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A b s t r a c t .  Let X 1 , . . . ,  X~ be a random sample drawn from distribution func- 
tion F(z) with density function f(x) and suppose we want to estimate F(x). 
It  is already shown that  kernel estimator of F(x) is better  than usual empirical 
distribution function in the sense of mean integrated squared error. In this 
paper we derive integrated squared error of kernel estimator and compare the 
error with that  of the empirical distribution function. It  is shown that  the su- 
periority of kernel estimators is not necessarily true in the sense of integrated 
squared error. 
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1. Introduction 

Let X1, • • •, Xn be a r a n d o m  sample  drawn from unknown cont inuous distr ibu- 
t ion funct ion (d.f.) F(x) with densi ty funct ion f(x).  The  kernel densi ty  es t imate  
wi th  appropr ia t e  kernel funct ion k(t) and smooth ing  p a r a m e t e r  h (=  hn) 

l ~ k ( X - - h X '  ) : n ( / ) =  =, 

is a popu la r  nonpa rame t r i c  es t imate  of f (x)  which is in t roduced by Rosenbla t t  
(1956) and Parzen  (1962). 

In  the  case of d.f. F ( x ) ,  the  most  na tu ra l  e s t imator  is the  empir ical  d.f. 

n 

Fn(x) = ! I(x- x,), 
n i=1 

where I(x) -- 1 (0) for x _> 0 (<  0). Bu t  as is s t a ted  in Falk (1983), Fn(x) does 
not  take  into account  the smoothness  of F(x), i.e., the  existence of a densi ty f (x) .  
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Therefore many authors proposed kernel-type estimator ~'n(X) of the form 

F E Fn(x)  = ] n ( y ) d y =  -1 n K h ( x  - Xi), 
n i=1 

where 

i; K ( x )  = k ( y )dy  and K h ( x )  = K x . 

Throughout this paper, we assume that the kernel function k and K satisfy 
(A) k( t )  is a probability density such that it is bounded, symmetric around 

zero (k( t )  = k ( - t ) )  and has finite support. Thus, k( t )  satisfies 

F F F k( t )d t  = 1, t k ( t ) d t  = 0 and 0 < t~k( t )d t  - ~2 < ~ .  

The smoothing parameter h which tends to 0 as n tends to oc and the function k 
(or K) are to be chosen by the user. As pointed out by many authors, the choice 
of the kernel k is not very crucial but the choice of the smoothing parameter is 
a serious problem that has been addressed in the literature extensively. We also 
assume that the underlying d.f. F(x) satisfies 

(B) F(x) is twice continuously differentiable with bounded i f ( x )  and 
Var(f2(X)) < oc. 

Several properties of F,~(x) have been investigated. Nadaraya (1964), Winter 
(1973) and Yamato (1973) proved the uniform convergence of/Tn(x) to F(x) with 
probability one, Watson and Leadbetter (1964) proved the asymptotic normality 
of /~(x) ,  and Winter (1979) showed that Fn(X) has the Chung-Smirnov property. 
Moreover, Reiss (1981) proved that the relative deficiency of the empirical d.f. 
Fn (x) with respect to an appropriately chosen/~n (x) quickly tends to infinity as the 
sample size increases. Azzalini (1981) derived also an asymptotic expression (as n 
tends to c~) for the mean squared error of F~(x) and determined the asymptotically 
optimal smoothing parameter. See aiso Mack (1984) and Hill (1985). 

Swanepoel (1988), under the conditions (A) and (B), derived 

i_ ~ E { F n ( x )  - F ( x ) } 2 d F ( x )  
OG 

// // 1 2h _1C f 2 ( x ) d  x +  1 , 4  2 - ~n  ~2 ( f ' ( x ) ) 2 f ( x )  dx  
6rt oo oo 

+ o(hn -1 + ha), 

where C is defined as 

F C - t k ( t ) K ( t ) d t .  

He also proved the uniform kernel is optimal and derived optimal smoothing 
parameter in the sense of minimizing the mean integrated squared error (MISE) 
and asserted that the kernel-type estimator ~'n(X) is asymptotically more efficient 
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than the empirical d.f. Fn(X) because the constant C is positive for many ker- 
nel functions. Jones (1990) supports him. Falk (1983) also stands on the same 
assertion for some other classes of kernels in the sense of asymptotic deficiency, 
and Mammitzsch (1984) investigated the problem of maximizing the constant C. 
Objections by practitioners against the use of kernel-type estimates mainly refer 
to the fact that differences are mathematically found on second order level (de- 
ficiency level), which might be hard to be realized in practice for not too large 
sample sizes. 

The previous works referred in the above adopted MISE criterion or some 
other quadratic criterion, and the smoothing parameter and the kernel function 
are selected in view of minimizing MISE. In the present paper, we consider more 
basic criterion; integrated squared error (ISE) of kernel-type estimator T'n(X) 

F I s E ( L )  -_- -- F ( x ) } 2 d r ( x )  

by comparing with that of the empirical d.f. Fn(X) 

/? ISE(Fn)  {Fn(X) - 

It is proved that there is no essential difference between Fn(z) and Fn(X) in 
the sense of ISE when estimating a continuous distribution function. Though the 
empirical d.f. is not continuous, many practitioners are doubtful of the worth of 
smoothing for empirical d.f. Our results assert that we can get no special gains from 
smoothing when we restrict that  an estimator should be a distribution function. 
We further proved that we can find better estimator Fn(z) than Fn(x) in the 
sense of ISE among some other class of kernel k(t) in which k(t) is not a density 
function (and hence Fn (x) is not a distribution function). Thus, we can conclude 
as follows. If a practitioner wants to estimate F(x) by a distribution function, then 
it is enough to adopt empirical d.f. F,~(x). If one believes that the estimator must 
minimize squared error and does not adhere to the distribution function property, 
then one should adopt a kernel-type estimator. 

Several lemmas and the main results will be stated in Section 2. The proofs 
will be given in Section 3. 

2. ISE of kernel-type estimator _F~(x) 

In this section, a comparison of the two estimators Fn(x) and Fn(x ) is made 
by comparing ISE. At first, we consider the ISE of the empirical d.f. Fn(x) 

(2.1) nISE(Fn) 

= - {I(x  - Xi) - F(x)}2dF(x) 
n i=i oo 

+ - {I(x  - Xi) - F (x ) } { I ( x  - Xj)  - F(x)}dF(x)  
n e c  

- J1 + J2. 
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Similarly, the ISE of kernel-type estimator Fn(x) is given by 

~ I S n ( k n )  

fo¢  [/~n( ) {/~( )}] d F ( )  ----n x - E  x 2 x 
, / - - O O  

+ 2n [Fn(x) - E{• (x )} l [E{• (x )}  - F(x)]dF(x) 

/? + n [ E { ~ ( x ) )  - Y(x)l~dY(x) 

1 ~ S " ~  = - {Kh(X - Xi) - L(x)}2dF(x) 
n i = l  

' / ?  + - E { K h ( x -  X ~ ) -  L ( x ) } { K h ( x -  X j ) -  L(x)}dF(x) 
n i ~ j  oo 

n z + 2 E {Kh(x - Xi) - L(x)}{L(x) - F(x)}dF(x) 
i-=1 oo 

Z + n {L(x) - f (x)}2dF(x)  

- I ~ + h + h + h ,  

where L(x) = E{Kh(x - X)}. 
The terms Ii, I2, 13 and I4 will be studied in detail, and then compared 

with the case of empirical d.f. Hall (1984) derived a similar expression of ISE of 
kernel density estimators. However, there does not exist an estimator which is the 
standard in density estimate and hence he did not perform any comparisons. 

The proofs of following Lemmas 2.1 2.3 will be given in Section 3. 

LEMMA 2.1. Under the conditions (A) and (B) of Section 1, I1 follows 
asymptotically a normal distribution with the parameters 

and 
F 1 f~ o(h) E(I1) = ~ - 2Ch (x)dx + 

1 f; I ] lS0n + C n - ' h  - + 4 F ( x ) { 1  - F ( x ) }  f(x)dY(x) 
o o  

+ o(n-lh). 

From the proof of Lemma 2.1 in Section 3, the connection with I1 relative to 
empirical d.f. Fn(x) is given by 

(2.2) I1 = J1 - 2Cn- lh  E f (Xi )  + Op(h 2) 

/? = J~ - 2Ch f2(x)dx + Ov(n-1/2h + h2). 
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Now let us consider the term /2. The kernel of the term /2, since I2 is a 
degenerated U-statistic which has variable kernel function and mean 0, is given by 

f :~ {Kh(u -- x) -- L(u)}{Kh(u - y) - L(u)}dF(u) - G(x, y) + G(x, y) 
oo 

- J(x,  y) + G(x, y), 

where -/2 = ( l /n )  ~ i # j  G(X~, Xj)  which was given by (2.1). 
Note that J(x,  y) depends on sample size n, and is also a degenerated kernel. 

Then 
1 

IT2 : ! E J ( X i , X j )  ~- - ~ a ( X i , X j )  ~_ 121 -[- I22, 
n n 

i~j i~j 

and by the relation (2.1), 

(2.3) /22 = -/2. 

We wish to evaluate I21. The problem is to evaluate 

j_ x~ gh(u  -- X)Kh(u -- y)dF(u). 
oK) 

Recall that k(t) = 0 for It[ > 5, for some 5 > 0, i.e., K has finite support on [-5, 5]. 
We then have 

LEMMA 2.2. Under the conditions (A) and (B) of Section 1, 

121 = Op(h) ,  

and hence by (2.3), 

(2.4) /2 - J2 + Or(h). 

Remark 1. The uniform kernel when estimating a d.f., by Swanepoel (1988) 
and Jones (1990), is the optimal density on a finite interval, although it is not 
the best kernel density for density estimation. If the kernel is uniform on the unit 
interval, i.e., 

1 
0, for x < - ~  

1 1 
K ( x ) =  x + ~ ,  f o r - ~ < x < ~  

1 
1, for x > ~ ,  

fl/2 K(x)dx  = 1/2. Hence, by the proof (iv) of Lemma 2.2 below, we have then J-1/2 

J2(x, y)dF(x)F(y)  = 2 J2(x, y)dF(x)F(y)  = O(h 3) 
c~ >y 
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= + 0 (h3/2). 

LEMMA 2.3. Under the conditions (A) and (B) of Section 1, 

( ~nh4 Var{f2(X)})  I 3 ~ g  0, - - - ~  

~a2nl/2h2 {Var(f2(Z) ) } l/2 N(O, 1) = Op(nl/2h2). 

For the evaluation of/4,  by Swanepoel (1988, Lemmas 4.3-4.6), we have 

LEMMA 2.4. Under the conditions (A) and (B) of Section 1, 

I4 -- O(nh4). 

Consequently, from (2.2), (2.4), Lemmas 2.3 and 2.4, we have 

THEOREM 2.1. Under (A) and (B), the ISE of Fn(x) is given by 

/J n ISE(Fn) = n ISE(F~) - 2Ch f2(x)dx + nl/2h2A/" 

+ Op(h) + op(h) + O(nh4), 

where Af is a random variable following N(O, 1) and the expectation of Op(h) term 
is zero. 

Remark 2. Suppose h = O(n -1/2+a) for some a > 0. If 1/6 < a < 1/4, then 
the preceding Theorem 2.1 is 

n ISE(Fn) = n ISE(Fn) + nl/2h2Af + O(nh4). 

Similarly, if 0 < a < 1/6, 

n ISE(l~n) = nISE(Fn) + nl/2h2A[ + Op(h). 

Furthermore, if the kernel is uniform, as pointed out in Remark 1, then the pre- 
ceding Theorem 2.1 is 

/? nISE(Fn) = n ISE(Fn) - 2Ch f2(x)dx + nl/2h2N" 

+ Op(n-1/2h + h a/2) + O(nh4). 

Remark 3. In particular, if h is of order n -t/a which minimizing MISE in 
an asymptotic sense, then we have for the preceding Theorem 2.1, 

n ISE(Fn) = n I S E ( F ~ ) +  n-1/6)Y " q-Or(n-I~3). 
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Remark 4. The useful results by Swanepoel (1988) and others on MISE entail 
that  on the average one can do better with a proper kernel-type estimate than the 
emprical d.f. In the case of ISE, however, it is impossible to disregard in probability 
the term which be zero to mean. Note that  the term N of Theorem 2.1 is not 
independent on ISE(Fn). From the result of Remark 3, the term of Op(n -1/6) is 
a random variable following normal distribution, and holds in either case of both 
positive and negative. Hence there does not exists essentially difference between 
the estimator by simple empirical d.f. and the estimator which used kernel-type 
estimate in the sense of ISE. 

In the above arguments, the kernel function k(t) is a density function. Now, 
let us consider another class 

(C) k(t) has bounded support and is symmetric around zero such that it sat- 
isfies 

? /? ? k(t)dt = 1, tk(t)dt -- 0 and t2k(t)dt = O. 
o o  ~ o o  

The condition (C) corresponds to the case m = 2 in Falk (1983). 

THEOREM 2.2. Under (B) and (C), the ISE of Fn(x) is given by 

? n ISE(Fn) = nISE(Fn) - 2Ch f2(x)dx + Op(h) + op(h) + o(nh4), 

where the expectation of Op(h) term is zero. 

