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ABSTRACT. Exhaled air carries information on human health status. 

Ion mobility spectrometers combined with a multi-capillary column 
(MCC/IMS) is a well-known technology for detecting volatile organic 
compounds (VOCs) within human breath. This technique is relatively 
inexpensive, robust and easy to use in every day practice. However, 
the potential of this methodology depends on successful application of 
computational approaches for finding relevant VOCs and classification 
of patients into disease-specific profile groups based on the detected 
VOCs. We developed an integrated state-of-the-art system using 
sophisticated statistical learning techniques for VOC-based feature 
selection and supervised classification into patient groups. We analyzed 
breath data from 84 volunteers, each of them either suffering from 
chronic obstructive pulmonary disease (COPD), or both COPD 
and bronchial carcinoma (COPD + BC), as well as from 35 healthy 
volunteers, comprising a control group (CG). We standardized and 
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integrated several statistical learning methods to provide a broad 
overview of their potential for distinguishing the patient groups. 
We found that there is strong potential for separating MCC/IMS 
chromatograms of healthy controls and COPD patients (best accuracy 
COPD vs CG: 94%). However, further examination of the impact of 
bronchial carcinoma on COPD/no-COPD classification performance 
is necessary (best accuracy CG vs COPD vs COPD + BC: 79%). We 
also extracted 20 high-scoring VOCs that allowed differentiating 
COPD patients from healthy controls. We conclude that these statistical 
learning methods have a generally high accuracy when applied to well-
structured, medical MCC/IMS data.
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INTRODUCTION

Multi-capillary column-ion mobility spectrometry (MCC/IMS) is a comparatively 
inexpensive, sensitive high through-put method to analyze human exhaled air carrying in-

formation about health status. The resulting MCC/IMS chromatograms, contain this infor-
mation. Sophisticated computational approaches can be utilized for classifying patients into 
disease-specific profile groups and identifying the volatile organic compounds (VOCs) that 
are important.

First, a brief introduction to chronic obstructive pulmonary disease (COPD) is pro-

vided, followed by an overview of the MCC/IMS technique. Various preprocessing steps for 
the analysis of MCC/IMS data and the different machine learning methods applied in this 
study are also elucidated. Finally, results obtained from various machine learning methods are 
presented and followed by a discussion and comparison with the state-of-the-art techniques.

COPD

COPD is an inflammatory lung disease characterized by a permanent blockage of 
airflow from the lungs. The primary cause of COPD is tobacco smoke (through smoking or 
second-hand smoke). The disease is widely under-diagnosed, although it is a life-threatening 
lung disease, which is not fully reversible. The World Health Organization (WHO) reported it 
to be one of the most frequent causes of death. It is in fourth place after ischemic heart disease, 
cerebrovascular disease, and lower respiratory infections (World Health Organization, 2008). 
According to a WHO report in 2008, an estimated 64 million people worldwide suffered from 
COPD in 2004, and more than 3 million people died of COPD in 2005. This number will most 
likely increase by ≥30% (http://www.who.int/healthinfo/global_burden_disease/en/). Young 
et al. reported in 2009 that COPD is both a common and important independent risk factor 
for lung cancer. Hence, our study includes samples of both patients suffering from COPD in 
combination with bronchial carcinoma and patients with only COPD.

In clinical practice, the diagnosis of COPD is based on three different parts, the symp-
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toms, the assessment of lung function and the evaluation of the responses to inhaled pharma-

cological agents (Rabe et al., 2007). Although these tests are generally considered informative, 
they are time-consuming and strongly dependent on the personnel’s experience.

MCC/IMS

Human exhaled air contains a combination of VOCs reflecting the state of health of the 
body. Therefore, it is a potential information carrier for novel diagnostic techniques. The ion 
mobility spectrometer combined with a multi-capillary column as a pre-separation (MCC/IMS) 
is a well known technology for detecting VOCs in human breath. There are several advantages 
of MCC/IMS: it is very sensitive (detection limit at the nanogram and picogram per liter levels).

It can handle the moisture that comes with exhaled air, and polar molecules are de-

tectable. Also, most measurements are inexpensive and fast (≈5 min). In the study presented 
here, a BioScout device (B&S Analytik, Dortmund, Germany) was utilized for collecting the 
metabolomic data. It consists of a SpiroScout (Ganshorn Medizin Electronic, Niederlauer, 
Germany) as sample inlet unit and the MCC/IMS. The end-tidal breath gathered through the 
SpiroScout is collected in a sample loop and transferred to the multi-capillary column for 
the first chromatographic separation. Entering the IMS, the compounds are ionized by a 63Ni 

β-radiation source and intermittently injected into the drift tube and detected by the Faraday 
plate. For further details, see Baumbach (2009). Finally, we obtained a three-dimensional data 
file for each of the measurements. The first dimension is defined by the retention time (RT), 
the time the molecule needs to pass through the multi-capillary column. The second dimension 
corresponds to the drift time K

0
, which is the time the compound flies through the ion mobility 

spectrometer. Finally, a Faraday detector measures the third dimension, the electric charge h. 
The combination of the three measures can be visualized as a heat map (see Figure 1).

Figure 1. Example of a multi-capillary column-ion mobility spectrometry chromatogram (human exhaled air). 
Each volatile organic compound is marked by a black rectangle.
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Our contribution

In this study, we analyzed the metabolomic profiles of volunteers suffering from 
COPD and healthy controls. First, the measurements were captured by the BioScout and the 
data set stored (see Figure 2, step 1). Afterwards, the three-dimensional data files were prepro-

cessed for noise reduction and VOC identification (Figure 2, step 2). The data set consists of 
three different groups of volunteers: healthy controls, COPD patients, and COPD with bron-

chial carcinoma (BC) patients (COPD+BC).
We addressed the following two major questions (Figure 2, step 3):
Can we generally distinguish between healthy and diseased volunteers (Healthy vs 

COPD and COPD+BC)?
Can we find differences between all three groups, healthy, COPD, and COPD+BC?
To tackle these problems, we applied and evaluated several statistical learning tech-

niques (Figure 2, steps 4 and 5). Furthermore, we aimed at finding those VOCs that are most 
relevant for classification power.

Figure 2. Overview of the integrated statistical approach to evaluate chronic obstructive pulmonary disease 
(COPD)-related metabolic multi-capillary column-ion mobility spectrometry (MCC/IMS) profiles. SVM = Support 
vector machine; BC = bronchial carcinoma. The numbering indicates the different steps of the approach.

MATERIAL AND METHODS

Data and preprocessing

In total, we analyzed the data of 119 volunteers: 35 healthy controls and 84 patients 
suffering from COPD. Note that 54 of the COPD patients also suffered from bronchial carci-
noma. If not stated otherwise, we used the following abbreviations as class descriptors: HC = 
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healthy controls, COPD = COPD patients, BC = bronchial carcinoma patients, and COPD+BC 
= only those COPD patients also suffering from BC. The patients were recruited from coop-

erating German hospitals.

Preprocessing

Our MCC/IMS measurements contained 1 million entries, 500 for the retention 
time axes and 2000 for the drift time axes. We applied data reduction methods for denois-

ing, smoothing and peak detection, such as log-normal detailing and wavelet transformation 
(Bader et al., 2008). The most intuitive way of feature reduction is to define regions within the 
heat map where VOCs are detected in at least one of the measurements analyzed. The maxi-
mal height within a specific region of an IMS chromatogram indicates whether the compound 
is present or absent. It represents the quantity of the compound and is stored as a matrix of 
maxima, for all regions and chromatograms.

This was done by utilizing the VisualNow software (provided with BioScout by B&S 
Analytik), which allows for manual expert-based peak picking or execution of fully automatic 
peak finding algorithms. In our case, the data were preprocessed using the standard settings 
of VisualNow. Using the manual peak picking procedure, we determined 120 VOC positions. 
The final preprocessed data table consisted of 119 measurements and a continuous value of the 
quantity of each of the 120 components.

Statistical methods

We used several standardized statistical learning methods in this study, to get a broad 
overview of the potential of the data and the different classification techniques. Thus, we 
included some rather simple methods, decision tree, naive Bayes, and linear support vector 
machine (SVM), for instance. On the other hand, we used more recent and sophisticated tech-

niques, such as neural net, random forest and radial SVM. The R language package (Version 
2.13.1) was used (R Development Core Team, 2011) to implement the statistical analysis and 
feature selection. A brief overview of the different techniques follows.

Decision tree

This method is a fundamental machine learning tool based on recursive partitioning. 
The features span the space of the classification task. This space is cut into one dimension/
feature in such way that the accuracy is maximized. The method repeats this procedure for the 
resulting subspaces recursively until the the accuracy is optimal. Each split corresponds to one 
internal node. Each leaf-node is labeled by the majority class of the samples in the correspond-

ing subspace. The decision tree was implemented using the R package rpart (Therneau and 
Atkinson, 2011), using the standard parameters.

Naive Bayes

The most widely tested and straightforward method for statistical induction is known 
as the naive Bayesian classifier (Langley and Sage, 1994). In this method, each class is repre-
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sented by a single probabilistic summary. To minimize the probability of error in the classifi-

cation assignment, the state of action that maximizes the posterior probability is chosen each 
time. This is calculated by the Bayesian formula simply from the prior probabilities and the 
conditional densities. Despite its simplicity, the naive Bayes works quite well in practice and 
outperforms far more sophisticated techniques. The reason for this is that although bias can 
hurt the individual class density estimates, this might not influence the posterior probabilities 
as much, especially near the decision (Hastie et al., 2009). The naive Bayes method was imple-

mented using the R package NaiveBayes (Weihs et al., 2005), using the standard parameters 
with activated usekernel parameter.

Neural networks

A neural network is a two-stage regression or classification model, which is typi-
cally represented as a network. The smallest model contains three layers, the input layer, the 
output layer, and at least one hidden layer, whereas the complexity of the model increases by 
the number of hidden layers. For a k-class classification problem the model contains k output 

units, each showing the probability of the associated class. The result of an output or hidden 
node is created from a linear combination of the nodes of the previous layer, respectively. Ap-

plying an activation function, which is usually chosen to be the sigmoid 1/1+e-v within each 

hidden node leads to a non-linear model. The classification by neural networks was imple-

mented using the nnet package (Venables and Ripley, 2002). In our case, we set the number of 
hidden layers to 2. The weight decay and the maximal number of iterations were kept at the 
standard settings 0 and 100, respectively.

Random forest

Random forest is based on the strategy of bagging. Bagging is a sampling technique 
applying a method with low-bias and high-variance on subsets of the data. To reduce the 
high-variance of the unbiased method, the outcome is averaged. Random forest builds a large 
collection of de-correlated trees and averages the results (regression) or uses a majority vote 
(classification). Since trees can capture complex interactions in the data and are unbiased if 
they are grown sufficiently deep, they are the perfect candidates for bagging.

A specific bootstrapping approach is used to reduce the correlation between the trees 
without increasing the variance of the whole classifier too much. This means that each deci-
sion tree is grown on a new set of samples, randomly drawn from the original data set and of 
equal size. Finally, during the assembly of the decision tree, a random set of variables is drawn 
out of the bootstrapping sample for each of the nodes (Hastie et al., 2009).

The random forest method provides two measures of importance, both dependent on 
the accuracy of the trees. The first, called Gini index, accumulates the improvement in the 
split-criterion, while growing the trees for each variable and corresponding splits. The second 
uses the left out samples (called out of the box samples, OOB) of each tree to measure the 
prediction strength of each variable; it is further referred to as OOB randomization. See Hastie 
et al. (2009) for more details. The random forest classification and feature selection were done 
using the randomForest R package, by Liaw and Wiener (2002). Again, standard parameters 
were used, the number of trees was equal to 500, and no limits in the number of nodes for a 
single tree were set.



©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 11 (3): 2733-2744 (2012)

MCC/IMS in pulmonary disease identification 2739

Support vector machine

SVM is one of the most widely used statistical learning methods. This technique is based 
on the maximization of the margin, defining the region surrounding the hyperplane that best 
splits the different classes. The original optimal hyperplane method was a linear classifier, which 
is also used in this study. Additionally, the radial SVM was used. In 1992, Boser et al. suggested 
the application of the kernel trick as a solution to create non-linear classifiers, for example by us-

ing the Gaussian radial basis function. SVM was implemented using the e1071 package (Dimi-
triadou et al., 2011), with the cost and tolerance parameters of the linear SVM set to 100 and 
0.01 and the cost and gamma parameters of the radial SVM fixed to 1000 and 0.1, respectively.

Integrative approach

As mentioned earlier, the data set, generated in cooperation with the associated physi-
cians, consisted of MCC/IMS chromatograms that cover the health status of three groups of vol-
unteers, i.e., HC, COPD and COPD+BC. These data were preprocessed utilizing the VisualNow 
software, followed by an expert-driven component detection. Based on the three classes, two 
different classification tasks were considered: COPD vs HC and COPD vs COPD+BC vs HC.

The accuracy of the different statistical learning techniques was evaluated in a 10-fold 
cross validation environment. In general, the set of samples was split into training and test sets. 
The test set is used to evaluate the models created by the training set. In settings where the 
data set is small, in our case restricted to 119 samples, this leads to relatively noisy estimates 
of predictive performance. Therefore, cross validation is used to give an estimate for the actual 
accuracy of the predictive model. The data set is split into k preferably equal-sized subsets (≈ 
#samples/k). Each of the subsets W

j
, is evaluated by a model trained on the opposite set of 

samples excluding subset W1,..,i-1,i+1,..,k (Hastie et al., 2009). To ensure that each subset covers 
the variety of all classes, the classes are balanced within each subset, for the two-class as well 
as the three-class-problem.

To assess the information content within the breath data and to avoid overtraining the 
statistical learning methods, simpler methods as well as more sophisticated methods were ap-

plied without further tuning of the parameters. The R package pROC was used to compute 
various measures of prediction quality (Robin et al., 2011): sensitivity, specificity and the AUC, 
which is the area under the receiver operating characteristics (ROC) curve. In contrast to the 
other methods used in this study, random forest and linear support vector machine allow for 
judging the features’ importance to the trained models’ performance. In this study, we evaluated 
the result of the importance-measure of random forest (Gini index) and the weights fitted by 
the linear SVM model. Therefore, the vector of importances of each of the ten models result-
ing from the cross validation was extracted and the average value for each of the features was 
determined. The best ten features for each of the two methods will be discussed.

RESULTS AND DISCUSSION

COPD classification

The results of the COPD vs HC performance comparison of the six different meth-
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ods is depicted in Table 1. The more simplistic methods, i.e., decision tree and naive Bayes, 
achieved an accuracy between 82 and 85% and an AUC of around 80%. The linear SVM per-
formed slightly better with an AUC of 83% and an accuracy of around 87%. While the more 
sophisticated methods, i.e., neural net and radial SVM, gave an accuracy of 89% and AUCs 
of 86 and 87%, respectively. The best performing method of the classification, distinguishing 
between COPD patients, was random forest, which had the best prediction accuracy of 94% 
as well as high values for AUC (92%), sensitivity (98%) and specificity (86%). As expected, 
the more sophisticated methods performed best, having a relatively low bias, which means 
they do infer less than the simpler methods. On the other hand, the basic methods performed 
surprisingly well in terms of AUC and accuracy, which indicates that the data provided some 
information to distinguish the two classes. However, due to the unbalanced data set (COPD 
≈70% vs HC ≈30%), one has to take a closer look at the sensitivity and specificity. While the 
sensitivity of both types of methods was good (between 87 and 98%), the specificity of the 
enhanced methods (80 to 85%) was in general higher than the specificity of the simplistic 
methods (71 to 74%).

Method AUC Accuracy Sensitivity Specificity

Decision tree 81 85 91 71
Linear SVM 83 87 92 74
Naive Bayes 79 82 87 71
Neural net 86 89 93 80
Radial SVM 87 89 92 83
Random forest 92 94 98 86

AUC = area under the curve. SVM = support vector machine.

Table 1. Results of the two-class-classification problem, evaluating the differences between chronic obstructive 
pulmonary disease and the healthy controls.

To the best of our knowledge, we present the first comprehensive study about the 
performance of state-of-the-art statistical learning tools for IMS-based metabolic profiling 
of COPD and bronchial carcinoma. A recent study presented by Westhoff et al. (2011) solely 
concentrated on rank sum tests and decision trees in VOC marker detection for COPD vs HC. 
However, the major issue of this study (also briefly discussed in Westhoff et al., 2011) was a 
lack of cross validation to avoid data overfitting. The best solution with the only classification 
method directly implemented in the VisualNow software, however, is based on the best split-
ting VOC (peak 98), given by the rank sum test, resulting in a comparatively good training 
accuracy of 91%.

Feature selection

In our classification, setting features directly corresponded to molecules in human 
exhaled air. Hence, we are interested in finding those VOCs/molecules/peaks/biomarkers/fea-

tures that contribute the most to the classification performance. Therefore, the weights of the 
linear SVM and the Gini index were taken as a measure of importance.

Figure 3 shows the ten best features provided by the two methods linear SVM and 
random forest. The linear SVM feature importance depends on the weights of the variables 
according to their influence on the final linear model. The Gini index of the random forest 
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measures to what extend the variable improves the accuracy of the fit. Tables 2 and 3 show the 
two resulting subsets of features.

     Linear SVM selected peaks

Peak No. 113 42 26 87 37 118 34 5 3 72
1/K

0
            1.119         0.844          0.514        0.55          0.693            0.932          0.563        0.544        0.535          0.904

RT    189.8  501.1  248.1    56.5  100.7    110.4      6.2    3.4    4.3  233.4

Table 2. The 10 best features selected by linear support vector machine (SVM).

The peaks are ordered by the rank of their weight in the linear model. Additionally, the coordinates in the multi-
capillary column-ion mobility spectrometry chromatogram, the inverse drift time (1/K

0
) and the retention time (RT) 

are shown.

     Random forest selected peaks

Peak No. 98 93 103 6 100 79 48 95 21 4
1/K

0
          0.605         0.607          0.61        0.581            0.553          0.563          0.553         0.648          0.647    0.6

RT    22.3    16.9      18.9  78.5      49.6 20    17.9    17.6    21.9  11.9
Westhoff et al., 2011 X  X  X X X

Table 3. Comparison of the 10 best features selected by random forest to the peaks identified by the study of 
Westhoff et al. (2011) using rank sum test.

The peaks are ordered by the rank of the Gini index generated during the training of the random forest model. 
Additionally, the coordinates in the multi-capillary column-ion mobility spectrometry chromatogram, the inverse 
drift time (1/K

0
) and the retention time (RT) are shown.

Figure 3. Result of the feature selection of the linear support vector machine (SVM) and the random forest, on 
the chronic obstructive pulmonary disease vs healthy controls classification. Depicted are the 10 best features 
according to their weights generated by the linear model (left) and the Gini index provided by the random forest 
(right). The right side of each Figure lists the names of peaks/volatile organic compounds.
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Both best feature subsets did not overlap. This resulted from the unequal underlying 
mathematical approaches, in one case a linear model, in the other a non-linear. Additionally, 
we compared both subsets to the peaks identified by the study of Westhoff et al. (2011) us-

ing the rank sum test. Interestingly, five of the compounds found in this study have also been 
found to be important by random forest. This indicates that further analysis of the compounds 
found by the variable selection performed is promising, especially for the peaks 48, 79, 98, 
100, and 103. Another study by Bessa et al. (2011) analyzed a data set of 13 COPDs and 33 
HCs, and reported a peak at position 1/K

0
 = 0.50 and RT = 26 to be the best discriminant for 

that classification purpose with 100% accuracy. However considering 120 VOCs and only 46 
training and evaluation data sets, does not allow for any save conclusions at this point. 

COPD+BC classification

Table 4 depicts the classification results of this three-class problem. Prediction quality 
was low (accuracy ≈ 70%) for each of the applied machine learning techniques, except random 
forest (accuracy ≈ 79%). The AUC dropped by at least ten percent for all of the methods ex-

cept naive Bayes, which may be due to its simplicity and its robustness. Therefore, it remains 
unclear whether the data’s information content is high enough for distinguishing the three 
groups of volunteers.

Method AUC Accuracy COPD   COPD+BC

   Sensitivity Specificity Sensitivity Specificity

Decision tree 70 60 23 82 69 65
Linear SVM 71 59   0 93 80 48
Naive Bayes 75 62 43 79 61 72
Neural net 73 61 20 82 69 62
Radial SVM 73 62   0 91 78 57
Random forest 79 67   6 99 85 55

The class-specific sensitivity and specificity assessed for class COPD, as well as COPD+BC, is based on the equations 
discussed in the Methods section. AUC = area under the curve. COPD = chronic obstructive pulmonary disease. 
COPD+BC = COPD + bronchial carcinoma. SVM = support vector machine.

