
32

Integrated Task and Interrupt Management for Real-Time Systems

LUIS E. LEYVA-DEL-FOYO, Universidad Autónoma Metropolitana—Unidad Cuajimalpa

PEDRO MEJIA-ALVAREZ, CINVESTAV-IPN

DIONISIO DE NIZ, Carnegie Mellon University

Real-time scheduling algorithms like RMA or EDF and their corresponding schedulability test have proven
to be powerful tools for developing predictable real-time systems. However, the traditional interrupt man-
agement model presents multiple inconsistencies that break the assumptions of many of the real-time
scheduling tests, diminishing its utility. In this article, we analyze these inconsistencies and present a
model that resolves them by integrating interrupts and tasks in a single scheduling model. We then use the
RMA theory to calculate the cost of the model and analyze the circumstances under which it can provide the
most value. This model was implemented in a kernel module. The portability of the design of our module is
discussed in terms of its independence from both the hardware and the kernel. We also discuss the imple-
mentation issues of the model over conventional PC hardware, along with its cost and novel optimizations
for reducing the overhead. Finally, we present our experimental evaluation to show evidence of its temporal
determinism and overhead.

Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design—Real-time

systems and embedded systems; D.4.1 [Operating Systems]: Process Management—Scheduling, threads;
D.4.4 [Operating Systems]: Communications Management—Input/output; D.4.8 [Operating Systems]:
Performance—Modeling and prediction

General Terms: Algorithms, Design, Experimentation, Performance

Additional Key Words and Phrases: Predictability, interrupt scheduling, programmable interrupt controller

ACM Reference Format:

Leyva-del-Foyo, L. E., Mejia-Alvarez, P., and de Niz, D. 2012. Integrated task and interrupt management
for real-time systems. ACM Trans. Embed. Comput. Syst. 11, 2, Article 32 (July 2012), 31 pages.
DOI = 10.1145/2220336.2220344 http://doi.acm.org/10.1145/2220336.2220344

1. INTRODUCTION

Most real-time systems interact with the physical world. This interaction needs to be
tightly synchronized in order to obtain the effect the system is trying to get in the phys-
ical world, for example, inflating the airbag of a car in a crash. When this interaction
involves asynchronous events, interrupts are commonly used. Such interrupts need to
have predictable timing behavior and the capacity to enable the rest of the system to
be equally predictable.

This research was supported in part by a grant from NSF, CONACYT, and PROMEP from project NSF-
CONACYT 42449 and project UAM-PTC-141.
Authors’ addresses: L. E. Leyva-del-Foyo, Departamento de Tecnologı́as de la Información, Universidad
Autónoma Metropolitana—Unidad Cuajimalpa, Avenida Constituyentes 1054, México, D.F., C.P. 11950;
email: lleyva@correo.cua.uam.mx; P. Mejia-Alvarez, Departamento de Computación, CINVESTAV-IPN,
México D.F., Av. IPN 2508 México, C.P. 07360 D.F; email: pmalvarez@delta.cs.cinvestav.mx; D. de Niz, Soft-
ware Engineering Institute, 4500 Fifth Avenue, Pittsburgh, PA 15213.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of
this work in other works requires prior specific permission and/or a fee. Permissions may be requested from
the Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1539-9087/2012/07-ART32 $15.00

DOI 10.1145/2220336.2220344 http://doi.acm.org/10.1145/2220336.2220344

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

32:2 L. E. Leyva-del-Foyo et al.

Two forms of asynchronous activities are found in real-time systems: tasks and
interrupt service routines (ISRs). Each of these activities has its own independent
scheduling and synchronization policies and mechanisms. In particular, the interrupts
mechanism schedules the execution of ISRs in response to the occurrence of external
asynchronous events, called interrupt requests (IRQs). On the other hand, the operat-
ing system (OS) schedules the execution of tasks in response to their arrival to a ready
queue.

In order to obtain a high-efficiency and low-latency interrupt response time, general-
purpose (and also real-time) operating systems provide a set of mechanisms to handle
interrupts totally independent of those used for task management. While this scheme
is adequate for high-throughput systems, for example, Web and database servers, in
critical real-time systems, the differences in the scheduling and synchronization be-
tween ISRs and tasks create problems of mutual interference that can jeopardize the
predictability of the system.

Tasks are abstractions of the concurrency model supported by the kernel, and the
responsibility of their management lies completely on the kernel itself, providing ser-
vices that create, delete, communicate, and synchronize tasks. On the other hand,
interrupts are abstractions of the computer’s hardware and the responsibility for their
management lies with the hardware logic of a specialized circuit. This hardware is
responsible for providing services to assign IRQs to ISRs, perform context switching
between tasks and ISRs, and enable and disable IRQs.

The interrupt-handling hardware is responsible for ISR scheduling, according to
their hardware priorities. Tasks, on the other hand, are scheduled by the kernel ac-
cording to their software priorities. In the traditional interrupt mechanism, hardware
priorities have precedence over software priorities, because this mechanism was orig-
inally designed for general-purpose systems in which the only activities with strict
timing requirements are interrupts. This arrangement provides low latency to inter-
rupts, avoiding data losses while other tasks are executing. However, in real-time sys-
tems where all activities (tasks and interrupts) may have strict timing requirements,
this scheme introduces unpredictability that may jeopardize the temporal guarantees
demanded by these tasks.

The synchronization among tasks is done by mechanisms provided by the operating
system (e.g., semaphores, mutexes, messages, mailboxes, etc.). In contrast, synchro-
nization among ISRs is reduced to the mutual exclusion achieved with the help of their
own hardware priorities.

In most common designs, a priority is assigned to each IRQ, allowing the arrival
of higher-priority requests during the execution of an ISR. In this scheme, known as
nested interrupts, each ISR is executed as a critical section with respect to itself, to
lower priority ISRs, and with respect to the tasks. Although the ISRs are automatic
critical sections with respect to the tasks, the opposite is not true. The mechanisms
used to guarantee exclusive access to critical sections among tasks do not guarantee
exclusive access of the tasks against ISRs. The mutual exclusion between ISRs and
tasks is only achieved by disabling interrupts.

In order not to affect the system’s response time to urgent interrupts, interrupts are
disabled by priorities. That is, a disable threshold (a.k.a. IRQ level) is set to delay
the occurrence of an interrupt of a priority lower or equal to the threshold, until that
threshold is lowered again. In general-purpose systems, the synchronization by inter-
rupt disabling is adequate, because no task ever needs to preempt an ISR. However,
in real-time systems, it is possible for a task to have a higher priority than an ISR.
Hence, a selective protection against ISR preemptions is needed to allow some ISRs to
preempt a task while disallowing others.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

Integrated Task and Interrupt Management for Real-Time Systems 32:3

In this article, we propose a strategy that integrates both types of asynchronous ac-
tivities, resolving the previously discussed issues. The contributions are the following.

— An integrated strategy for the management of interrupts and tasks for real-time
systems.

— The evaluation of the integrated scheme using utilization and response-time
schedulability analysis. The purpose of this evaluation is to help the designers un-
derstand the conditions that make our scheme more valuable.

— The design of a portable low-level subsystem for interrupt management for real-
time systems based on the integrated model.

— The implementation of the integrated model over a conventional PC hardware us-
ing virtual interrupt masking with an analysis that shows the applicability of this
technique to real-time systems.

The rest of the work is organized as follows. Section 2 discusses the mutual interfer-
ence between tasks and interrupts management in the traditional interrupt handling
strategy. In Section 3, our integrated interrupt handling strategy is introduced. In
Section 4, a schedulability analysis is conducted to compare both strategies. The
design of a portable kernel subsystem based in this integrated model is presented in
Section 5. The rationale for an implementation over conventional PC hardware, using
interrupt masking is presented in Section 6, as well as the analysis of its overhead.
In Section 7, we present latency and efficiency improvement using virtual interrupt
masking. A detailed design with the pseudocode of the implementation is presented
in Section 8. Section 9 presents our experiments to demonstrate the deterministic
behavior of our integrated model. In Section 10, the related work is discussed and
compared with our model. Finally, Section 11 presents our conclusions.

2. MUTUAL INTERFERENCE IN THE TRADITIONAL MODEL IN REAL-TIME SYSTEMS

Since the traditional model of interrupt handling is strongly supported by hardware,
it yields a fast response to external events and a low overhead. Consequently, it has
been the method of choice in most real-time operating systems. However, its use causes
interference from interrupts to tasks and vice versa. This is discussed next.

2.1 Priority Interference

The assumption that the timing execution requirements of an ISR have higher impor-
tance than those of a task does not hold in real-time systems. In fact, the response-time
requirement of a real-time task may be even shorter than that of some ISRs. In such a
case, it may be necessary to assign a higher priority for task than to some (or all) ISRs.
For example, the tasks with high priorities may be under the disturbance of hardware
events necessary only for low-priority tasks. On the other hand, these low-priority
tasks associated with interrupts may not be able to execute due to temporal overloads
(e.g., due to frequent hardware events), even though their associated ISRs are being
executed. This arrangement affects the capacity to meet the real-time requirements of
the system, causing a potentially large priority inversion and decreasing its utilization
bound.

2.2 Interrupt Latency Interference

Perhaps the most significant argument against the traditional model can be found
in its main objective, that of reducing interrupt latency to the minimum possible. In

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

32:4 L. E. Leyva-del-Foyo et al.

order to reduce this latency, the kernel disables interrupts only for brief periods of time.
Nevertheless, this approach cannot prevent the applications from disabling interrupts,
because this is the only way to synchronize tasks and ISRs. As a result, the system’s
response time to the interrupts cannot be smaller than the maximum time in which
the interrupts are disabled anywhere in the system. Since the application (or a device
driver) is capable of disabling the interrupts for more time than the kernel, the worst
case interrupt latency would be the sum of the latency introduced by the CPU plus
the worst case time on which the interrupts are disabled by the application. Thus,
even though the kernel can establish a lower bound in the interrupt latency, it cannot
guarantee its worst case latency. Evidence of this fact is discussed in Carlsson et al.
[2002].

2.3 Mutual Exclusion Interference

In the traditional interrupt model, mutual exclusion between tasks and interrupts is
achieved by disabling interrupts. In order not to affect non-related interrupt sources,
many systems disable interrupts by levels. In this scheme, while a low-priority task
raises the interruption level to a medium level, in order to enter a critical section that
it shares with an ISR of medium level, an interrupt of high level could be occurring
to activate a high-priority task, preempting the low-priority task. This context switch
activates the IRQ level previously saved for the high-priority task, potentially caus-
ing a decrease on the IRQ level. This change reenables the occurrence of medium-level
IRQs, effectively destroying the interrupt lock of the low-priority task. In order to avoid
this situation, the kernel could maintain the state of the interrupts without changes
when executing a context switching. However, this approach affects the predictability
of the system, because the tasks would be executed with several states of interrupts,
depending on which task has been preempted. The alternative is to force the tasks to
always set the IRQ level to the highest possible for disabling all preemptions. Never-
theless, this alternative increases the context switch (or preemption) latency, creating
an unintended priority inversion.

2.4 Sequencing Interference

In order to minimize the unpredictability caused by interrupts, the traditional inter-
rupt model splits the system response to interrupts into at least two parts: the ISR
and a task in the OS. In this approach, an ISR will make at least one call to the kernel
to indicate the occurrence of some event. This call usually enables the execution of a
task of higher priority than the current task, which is in charge of responding to the
external event. If a context switch is executed before the ISR completes, the rest of
the ISR cannot be resumed until the interrupted task is executed, leaving the system
in an unstable state. Consequently, if these OS services are invoked within an ISR,
the kernel must postpone any context switch until the end of the ISR. All solutions
proposed for solving this problem introduce an excessive priority inversion effect due
to the context switching or exhibit a temporal behavior that is very difficult to model
and to predict [Tindell 1999].

2.5 Synchronization Constructs Interference

The difference in the synchronization needs of the two asynchronous activities gener-
ates a large number of synchronization situations among tasks and interrupts that
cannot be independently analyzed. This increase in the complexity of the solution
increases the likelihood of design errors negatively affecting the reliability of the
system.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

Integrated Task and Interrupt Management for Real-Time Systems 32:5

3. INTEGRATED MECHANISM FOR TASKS AND INTERRUPTS HANDLING

In this section, we present a solution to the mutual interference problems previously
discussed. Our approach includes the following features.

(1) Integration of tasks and ISRs in a single priority space.
(2) Development of a unified mechanism of scheduling and synchronization.

The integrated mechanism includes a unified and flexible space of dynamic pri-
orities for all the activities in the system. With this model, we have software acti-
vated tasks (SAT) and hardware activated tasks (HAT). SATs are the traditional soft-
ware tasks, while HATs replace the traditional ISRs to handle interrupts. Under this
scheme, both task types are handled with the same mechanisms, allowing the assign-
ment of priorities to all the activities of the real-time system in correspondence only
with their timing requirements. With this approach, the following advantages are
obtained.

— SATs and HATs share the same space of priorities and at any time may have any
priority in the system.

— Priority interference associated with the independent priority space is avoided
(Section 2.1).

— The implementation of an enter/leave protocol for disabling ISRs in the kernel is
avoided, preventing mutual exclusion interference (Section 2.3).

— The error of the broken interrupt lock (resulting from the task switching) is
eliminated (Section 2.3).

— Interrupt overloads can be handled using some scheduling techniques, such as the
sporadic server.

The integration of the synchronization mechanism is obtained by handling all IRQs
with a universal low-level interrupt handler (LLIH) at the lowest level. This LLIH
synchronizes the interrupt disabling with the priority of the running task and converts
all interrupts into synchronization events using the abstractions of communication
and synchronization among tasks. In this model, the HATs remain blocked until an
IRQ occurs, for example, by executing wait() on a semaphore or a condition variable
related to the IRQ (for schemes based on communication by shared memory), or by
executing receive() to accept messages (for message-passing schemes). When an IRQ
occurs, the LLIH only unblocks the task. Key to the integrated model is the fact that
the LLIH is only activated (and consume CPU) if the priority of the corresponding HAT
is high enough to preempt the currently running task.

This approach provides an abstraction that assigns the low-level details of the inter-
rupt treatment to the kernel (instead of the hardware) and eliminates the differences
between HATs and tasks. The real service of the interrupt lies within the HAT, making
it unnecessary for the kernel to handle interrupts any differently from tasks.

The existence of only one type of asynchronous activity and a uniform synchroniza-
tion and communication mechanism between tasks and ISRs provide a solution to the
mutual interference problems discussed in Section 2 with the following advantages.

— The scheduling of IRQs is not performed by the PIC but by the task scheduler of the
kernel (through the unified priority scheme).

— Interrupt disabling by the application is avoided. This allows the kernel to guaran-
tee the worst case response time to external events (Section 2.2).

— HATs are executed in an environment where they may invoke, without restrictions,
any service of the kernel or use any library. This lack of restrictions prevents mutual
exclusion and sequencing interference between tasks and interrupt handlers, as
discussed in Sections 2.3 and 2.4.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

32:6 L. E. Leyva-del-Foyo et al.

— The development and maintenance of the system is simplified (Section 2.5), because
there is only one mechanism for synchronization and communication among coop-
erating activities.

This integrated design allows for the use of interrupts without jeopardizing the
temporal determinism of the system. Also, the decrease in the complexity of this in-
tegrated design decreases the likelihood of errors favoring the development of reliable
systems. Overall, this scheme allows for the development of robust and predictable
systems.

4. SCHEDULABILITY ANALYSIS

In this section, we develop a schedulability analysis to evaluate both the traditional in-
terrupt management model and our integrated model. We first analyze the decrease in
the utilization bound and the response time of the traditional model, then the decrease
in the utilization bound due to context switching in the integrated model. Finally, with
this analysis, we evaluate the conditions under which one model is more appropriate
than the other. It is worth noting that the scheduling of interrupt requests in the
integrated model can be used with any priority-based scheduling algorithm. The in-
tegrated model provides a set of independent services that can be used with static or
dynamic priority algorithms. However, due to the fact that the traditional interrupts
model restricts the scheduling of interrupt requests to fixed priority, from here on, we
will use RM scheduling for the comparisons and evaluation of our scheme.

4.1 Decrease in the Utilization Bound in the Traditional Model

According to the real-time scheduling theory, a task ti (from a set of N tasks) is schedu-
lable if the following holds.

Ulub ≥ Ui, (1)

where Ulub is the least upper utilization bound, which is i(21/i-1) for rate monotonic
scheduling (RMS) or 1 for earliest deadline first (EDF). Ui is the CPU level-i cumu-
lative utilization, that is, the utilization due to task ti, plus the utilization from the
interference of higher-priority tasks. This can be computed as

Ui =
Ci

Ti

+
∑

j∈P(i)

C j

T j

, (2)

where Ci and Ti denote the execution time (including any system overhead) and the
period of task ti, respectively, and P(i) denotes the tasks with priorities higher than the
priority of ti.

In the traditional model, the timing disturbance of the ISRs on the scheduling of
task ti due to the separate priority space can be described using the Generalized Rate-
Monotonic Scheduling Theory [Klein et al. 1989]. There are two types of such distur-
bances, as shown in Figure 1.

— Disturbance due to interrupts, with minimum interarrival times smaller than that
of task ti and associated with non-real-time tasks. It is called disturbance, due to
non-real-time tasks. For each task ti, let S(i) be the set of ISRs tS

k of this kind, each

one with computation time CS
k and period TS

k < Ti. The utilization of an ISR tS
k in

S(i) is given by CS
k / TS

k .
— The disturbance associated with ISRs with hard timing requirements but with min-

imum interarrival times greater than that of task ti. This disturbance is known as
rate monotonic priority inversion. For each task ti, let L(i) be the set of ISRs tL

k with

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

Integrated Task and Interrupt Management for Real-Time Systems 32:7

Fig. 1. Disturbances due to the separate space of tasks and ISRs.

these characteristics and CL
k be its computation time. Since the interarrival times

of these interrupts TL
k are greater than Ti, they can preempt ti only once, that is,

at each instance. In consequence, the worst case utilization due to an ISR in L(i) is
CL

k / Ti.

The equation for the utilization bound considering these two disturbances is as

Ui =

⎛

⎝

Ci

Ti

+
∑

j∈P(i)

C j

T j

⎞

⎠ +

⎛

⎝

∑

k∈S(i)

CS
k

TS
k

+
1

Ti

∑

k∈L(i)

CL
k

⎞

⎠ . (3)

The first two terms of the equation are identical to those of Equation (2). There-
fore, the third and fourth terms are the decrease on the least upper utilization bound
produced by the use of an independent space of interrupt priorities. Let us call this
utilization decrease UiS, then Equation (1) can be rewritten as

Unet = Ulub − Uloss ