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Abstract

Genome wide association studies (GWAS) have been used to search for associations between genetic variants and

a phenotypic trait of interest. New technologies, such as next-generation sequencing, hold the potential to

revolutionize GWAS. However, millions of polymorphisms are identified with next-generation sequencing

technology. Consequently, researchers must be careful when performing such a large number of statistical tests,

and corrections are typically made to account for multiple testing. Additionally, for typical GWAS, the p value cutoff

is set quite low (approximately <10−8). As a result of this p value stringency, it is likely that there are many true

associations that do not meet this threshold. To account for this we have incorporated a priori biological

knowledge to help identify true associations that may not have reached statistical significance. We propose the

application of a pipelined series of statistical and bioinformatic methods, to enable the assessment of the

association of genetic polymorphisms with a disease phenotype–here, hypertension–as well as the identification of

statistically significant pathways of genes that may play a role in the disease process.

Background
Genome wide association studies (GWAS) can be used to

find associations between genetic variants and a phenoty-

pic trait of interest. New technologies, such as next-

generation sequencing, are promising to have a significant

impact on our ability to find disease associations through

GWAS. However, next-generation sequencing technology

currently is capable of identifying millions of polymorph-

isms in an individual genome. Therefore, when searching

for an association between a genetic polymorphism and

phenotypic trait, many statistical tests are performed.

Researchers must be careful when performing such a large

number of statistical tests, and corrections are typically

made to account for the multiple testing. Additionally, for

typical GWAS the p value cutoff is set quite low (approxi-

mately <10−8). As a result of this p value stringency, it is

likely that there are many true associations that do not

meet this threshold. To account for this, newer studies

have incorporated a priori biological knowledge to identify

true associations that may not have reached statistical sig-

nificance in light of the adjustment for the many statistical

tests.

The work described herein is based on the Genetic

Analysis Workshop 18 (GAW18). The GAW18 study is a

family-based study drawn from 2 cohorts participating in

the Type 2 Diabetes Genetic Exploration by Next-

Generation Sequencing in Ethnic Samples Consortium,

the San Antonio Family Heart Study, and the San Anto-

nio Diabetes/Gallbladder Study [1]. Participants with eli-

gible phenotype and genotype information came from 20

pedigrees. Individuals were enrolled from 1992 to 2003

and provided blood pressure, age, smoking status, and

blood pressure medication status at 1 to 4 visits over the

study time. The goal of our study was to identify genetic

associations with hypertension phenotypes based on the

data provided on the GAW18 organizing committee.
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The hypertension phenotype has been investigated with

GWAS in the past [2-5], and it has long been believed that

hypertension is at least partially controlled through a

genetic component [6]. However, the genetic association

with hypertension is likely very complex, with the potential

for multiple competing effects and pathways, involving

renal salt processing, vascular constriction, etc [7]. The

first set of studies identified a number of interesting loci

[2,3]. In the Welcome Trust GWAS of hypertension, 2000

cases and 3000 controls were analyzed, and in the

Framingham Heart Study 1327 individuals had blood pres-

sure measurements performed longitudinally. No obvious

associations were identified, but a number of single-

nucleotide variants (SNVs) of interest were defined.

A subsequent directed analysis was able to confirm an

association between a single SNV and hypertension

(rs1937506). Interestingly, this SNV has opposite effects

in Americans of European origin versus Americans of

Hispanic origin [8]. Additionally, more recent GWAS of

hypertension in European and Amish populations have

identified SNVs that are statistically significantly associated

with hypertension [9,10].

In this study, we propose the use of a pipelined series

of methods to enable the assessment of the association of

genetic polymorphisms with hypertension, as well as to

identify the pathways of genes that may play a role in this

disease. To perform our analysis, we first removed poly-

morphisms from the analysis that were not within or

near (± 1 kilobase [kb]) exons. Then we performed a

family-based association analysis between the genotypes

and 5 hypertension-related phenotypes while correcting

for potential confounding factors (ie, age, sex, smoking,

hypertension medication). Lists of genes that were most

likely related to hypertension were identified and path-

way analysis was performed on these gene lists.

Methods
Cohort

The GAW18 study is a family-based study drawn from 2

cohorts participating in the Type 2 Diabetes Genetic

Exploration by Next-Generation Sequencing in Ethnic

Samples Consortium, the San Antonio Family Heart

Study, and the San Antonio Diabetes/Gallbladder Study

[1]. Details of the GAW18 data set are available elsewhere

(see http://www.gaworkshop.org/gaw18/index.html).

