). In LUSC, we discovered four main
groups: basal-high, fib-high, AT2-high, and NE-high (Fig. 3j) in
our scRNA-seq, which were validated using the TCGA cohort
(Fig. 3k). Importantly, we found that the AT2-high (P= 0.0043,
log-rank test, Fig. 3m), basal-high (P= 0.0038, log-rank test,
Supplementary Fig. 2g) and low compositions of basal-fib (P=
0.027, log-rank test, Supplementary Fig. 2h), could contribute to
poor survival of LUSC, whereas the Fib-high (Supplementary Fig.
2i) and hybrid (Supplementary Fig. 2j) was not related to the
survival. Therefore, we developed a deconvolution method that
could be applied to patient classification for bulk RNA-seq, and
our results indicated that specific cellular compositions may
have important potential values in predicting the prognosis of
lung cancer.

Modified cell–cell interactions of LUAD and LUSC
Altered intercellular interaction plays an important role in tumor
progression. To elucidate the redistribution of each kind of
ligand–receptor interactions in two subtypes of NSCLC, we
performed cell–cell interaction (CCI) analysis and calculated the
numbers of receptor–ligand parings in each cell type based on
the CellPhoneDB.24 The intercellular interactions of non-immune
cell types including AT2 and Fib cells were shifted between
LUAD and LUSC (Fig. 4a). In contrast, cellular interactions of
immune cells showed no obvious variation between two
subtypes. Our results highlighted the difference of cell–cell
interactions between immune and non-immune cells, and two
subtypes of NSCLC.
Given the Fib-high in LUAD, AT2-high, and Basal-Fib hybrid in

LUSC were related to poor prognosis, we next focused on AT2
and fibroblasts in terms of their CCI of LUAD and LUSC. Our
results showed that distinct increases CCI in both LUSC and
LUAD comparing to their adjacent tissues (Fig. 4b, c).
Furthermore, the GO annotation indicated that the ligand and
receptors between AT2, Fib, and Mφ were enriched in leukocyte
migration, activation, and peptidyl-tyrosine-related pathways
(Fig. 4d, e). For instance, we identified the receptor–ligand
parings between tyrosine kinase receptors TYRO3 and GAS6, the
immunosuppressive receptor LILRB2 and HLA-F, were specifi-
cally occurred in the AT2 cells of LUSC (Fig. 4f), whereas the
interaction between AXL and GAS6 was observed in fibroblasts
in LUAD but not in their adjacent tissues (Fig. 4g), consistent
with their potential functions in NSCLC. Indeed, a previous
study has revealed that the TYRO3 and GAS6 may promote the
Mφ polarization to the tumor-promoting M2 phenotype,25 while
LILRB2 was also related to the in NSCLC can promote the
polarization of tumor-infiltrating myeloid cells to the inflam-
matory phenotype.26 Our results revealed the increased CCI in

both LUAD and LUSC and some receptor–ligand parings may
play functional roles in NSCLC.

Malignant- and stage-specific gene alterations
To unveil the association between gene expression variations
and intra/inter-tumor heterogeneity, we performed differential
expression analysis between malignant and non-malignant cells
for each cell type in LUAD and LUSC. Compared with non-
malignant cells, thousands of differentially expressed genes
(DEGs) were identified in malignant cells. Notably, AT2, basal, NE
cells harbored the highest numbers of up or downregulated
genes in the malignant cells (Fig. 5a and Supplementary Tables 4
and 5). To identify the common upregulated DEGs shared
between two subtypes, we compared the percent of subtype-
specific and common DEGs in different cell types. For instance,
DEGs of AT2 and NE cells had only 20% and 8.93% common
genes between LUAD and LUSC (Fig. 5b). We further used the cell
specificity index tau27 and revealed that the upregulated DEGs of
non-immune cells had high cell-type specificity (mean tau= 0.76
in LUAD, and 0.73 in LUSC). These results indicated that the non-
immune cells were divergent between LUAD and LUSC and the
DEGs were highly cell-type specific.
To better understand the molecular mechanism of AT2 and

basal underlying the pathogenesis of lung cancer, we con-
structed a TF regulatory network based on upregulated genes.
The lineage-specific tumor suppressor NKX2-128 was identified
as one of the key regulators of AT2 cells in LUAD (Fig. 5c and
Supplementary Table 6), consistent with its amplification in 10%
of LUAD.29 Our network revealed that S100A13, a gene involved
in calcium-binding and cell cycle progression,30 is regulated by
NKX2-1 (Bayesian score= 5.76, Supplementary Table 6). Indeed,
S100A13 had higher ATAC-seq peaks around the transcription
start site (TSS) in LUAD compared to benign solitary pulmonary
nodules (BSPN), consistent with its higher expression in
malignant AT2 (Fig. 5d). The network analysis in LUSC identified
key TFs including KLF5 and MYC in basal cells (Supplementary
Fig. 3a), consistent with its amplification and overexpression in
lung cancer patients, acting as the prognostic markers of early-
stage tumors.29,31

Next, we performed the Gene Ontology (GO) and Disease
Ontology Semantic and Enrichment (DOSE) analyses for
upregulated genes of malignant cells. In LUAD, AT2 cells were
enriched with genes from responses of unfolded protein,
immune cells, and regulation of mRNA metabolic process
(Supplementary Fig. 3b). In LUSC, the basal cells were enriched
with immune response, protein refolding, type I interferon,
leukocyte, and cell activation (Supplementary Fig. 3c). Interest-
ingly, we observed that a common enriched pathway of AT2,
club, NE cells, and bulk RNA-seq was the non-small cell lung
carcinoma in LUAD (Supplementary Fig. 3d), suggesting that the
high relevance of multiple cell types in non-small cell lung
cancer. Notably, compared to bulk RNA-seq, scRNA-seq
identified more cell-type-specific genes enriched in non-small
cell lung carcinoma pathways in both LUAD (Supplementary
Fig. 3e) and LUSC (Supplementary Fig. 3f), highlighting the
potential cell-type/stage-specific effects. Our results demon-
strated that in-depth interpretation of gene expression data
from scRNA-seq comparison could provide a more comprehen-
sive understanding of the transcriptional diversification in LUAD
and LUSC.
To investigate the tumor-stage-specific regulation, we per-

formed the differential gene expression analysis (DEG) for
each cell type. AT2, basal, NE and fibroblast cells had higher
numbers of DEGs comparing to other non-immune cells
(Supplementary Fig. 3g and Supplementary Table 7), consistent
with the pattern of that higher number of non-immune
malignant cells. We further constructed gene modules in AT2
(LUAD) and basal (LUSC) cells, which revealed that many tumor-
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related genes in cells from stage-I patients, including PIGR,
AZGP1, BTG2, EGR1, and LMO3 in AT2 cells from LUAD (Fig. 5e),
and AQP3, SPHK1, PPT1, and PDIA6 were found in basal cells
from LUSC (Fig. 5f).
Finally, we explored the potential functions of the upregulated

gene S100A13 in malignant cells and stage-I upregulated gene
AZGP1 of AT2 in LUAD and PPT1 of basal cells in LUSC.

S100A13 is a member of S100 calcium-binding protein,
functioning in cell cycle progression and membrane permeabil-
ity.30 AZGP1 plays an important role in lipid mobilization and
contributes to malignancy-related cachexia and PPT1 encodes a
small glycoprotein involved in lipid catabolism by removing
thioester-linked fatty acyl groups from cysteine residues. We first
validated their protein expression levels by using
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immunofluorescence staining of lung tumors and normal tissues
(Supplementary Fig. 4a, c, e). Furthermore, overexpression of
S100A13 (P= 7.29e-4, t test), AZGP1 (P= 6.31e-4, t test), and PPT1
(P= 1.18e-4,
t test), significantly increased the proliferation of lung cancer
H1299 cells (Fig. 5g). In addition, transwell assays also confirmed
that AZGP1, S100A13, and PPT1 enhanced migration and invasion
capacity of H1299 cells (Fig. 5h–j and Supplementary Fig. 4b, d, f),
suggesting the oncogenic role of these genes. Taken together, our
results identified transcriptomic alterations in LUAD and LUSC, and
revealed the potential functions of AZGP1, S100A13, and PPT1
genes in tumorigenesis that were identified in early-stage DEGs,
indicating them as potential biomarkers and targets for early
diagnosis and therapy.