PROOF. In this case, ~2 = 0. Examine our proofs of Lemmas in Section 3 
and the proof of Swanepoel ((1988), Lemmas 4.3-4.6), we then can get the results. 
Details of the proof are omitted. [] 

Remark 5. In particular, if h = 0(n-1/3), then the preceding Theorem 2.2 
is 

? n ISE(Fn) = nISE(Fn) - 2Cn -1/3 f2(x)dx 4- Op(n -1/3) 4- Op(n -U3) 

where the expectation of the Op(n -1/3) term is zero. For many kernel functions k, 
the constant C is positive. Thus, though the preceding formula does not necessarily 
imply the superiority of the kernel estimators, the kernel estimator satisfying (C) 
will be preferred in the sense of ISE. 
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3. Proofs of Lemmas 

and 

Throughout this section, denote by 

Yi(x) = K h ( x  - Xi)  - L(x) ,  E(Y~(x)) = O, 

F H(x~, xj) = ~(x)E.(x)eF(~) ,  

/? z~ = Kh(x - XO{L(x)  - F ( ~ ) } e F ( x )  

A(x)  = L(x)  - F(x) .  

Then we have 

I1=1~-~::- Y~(x)2dF(x), 
'/2, i = 1  o c  

1 ~ H ( X ~ , X j ) ,  E { H ( X ~ , X j )  I X , } = O ,  I2 = -~ 

n 

i = 1  

/: I4 = n A2(x )dF(z ) ,  
o o  

and by using integration by parts and a Taylor expansion, 

f: /; A(x)  = Kh(x  -- y )dF(y)  - F(x )  -- F ( x  - ht)k( t )dt  - F(x )  
(DO OG 

:5{ = - h t f ( x )  + 
o o  

1 2 t = ~ . h  : (x) + o(h 2) 

and 

L(x)  = F(x )  + 2a2h2f ' (x )  + o(h2). 

Hereafter unqualified integral denotes integration over (-c~, c~). 

PROOF OF LEMMA 2.1. Let W~ = f Y~2(x)dF(x). By using integration by 
parts and a Taylor expansion we can write, 

W~ = / { K h ( X  - X~) - L ( x ) } 2 d F ( x )  

= f { K 2 ( ~  - X~) - 2Kh(x  - X~)L(x) + L2(x)}dF(x)  
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-- 1 - f F(X~ + ht)2k(t)K(t)dt- f Kh(X-- Xi){F2(x)}'dx 

1 + ~ + Op(h 2) 

= I -  F(X~)- 2Chf(X~)- [1- F2(X~)- 2hF(X~)f(X~) /tk(t)dt] 

1 + ~ + Op(h 2) 

1 
- F(Xi){1 - F(X~)} - 2Chf(X~) + O~(h2), 

3 

where C = f tk(t)K(t)dt. Furthermore, 

E(Wi) = - 2Ch f2(x)dx + o(h), 

E(W]) = E - F ( X ~ ) { 1  - F ( X i ) }  - 2Chf(X~) + o(h), 

= 130 + C h f  [ - ~  + 4 F ( x ) { 1 -  F(x)}] f(x)dF(x)+o(h), 
2 

E(Wi4) - 567011 8Oh/ F(x/{1- V ( x l }  - f ( x l a F ( x l  + o(hl, 

and so 

Var(Wi) = ~ ÷ Ch - ÷ 4F(x){1 - F(x)} f(x)dF(x) ÷ o(h), 

1 
E{Wi - E ( W i ) }  4 - 1512~ + O(h). 

2 n Moreover, put a n = Ei=_l  Var(Wi), then we have 

c~X 4 ~ E{W~I(IW~I > e a ~ }  _< e - 2 a X  6 E(W¢) = O ( n  - 1 )  --* 0. 

i=1 i=1 

Hence this completes the proof of Lemma 2.1. [] 

PROOF OF LEMMA 2.2. 

(i) Since 

J F(u)Kh(u - x)dF(u) 

- 21 21 / F2(x + th)k(t)dt 

_ 1 1F2(x ) _ ~n2h2{f2(x ) + F(x)f'(x)} ÷ o(h2), 
2 2 
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and / lim f'(u)Kh(u -- x)dF(u) = f'(u)f(u)du -- - f2(x)  h--+O 
we have 

L(u)Kh(u - x)dF(u) 

= / F ( u ) K h ( u - x ) d F ( u ) +  ~2h2 / f'(u)Kh(u - x)dF(u) + o(h 2) 

- 21 ~ F 2 ( x ) _ l ~ 2 h 2 { ~ f 2 ( x ) + F ( x ) f , ( x  ) }+  o(h2), 

(ii) Similarly, 

f L2(~)~F(~) = f~F2(~) + ~2~F(u)S'(u)~dF(u) 
1 2 - 31 ~ 2 h  / f3(x)dx + o(h2). 

(iii) Therefore, by (i) and (ii), we have 

= / Kh(U -- x)Kh(u - y)dF(u) - 1 + F{max(x ,  y)} 

+ 1 2 ~{f2(x  ) f2(y)} ~2h [- f  f3(~)dx+ + 

+ F(x)f'(x) + F(y)f'(y)] + o(h2). 

(iv) The  problem is to evaluate f Kh(u -- x)Kh(u -- y)dF(u). Without  loss of 
generality we may assume tha t  k(t) = 0 for It I > 1/2, i.e., f(x) is continuous in 
(x - 1 /2 ,x  + 1/2), and x > y. At first, we consider the case o f x  - y > h, then 

Kh(u -- x)Kh(u -- y)dF(u) 
ix+h/2 

-= ~>x+h/2 dF(u) + Kh(U - x)f(u)du Jx-h]2 

_ fl/~ - 1 -  F (x + h )  + hj_l /2K(t) f (x  + ht)dt 
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h h 2 
= 1 - F ( x ) -  7 f ( x  ) - f'(x) 

f 
l/2 

+ h g ( t ) { f (x )  + htf '(x)}dt + o(h 2) 
J-i~2 

{1 S~/;2 } = 1 - F(x) + hf(x) - ~  + K(t)dt 

a-112 
Second, in the case of 0 < x - y < h, we have 

f Kh(u -- x)Kh(u -- y)dF(u) 

= L F+hJ2 
>x+h/2 Jy+h/2 

f 
y+h/2 

+ Kh(U -- X)Kh(U -- y)f(u)du 
Jx--h/2 

_ f z / 2  - l -  F (x  + h )  + hy i /2_zK( t ) f ( x  + ht)dt 

f 
l/2-~ 

K( t )K(z  + t ) f (x  + ht)dt 
+ h J-l~2 

-- -~ f ' (x )  + h _ K(t){ f (x)  + htf '(x)}dt 

f 
l/2-z 

K(t)K(z  + t){f(x) + htf '(x)}dt + o(h 2) 
+ h J-1/2 

[ 1 J1/2--zfll2 J-112fl12-  ] K(t)dt + K( t )K(z  + t)dt = 1 - F(x) + hf(x) --~ + 

t)dt] o(h2), + h2f ' (x )[ -  8 + + tK( t )K(z  + + 
J1/2--z J--1/2 

where z = ( x - y ) /h .  We can not proceed the above arguments for kernel functions 
with non-compact support. Thus, we need the compactness of the support of k(t) 
to prove (iv) in the proof of this lemma. 

In order to end the proof, we may consider the following statement. Let the 
eigenvalues and eigenfunctions of J(x, y) be (A1, Pl), (A2, P2),. •.,  i.e., the solutions 
of 

satisfying 

pi(x)dF(x) = O, 

i J(x, y)p(y)dF(y) = Ap(x), 

p2(x)dF(x) = 1 and J¢jpi(x)pj(x)dF(x)  -- O. 
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Then we have 
(DO 

J(z,y) = E )~kpk(X)pk(y), 
k = l  

~ [{ ~ )}2 1~2-~ 2 )] 
- -  121 = Ak n - 1 / 2  Pk(Xi n Pk(Xi ' 

k----1 i=1  i=1  

k , i ~ j , i ' ~ j '  

O0 

= 2(n-  1)n -1 ~ A~ 
k = l  

and 
OO 

J2(x, y)dF(x)dF(y). 
k = l  

From the preceding results and (iii)-(iv), we have 

[ J2(x,y)~F(x)F(y) = 2 [ J2(x,y)dF(x)r(~)  = O(h~), 
J J x  >y 

since J(x, y) is symmetric about x, y. Hence, 

E(I~l ) = O(h 2) and Pr(h-llI211 > ~) < c-2h-2E(I~l). 

The proof of Lemma 2.2 is completed. [] 

PROOF OF LEMMA 2.3. 
distributed, 

and 

Since Z 1 , . . .  , Z n axe independently and identically 

f f 
E(Zi) / L(x) (L(x) -  F(x)}dF(x)= ] A(x){A(x) + F(x)}dF(x) 

= 4 { f ' (x)I~aF(z)  + ---if- f ' ( x )F(x )dF(x)  + o(h ~) 

- ~h---~4 f I~(~)e~ + °(h~) 

- f2(x + ht)k(t)dt dF(x) + o(h 4) 

- ~h416 / I~(~)d~ + °(h~)" 
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The desired results follow immediately, on noting that 

Var(Zi) - ~ 2 h 4  Var{f2(X)} + o(h 4) and E(Z 4) = O(hS). 
16 
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