Table 4. Results of the three-class-classification problem, evaluating the differences between COPD patients, COPD 
patients suffering from bronchial carcinoma, and the control group. 

In fact, all of the methods showed a very low sensitivity for the COPD class, which 
indicates that the differentiation between class COPD and COPD+BC is a difficult problem 
using all of the methods. While the methods were still able to identify the HCs in a quite robust 
manner, most of the measurements of COPD patients were falsely predicted to suffer from 
both COPD and bronchial carcinoma, i.e. class COPD+BC. This was due to the fact that the 
number of BC patients was almost double the number of patients solely suffering from COPD. 
This is not surprising, since the cause of both diseases is highly dependent on the smoking 
behavior of the patients, and both are reported to be strongly related to each other. This is 
also supported by Young et al. (2009), where they identified COPD as a common and impor-
tant independent risk factor for lung cancer. The prevalence of the different groups of COPD 
within lung cancer goes up to 60% (Young et al., 2009). Consequently, we can assume that the 
probability for each of the COPD patients to get a bronchial carcinoma is comparatively high. 
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Hence, we cannot exclude the possibility that an early stage bronchial carcinoma might have 
been undetected, particularly since most types of lung cancer are detected in late stages in the 
majority of cases.

Although there has been no study using modern machine learning methods on COPD 
MCC/IMS chromatograms, there were two studies for MCC/IMS data about BC patients. One 
study applied naive Bayes, multi layer perceptron, and SVM to a set of MCC/IMS chromato-

grams and achieved an outstanding performance (accuracy and AUC both 99%) (Baumbach 
et al., 2007). Despite the good results, one has to consider that 1) the prediction was done on 
a comparatively large feature set, where each chromatogram was separated by a grid, while 
each feature was calculated as the average intensity of the corresponding grid element, and 2) 
the accuracy and AUC were evaluated on the training set, without cross validation, as in the 
study of Westhoff et al. (2011). Another study used relational probabilistic learning for the 
extraction of Markov logic network formulas and achieved a cross validation accuracy of up 
to 90% during classification (Finthammer et al., 2010). Unfortunately, a comparison with the 
results of the peak selection of those two methods is difficult, as the authors did not make the 
peak or grid positions publicly available. Besides, no further information on additional medi-
cal conditions of the patients, such as COPD, was known.

Another problem for the analysis of COPD measurements is the medical COPD cat-
egorization itself. The patients were categorized with respect to the severity of their COPD 
disease, which is done according to a defined set of rules and tests. In addition, clinical prac-

tice and the subjective impression of the physician play an important role, as well as other 
factors that can influence the compounds in human breath, such as diet, smoking, and other 
secondary diseases, that have not necessarily been tested.

CONCLUSION

Ion mobility spectrometry data of human breath can generally be utilized for dis-

tinguishing between lung diseases if used properly with statistical learning environments. 
To demonstrate this, we evaluated sophisticated machine learning techniques on MCC/IMS 
chromatograms regarding their classification performance and ability to identify the most 
important molecular compounds. Therefore, the breath of 84 patients either suffering from 
COPD or both COPD and bronchial carcinoma was processed and compared with 35 healthy 
volunteers. The by far best test error estimates (AUC 91%, ACC 94% for COPD vs HC; 
AUC 79%, ACC 67% for COPD vs COPD+BC vs HC) were achieved with the random forest 
method. These results pinpoint a strong potential to separate healthy from COPD, but also sug-

gest that a further examination of the differences between COPD and COPD+BC is needed. 
Linear SVM and random forest extracted 20 important VOCs, while five of them were con-

firmed to have discriminative properties regarding COPD and healthy IMS chromatograms 
in other studies.

In the future, we plan to determine whether these 20 molecules are biologically related 
to COPD and to eliminate those that are related to diet or other environmental influences. A 
further objective is to optimize and enhance the standardized learning methods for enhancing 
prediction performance, on the one hand, and the identification of the smallest discriminating 
set of biomarkers, on the other hand. This will be a tremendous progress in the field of COPD 
and cancer diagnostics. However, larger COPD+BC data sets are necessary here.
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