Distinct characteristics of AT2 subclusters in LUAD
To further understand the subclusters of the critical AT2 cells in
LUAD, we focused on the 21,465 malignant AT2 cells and their
five subclusters. Interestingly, these clusters tended to be
stage-specific. Clusters 1, 2, and 4 included cells mostly from
patients with early-stage (stage I and II) lung cancer, whereas
clusters 3 and 5 were dominated by cells from advanced-stage
(stage III and IV) patients (Fig. 6a). To illustrate the transcrip-
tional trajectory in AT2 cells, we performed a pseudotime
analysis using URD.32 Notably, the inferred pseudotime results
reflected stage from I to II, and then to III, with 280 cells from
stage IV in between (Fig. 6b, c). These results were in line with
the stage-specific gene modules (Fig. 5e), suggesting a
transcriptomic divergence of AT2 cells between early- and
advanced-stage patients.
To assess the biological function of each sub-cluster, we

compared the marker genes of each cluster to those from a
single-cell atlas of the human lung,11 in which genes were
classified into the AT2 general and AT2-signaling selective (AT2-s),
AT1 general marker genes, and sub-cluster-specific genes.
Interestingly, we observed some concordant expression patterns
between the normal and malignant AT2 cells. The AT2 general
markers showed broad expression in all clusters, while other
clusters exhibited a unique repertoire of cluster-specific markers
(Fig. 6d and Supplementary Fig. 5a, and Supplementary Table 8).
For instance, cluster 4 had the highest expression of AGER33 and
CAV1,34 which are the AT1 markers, suggesting that these cells
may undergo a transition from AT2 to AT1 cells. Notably, AT2-
signaling (AT2-s) genes, including a ligand of WNT pathway
(WNT5A), regulatory protein (CTNNBIP1) co-receptor (LRP5) and
transcription factor (TCF7L2), was reported to be homologous to
the rare subpopulation of WNT-active AT2 cells and might be

alveolar stem cells.11 Clusters 1, 2, 3, and 4 tended to have high
expression of AT2-signaling genes, while cluster 5 had the lowest
expression of AQP5, AXIN2, and GSTA1 (Fig. 6d). Indeed, when
comparing the stemness scores among clusters, cluster 5 showed
a relatively lower percentage of cells with stemness potential
when comparing with other clusters (Fig. 6e), suggesting that cells
from different tumor stages may have distinct compositions of
cells with stemness potential.
Next, we compared the gene expression levels of prognostic

biomarkers, drug targets (Fig. 6f), and targetable mutations
(Fig. 6g) among these subclusters. They had relatively higher
expression in cluster 5, indicating that our current prognostic
markers and drugs were limited on genes from the differentiat-
ing cells from the advanced stage but not targeting the
proliferating clusters at the early stage of the tumor.
To investigate the functional implications of the mark genes