Phenotypes and covariates

At each visit systolic blood pressure (SBP) and diastolic

blood pressure (DBP) were measured, and information on

use of blood pressure medication, smoking status, and age

were also collected. We defined 5 phenotypes to allow

multiple avenues for assessing genetic components

involved with blood pressure: hypertension status, SBP,

DBP, average yearly change in SBP (SBP slope), and aver-

age yearly change in DBP (DBP slope).

Hypertension was defined as SBP >140 mm Hg, DBP

>90 mm Hg, or the individual reported taking blood

pressure medication. Because individuals had from 1 to 4

visits, the basic hypertension variable was obtained as

ever versus never hypertensive across all visits. Covariates

were obtained from the same visit, with the first eligible

visit used when multiple visits were eligible. For indivi-

duals who were never identified as hypertensive, the cov-

ariates from the final visit were used.

SBP and DBP values were available at most visits. If an

individual indicated taking blood pressure medication,

then a standard adjustment of 10 mm Hg and 5 mm Hg

for SBP and DBP, respectively, was added [11]. For ana-

lyses with a single blood pressure variable, the SBP and

DBP values from an individual’s first visit were used. To

assess blood pressure changes over time, the slope from a

linear regression of blood pressure as a function of time

was obtained for SBP and DBP for each participant, yield-

ing a simple summary measure of average change per year

for each individual.

Genotypes

We used the next-generation sequencing genotyping data

from the 483 Hispanic individuals provided by the

Genetic Analysis Workshop organizers and the imputed

genotypes from 961 individuals in 20 large pedigrees. We

used the genotype calls provided by the organizers for

the 959 individuals, which included more than 8 million

polymorphisms on the odd-numbered chromosomes.

This original set was filtered down to include only poly-

morphisms inside of exons or within 1 kb of an exon.

Additionally, because we performed a pathway analysis

with the genes that contained polymorphisms statistically

most likely to be associated with hypertension, only poly-

morphisms associated with a gene were applicable to our

analysis. Polymorphisms outside of genes were excluded

from the statistical analysis. We identified polymorph-

isms that were within or near exons based on the UCSC

RefSeq annotation GRCh_37. The filtering identified

849,517 polymorphisms for analysis. Standard screening

for Hardy-Weinberg equilibrium was not used, as both

the family-based nature of this study and admixed popu-

lations, such as this Hispanic population, may violate

Hardy-Weinberg equilibrium as a result of the admixture

process [12].

Statistical methods for the association analysis

The primary purpose of the association analysis was to

identify potentially important genes to inform the sub-

sequent pathway analysis. Thus, we used 5 phenotypes

to allow the assessment of different pathways for the

Edwards et al. BMC Proceedings 2014, 8(Suppl 1):S104

http://www.biomedcentral.com/1753-6561/8/S1/S104

Page 2 of 7

http://www.gaworkshop.org/gaw18/index.html


development of hypertension and other features con-

cerning blood pressure. The individual SNVs were

assessed for association with the various phenotypes.

All standard genetic models were assessed, including

additive, dominant, recessive, and heterozygote advan-

tage. Logistic regression was used to assess the binary

traits, whereas linear regression was used for the quan-

titative traits (SBP, DBP, SBP slope, and DBP slope).

Standard adjustment variables, age, age2, and gender,

were included, along with smoking status [13]. All ana-

lyses took into account family structure and used the

enhanced extended pedigree analysis in Golden Helix

(Bozeman, MT). Standard Bonferroni adjustment for

multiple comparisons was not used, but because the

primary purpose of the association analysis is to inform

a pathway analysis, the ranking of variables on the

basis of p values is not affected. Data summaries, such

as slopes from linear regression, and covariate values

were obtained utilizing SAS version 9.3.

Pathway analysis methodology

Pathway analyses were performed using Ingenuity Path-

way Analysis (IPA) pathway analysis software (Ingenuity

Systems, Inc., Redwood City, CA, http://www.ingenuity.

com). Identified pathways were ranked in order of

increasing p value. The unadjusted pathway p values

were computed using the hypergeometric distribution

(probabilities computed without replacement), using a

right-tailed Fisher’s exact test to assess the significance

of a given pathway in relation to the input data set. The

p value computation takes into account the number of

input molecules, the size of the requested pathway, and

the total number of molecules from the IPA knowledge

base that could potentially be included in the pathway.