from proliferating clusters, we assessed seven genes, including
general marker (ANXA1), cluster 1 (AQP5, ATF3, AZGP1, and
CHI3L1), cluster 2 (SPINK1), and cluster 4 (EFF1A2). ANXA1 was
highly expressed in all clusters. We experimentally validated
that ANXA1 protein was expressed in LUAD tumor and normal
tissues by immunofluorescence staining (Supplementary Fig.
5b), and overexpression of ANXA1 indicated it might promote
tumor by enhancing proliferation (Supplementary Fig. 5c, P=
2.94e-3, t test), migration, and invasion ability (Supplementary
Fig. 5d, e) in lung cancer H1299 cells, consistent with its
function as an intercellular transport protein and interactor in
cell division, migration and plasmin production.35 More
importantly, for the cluster-specific genes, we revealed that
immunofluorescence staining of AQP5, as well as the AT2
marker SPB, were upregulated in AT2 cells of LUAD tumors
tissues compared with normal controls (Fig. 6h), and over-
expression of AQP5 in lung cancer H1299 cells enhanced
proliferation (Fig. 6i, P= 1.13e-4, t test) and high level of AQP5
was related to better prognosis (Fig. 6j, P= 0.045), and invasion
ability of lung cancer cells, suggesting a tumor-promotion role
of AQP5 (Fig. 6k, l), in line with its role of promoting
tumorigenesis by inducing the epithelial–mesenchymal transition
(EMT) process.36 Similarly, other markers of cluster 1 (ATF3, AZGP1,
and CHI3L1), cluster 2 (SPINK1), and cluster 4 (EFF1A2) were revealed
to promote tumorigenesis by overexpression experiments (Supple-
mentary Fig. 5f–h and Supplementary Fig. 6a–l). In sum, we
uncovered clusters in malignant AT2 cells with distinct features
with some resembled proliferating cells (clusters 1-4) while other
(cluster 5) tended to be differentiating from patients in stage III, and
the experimentally validated six marker genes may be of potential
clinical value.

Fig. 6 Subclusters and pseudotime analysis of the malignant AT2 cells in LUAD. a UMAP showed subclusters of 21,465 malignant AT2 cells in
LUAD, with pie charts illustrated the fraction of each stage in each sub-cluster. b Pseudotime analysis using diffusion map of malignant AT2,
colored with different stages. The diffusion map colored with pseudotime was plotted on the top. c Density of the four stages in the inferred
pseudotime score. Stages I, II, and III showed a relatively distinct pattern, while stage IV that with fewer patients was placed between stages I
and II. d Dot plot showed the average expression level (the intensity of blue) and percentage of expressed cells (the dot size). Expression of
sub-cluster makers and indicated AT2, and AT2 cell markers and percent of cells in population with detected expression (dot size). General
markers of AT2 (yellow), markers of AT1 (green), and markers of AT2-signaling selective (red) were colored. e UMAP plot showed the log2
transformed stemness score calculated using the mean level of expression of AT2-signaling markers. The sub-cluster 1, 2, and 3, where AT2-
signaling-like markers were highly expressed, showed a higher stemness score. f The expression status of potential drug targets and potential
prognostic biomarkers of LUAD. The drug targets were labeled in green, prognostic biomarkers colored in yellow, and the common markers
from both sets were colored in black. g The expression patterns of targetable mutations (red) and potential drug targets of EGFRmutant (blue)
of LUAD. h The expression of AQP5 in LUAD. Immunofluorescence staining indicated the location of AQP5 level in lung cancer cells (green), SPB
(Surfactant protein B) was the marker of lung adenocarcinoma cells (red); AGER (advanced glycosylation end-product specific receptor) was
the marker of AT1 cells in normal lung, the cell nucleus was co-stained with DAPI (blue); Scale bar, 50 μm. i The cell viability of H1299 cells after
overexpression of AQP5. Cell viability detection was completed by CCK8 detection. The P value was calculated using t test. j Kaplan–Meier
survival curves for patients with LUAD (n= 513), stratified for patients highly expressed AQP5 and rest patients. P value was calculated using
the log-rank test. k The invasion and migration of AQP5 overexpression H1299 cells. Transwell assays were conducted for cell migration
(without matrigel) and invasion abilities (with matrigel). Scale bar, 100 μm. l The boxplot shows the number of invasion and migration cells of
AQP5 overexpression H1299 cells. The P value was calculated by Student’s t test

Integrated single-cell RNA sequencing analysis reveals distinct cellular. . .
Zhang et al.

10

Signal Transduction and Targeted Therapy             (2022) 7:9 



Divergent subclusters of basal cells in LUSC
Basal cells were shown to be one of the key cell types in LUSC
based on cell module analyses. To characterize the subclusters of
basal cells, we focused on the 8202 malignant cells which can be
divided into seven clusters. Clusters 1, 3, 4, and 7 predominantly
consisted of basal cells from early-stage (stage I and II) patients,
whereas clusters 5 and 6 were a mixture of different stages, and
cluster 2 was all from stage III (Fig. 7a). In the pseudotime analysis,
the cells from stage II were deviated from those from I and III (Fig.
7b, c), in line with stage II had the maximum number of stage-
specific genes (Fig. 5f).

To understand the biological properties of each cluster, we
compared our cluster-specific genes (Fig. 7d, Supplementary Fig.
7a, and Supplementary Table 8) to those from a human lung cell
atlas.11 The basal general markers were broadly expressed in all
clusters, while the markers of proximal basal (Bas-px) were highly
expressed in cluster 7, and those of differentiating basal (Bas-d)
were selectively expressed in cluster 3 (Fig. 7d). Notably, cluster
4 selectively expressed markers from proliferating basal (Bas-p),
including MKI67, TOP2A, PBK, and GTSE1. We further utilized the
stemness and cell cycling scores and revealed that cluster 4 had
the highest stemness score and was mainly classified as cycling
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Fig. 7 Subclusters and pseudotime analysis of the malignant basal cells in LUSC. a UMAP of 8016 malignant basal cells from LUSC, colored
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e UMAP plot showed the log2 transformed stemness score calculated using the mean level of expression of Bas-p markers. f Heatmap showed
the cluster scores of all non-cycling cells (left) and cycling cells (right). Within each group, the cells were defined by maximal score, for cells
mapping to one cluster. g The expression of KPNA2 in LUSC. Immunofluorescence staining indicated the location of KPNA2 level in lung cancer
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cells (Fig. 7e, f), indicating this cluster might have the character-
istics of proliferating cells.
Finally, we experimentally investigated the cluster-specific

KPNA2 (karyopherin alpha 2) for cluster 4 and PPT1 for cluster 7
(described in Fig. 5 as stage-I-specific gene). Increased expression
of KPNA2 protein was observed in tumor tissues by immuno-
fluorescence staining in comparison to normal lung tissues
(Fig. 7g). Overexpression of KPNA2 revealed its tumor-promotion
role by increasing proliferation (P= 1.02e− 4, t test) (Supplemen-
tary Fig. 7b), migration and invasion of lung cancer H1299 cells
(Supplementary Fig. 7c, d). Taken together, our results revealed
clusters of malignant cells that resembled normal lung cell
subclusters and a cluster (cluster 4) was with stem-like proliferat-
ing features in malignant basal cells, and its maker KPNA2 might
promote tumor proliferation in LUSC.

DISCUSSION
Inter and intratumor heterogeneity is a key factor contributing to
poor prognosis and variation of therapy applications between
LUAD and LUSC. The single-cell analysis represents a viable
strategy to investigate heterogeneity and characterize recurrent
cellular compositions, as well as tumor subtype- and stage-specific
transcriptomic landscapes. However, extensive comparisons of
heterogeneity in LUAD and LUSC are still limited, which is critical
for precision therapy of lung cancer. Here, we performed scRNA-
seq and multi-omics profiling of lung cancer from multiple LUAD
and LUSC patients. To facilitate the community to use our dataset,
we further built a website (http://lungcancer.chenlulab.com)
providing interactive query gene expression, clustering of all the
cell types and data downloads (Supplementary Fig. 7e).
CNVs were one of the sources in driving tumor progression and

acquiring therapeutic resistance.37 Based on the inferred CNVs,
malignant AT2 cells and basal cells from LUAD and LUSC could be
divided into multiple subclones. Amplification of EGFR in LUAD
and MET in LUSC were unevenly distributed in these subclones.
While how the clinical implication of these copy-number
alterations in malignant cells remained to be further explored,
our single-cell CNVs profiles suggest that different subclones may
have different responses to targeting treatment.
We further developed a deconvolution method for bulk RNA

from large cohorts and found recurrent cellular compositions from
both scRNA-seq and deconvoluted bulk RNA-seq. Importantly, we
revealed that high percentages of Fib and AT2 contributed to poor
survival of LUAD and LUSC, suggesting the potential roles of
cellular compositions in predicting poor prognosis of lung cancer.
Our study included samples from tumor and adjacent tissues of

patients from different tumor stages. Based on genes identified
from the malignant-, stage-, and sub-cluster analyses, we
experimentally demonstrated that some genes may play func-
tional roles in tumor progression. Our results consistently high-
lighted the importance of AT2 cells in LUAD, and their subclusters
showed proliferating and differentiating properties.AT2 cells,
playing pivotal secretory and regenerative roles to maintain the
homeostasis in the alveolus of the lung, are known to be a
heterogeneous population and maybe the cells of origin of
LUAD.38 Experimentally, this hypothesis is supported by immuno-
fluorescence staining and overexpression experiments in H1299
cells, linking eight candidate genes (AQP5, ATF3, AZGP1, ANXA2,
CHI3L1, EEF1A2, SPINK1, and S100A13) to their promoting roles in
LUAD. Indeed, high expression of AZGP1 was reported in multiple
malignancy tumors such as lung cancer and breast cancer, which
played a vital role in lipid mobilization and contributed to
malignancy-associated cachexia.39,40 And S100A13, a member of
the S100 family, was closely associated with aggressive invasive
phenotype and angiogenesis.30 Functioning in delivering
aminoacylate-tRNA to a site of the ribosome for decoding of

mRNA, EEF1A2 played an important role in translation and might
also act as an oncogene in lung cancer and pancreatic cancer.41,42

In LUSC, some subclusters of malignant basal cells showed
proliferating features. Their marker genes included PPT1 and
KPNA2. PPT1 was reported as a molecular target of chloroquine
derivates in melanoma cell lines, closely correlating with the poor
prognosis in several cancers, such as breast cancer, clear cell renal
cell carcinoma, head and neck squamous carcinoma, thyroid
cancer, and colon adenocarcinoma.43–45 KPNA2, a nucleocytoplas-
mic transporter known to be involved in many cellular processes
including differentiation, development, and immune response46

was also revealed to have the potential act as a stemness marker
in LUSC. Overexpression of KPNA2 was previously reported in
LUAD tissues and negatively regulated by a novel transcription
factor interferon regulatory factor-1 (IRF1).47,48 Our study revealed
that KPNA2 may be a proliferating marker and promote tumor
progression in LUSC.
Notably, our study revealed distinct stemness-related sub-

clusters in both LUAD (cluster 1 in AT2 cells) and LUSC (cluster 4
in basal cells). Cancer stem cells (CSCs) have been referred as
“tumor-initiating cells” or “sphere-forming cells”, which pro-
moted tumor progression by increasing tumor proliferation and
angiogenesis.49 Multiple pathways, including Hedgehog, Notch,
Nanog, Wnt and PI3K/AKT, are involved in CSCs-mediated
tumor promotion.50 Thus, CSCs are considered as therapy target
and yield an improved therapeutic window.51 Blocking CSCs-
related signaling pathways provides promising strategy in
tumor therapy, in a cohort of 40 glioblastoma patients who
received vismodegib treatment (targeting Hedgehog pathway)
for 7 days showed dramatically reduction of ex vivo CD133+
neutrosphere formation.52 In a 30 breast cancer patients with
locally advanced and metastasis, Notch pathway inhibitor MK-
0752 induced 11 patients had complete remission and 9
patients achieved stable disease.53 Besides signaling pathways,
other CSCs-related targets involved surface marker,54 CSC
microenvironment55 and aberrant metabolism.56 Our results
revealed two stemness-like clusters in AT2 and basal cells,
which could act as potential candidate targets in future
precision lung cancer treatment.
In summary, our study integrated multi-omics analysis to

establish a lung tumor atlas and extensively investigated the
heterogeneity variation between LUAD and LUSC, which could be
used as a valuable resource for understanding the unique
mechanism of tumor progression in lung cancer subtypes,
providing a blueprint for potential early-stage diagnosis and
treatment for lung cancer.
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