Connections between molecules in the reported path-

ways reflect experimentally validated evidence of pair-

wise interactions from the literature, as annotated in the

IPA knowledge base. Pathway p values (reported as

score = −log10[p value]) correspond to a level of confi-

dence that a given pathway and its molecular interac-

tions did not arise by chance, but instead correspond to

biologically meaningful relationships among the input

genes associated with the given phenotype. For example,

a pathway with a p value of 10−9 would have a 1 in 1

billion chance of arising purely by chance, if the input

molecules had been chosen randomly from the underly-

ing knowledge base.

For each set of SNVs significantly associated with a

phenotype, we derived the corresponding gene lists for

input to the IPA software by mapping SNVs to the

nearest gene. A series of cutoffs were applied in order

to explore the effects of varying numbers of genes and

p value thresholds. Each cutoff resulted in a separate

gene list and distinct pathway analyses.

Pathway analyses were performed so as to construct

the most parsimonious pathway for each set of genes,

up to a maximum of MIPA interacting molecules (pro-

teins, chemicals), and such that the maximum number

of genes from the input set is included in a given path-

way. In the results reported here, MIPA was chosen to

be either 70 or 140.

Results
Although the median age of participants at enrollment

was only 38 years, 40% were identified as hypertensive

(Table 1). Participants were more likely to be female

(57.9%) and 21.7% were current smokers at the time of

enrollment. The cross-sectional analysis included 841

people, with 634 with multiple visits and thus eligible

for the analysis of change in blood pressure. Average

annual change in SBP and DBP were 0.95 and 0.23 mm

Hg, respectively. Below we will first present results from

the family-based logistic regression and linear regression

models for the 5 phenotypes identified SNVs and, thus,

genes that appeared to be associated with the pheno-

types (Figure 1). We will then apply a pathway analysis

to these lists of genes to identify functional connections

between the most significantly associated genes.

SBP

We identified ten SNVs within genes with -log10(p value)

>4.5. Two of these SNVs were on chromosome 1 (1p34/

CLSPN), 3 on chromosome 7 (7q11/AUTS2), 2 on chro-

mosome 11 (11q23/HTR3B, 11q23/TMPRSS5), and 3 on

chromosome 13 (13q34/LAMP1). Interestingly, 2 of these

proteins are on the cell membrane (HTR3B, TMPRSS5)

and 1 is identified as an ion channel (HTR3B).

DBP

Six genomic regions were associated (-log10[p values]

>4.5) with the DBP quantitative trait. These regions are

Table 1 Summary information on demographic and

phenotypic variables

Demographic or phenotypic variable Summary measures

Information from first visit (n = 841)

Sex (% female) 57.9

Age (median [min, max]) in years 38 (16, 94)

Smoking status (% current smoker) 21.7

Taking blood pressure medication (%) 10.0

Phenotypes: cross-sectional (n = 841)

Ever hypertensive (%) 40.0

SBP (median [25th, 75th percentiles]) (mm Hg) 118 (110, 130)

DBP (median [25th, 75th percentiles]) (mm Hg) 72 (65, 78)

Phenotypes: average yearly change (n = 634)

SBP (mean [std]) (mm Hg) 0.95 (2.09)

DBP (mean [std]) (mm Hg) 0.23 (1.27)
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on chromosomes 1q, 3q, 5q, 9q, 17q, and 21q. The

chromosome 1 region is 1q24 and the SNVs are in the

C1orf114 and SLC19A2 genes. The SLC19A2 gene

encodes a protein that is annotated as a transporter and

it exists on the cell membrane. The chromosome 3

region with SNVs of potential significance is 3q25 and

the SNVs are within 3 adjacent genes (SMC4, IFT80,

and KPNA4). The chromosome 5 SNV is in FBN2

which lies on 5q23. There are 2 chromosome 9 SNVs,

both of which are in PRDM2 on 9q34. A single SNV of

potential significance exists on chromosome 17 (17q11)

and is in the NUFIP2 gene. And finally, the 3 SNVs on

chromosome 21 (21q22) are in the TRPM2 gene, which

is a transient receptor potential cation channel that is

involved in Ca++ and Na+ transport. It should be noted

that 6 of the top 7 SNVs (with functional annotations)

are transporters or ion channels.

SBP slope

From our family-based analysis, we identified 2 genomic

regions associated (-log10[p values] >4.5) with the SBP

slope quantitative phenotype, 3q13 and 9q32. The 3

SNVs on the chromosome 3 region were in the WDR52

gene, and 2 SNVs on 9q32 were in the SNX30 gene.

One of the most significant SNVs associated with a

change in SBP and of particular interest is VAV3

(p value = 3.97 × 10−5). This SNV was also identified as

a key gene in association with a change in DBP and it

has been implicated in hypertension and tachycardia in

a mouse model [14].

DBP slope

Five genomic regions were associated (-log10[p values]

>4.5) with the DBP slope quantitative phenotype, 1p36,

7p22, 9p21, 17p13, and 19q13. There are 6 SNVs on

Figure 1 Genome wide association scans for 5 different phenotypes related to hypertension. For each of the 5 phenotypes, the -log10 of

the p value associated with each SNV in (or near) the coding regions. Data from only odd-number chromosomes was provided as part of the

GAW18 project; consequently, there is no information for any of the even-number chromosomes, which appear as blank regions on the plots.

HTN, hypertension.
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chromosome 1 in the KIF1B gene. The chromosome 7

SNV is in the SDK1 gene. On chromosome 9 there are

13 SNVs in 3 adjacent genes that are potentially asso-

ciated with the phenotype. These SNVs are in the

SMU1, DNAJA1, and APTX genes. On chromosome 1

there is a single SNV with potential significance within

the PER1 gene. Finally, there is a single SNV in the

PEPD gene on chromosome 19.

Hypertension

We identified the most genomic regions associated

(-log10[p values] >4.5) with the hypertension binary phe-

notype. There were 11 regions: 1p36 (PTCHD2 and

C1orf187), 3p26 (IL5RA), 7q22 (GATS and STAG3),

7q31 (LMOD2 and WASL), 11q12 (OR8U1 and OR8U8),

15q15 (PLA2G4E), 15q25 (ADAMTSL3), 17p13

(PITPNM3), 17q25 (CCDC57), 19p13 (WDR18), and

19q13 (PPP6R1). Although none of these regions con-

tains a gene that has a known biological relationship with

hypertension, when the p value cutoff is increased, a

number of genes that are associated with hypertension

appear on this list. Furthermore, many of these poten-

tially interesting genes also appear on the other pheno-

type lists.

Genes associated with phenotype

The 5 phenotypes defined in this study were constructed

in an attempt to capture different manifestations and etiol-

ogies of hypertension. Consequently, the genes emerging

from the association analysis for each phenotype are

expected to display distinct biological patterns, in principle

traceable to different underlying patterns of disease and

pathway dysregulation. In addition, there is the possibility

of observing commonalities across phenotypes, global

patterns that transcend specific phenotypic definitions.

Several such patterns emerged from our analysis of the

gene lists for the various phenotypes.

In particular, of the 5 hypertension phenotypes consid-

ered, DBP and hypertension yielded the largest numbers

of significant genes (N = 34 and 38, respectively) with a

p value cutoff of 10−4. Genes with family annotations of

“ion channel” or “transporter” are notable because of the

fundamental importance of ion and salt transport pro-

cesses underlying hypertension pathways [15,16]. Exam-

ples of ion channel-annotated genes derived from the

DBP phenotype include TRPM2 (cation channel),

SCN11A (sodium ion channel), ITPR1 (Ca+2-release med-

iator), and, (implicated in hypertension [2,17]. RYR3 also

appears in the 5 phenotype intersection list, as does the

NALCN sodium leak channel. Cellular transporters are

present within several phenotypes, and of particular note,

they span 3 distinct molecular motor protein subfamilies:

KIF1B (kinesin; DBP slope); DNAH14 (dynein; SBP

slope), DNAH17, and DNAH9 (dynein; 5 phenotype

intersection); and MYO1D (myosin; 5 phenotype inter-

section). MYO1D has been associated with hypertension

[18], and phosphorylation of the myosin light chain,

mediated by Ca+2, is necessary for the regulation of vas-

cular small muscle contraction [19]. VAV3 was identified

in both the DBP slope and SBP slope phenotypes as

noted above.

Pathways associated with phenotypes

The 5-way intersection gene list reflecting genes com-

mon across all 5 phenotypes with a p value less than 0.01

(N = 116) and the most significant 40 genes (p <3.5 ×

10−5) derived from the union of the genes across all 5

phenotypes were subjected to pathway analysis. We

imported each phenotype gene list, as well as the top 40

list from the phenotype union, and the N = 116 intersec-

tion of top phenotype genes (Figure 2), into the IPA soft-

ware. Figure 3 illustrates 2 of the top-scoring pathways.

In these pathways, UBC (ubiquitin) and Ca+2 are promi-

nent hubs, even though these molecules were not

included in the input gene lists derived from the original

list of statistically significant SNVs. UBC, located on

(even-numbered) chromosome 12 (12q24.3) and thus not

directly accessible through data provided in this study,

appears as a hub in almost all pathways, while the cal-

cium divalent cation, required for smooth muscle con-

traction, appears in 2 of the statistically significant

pathways. VAV3, mentioned above, is a hub in the SBP

Figure 2 Venn diagram of top genes for each phenotype. A list

of all SNVs that had p values <0.01 was analyzed. All the genes in

these regions were tabulated and a Venn diagram was constructed

to identify which genes existed on each of the 5 different lists.

DDBP, change in DBP overtime; HTN, hypertension; DSBP, change in

SBP overtime
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slope pathway. Interestingly UBC controls the modula-

tion of cell surface receptors and ion channels [20], and

there is emerging evidence for its importance in the

initiation of atherosclerosis and the proliferation of cardi-

ovascular disease [21,22]. Although it is intriguing that

UBC appeared in nearly all of the statistically significant

pathways, it is clearly premature to attribute too much

significance to this finding in light of the incomplete nat-

ure of the source data set, and the wide range of cellular

processes affected by ubiquitin protein modification in

general.

Conclusions
In summary, we have demonstrated–in the context of the

GAW18 hypertension data set–a proposed methodology

for the unified analysis of next-generation sequence data.

This method used biostatistical methods for analyzing

GWAS to inform a pathway analysis. Our approach inte-

grates traditional GWAS-based statistical analysis in which

variants and clusters of variants are used to define specific

genetic disease markers, coupled with a broader systems

biology and pathway-based approach that can potentially

shed light on the diverse biological origins of complex dis-

eases such as hypertension. It is important to note that the

specific results reported here on the genetics of hyperten-

sion need to be reassessed with a more complete data set,

as the GAW18 data set included only odd-numbered

chromosomes, thus omitting half of the genes in the gen-

ome. Because pathway analyses utilize information for

every gene, either a positive association or none, this

major omission clearly impacted the analyses reported

here. That is, the omission of a gene as input to a pathway

analysis is effectively an assessment of its lack of impor-

tance. Because genes on even-numbered chromosomes

could not be assessed in this study, and the underlying

database of biological interactions is agnostic with respect

to input gene lists, the pathways that were most likely to

be identified were those with a preponderance of genes on

odd-numbered chromosomes. Even in studies where com-

plete information is available as input to an analysis, it is

important to appreciate that the results of pathway ana-

lyses are at best a starting point for further biological stu-

dies, as they are limited by biases and incomplete data in

the underlying knowledgebase. The possibility also exists

that one may identify a “significant molecule” that simply

reflects a pervasive underlying process, rather than one

that is truly important and of functional significance in the

context of a particular disease. Nevertheless, a number of

suggestive results emerged from our analyses that repre-

sent a promising starting point for future studies of hyper-

tension using expanded next-generation data sets and the

integrated computational methodology described here.

Figure 3 Pathways generated by lists of genes from the association analysis. A, Pathway analysis of top 40 statistically significant genes

(p <3.5 × 10−5) derived from the union of the genes across all 5 phenotypes, MIPA = 70. Pathway score = 77, corresponding to p = 10−77. This

was the only statistically significant pathway obtained for this set of genes. Molecules in red correspond to genes (N = 30, 75%) from the input

list of 40. Functional annotations for this pathway include cell death and survival, gastrointestinal disease, and inflammatory disease. B, Pathway

analysis of the top 38 statistically significant genes (p <1.0 × 10−4) derived from the hypertension phenotype, MIPA = 70. Pathway score = 62,

corresponding to p = 10−62. This was the only statistically significant pathway obtained for this set of genes. Molecules in red correspond to

genes (N = 25, 66%) from the input list of 38. Functional annotations for this pathway include cellular assembly and organization, cellular function

and maintenance, and cell death and survival.
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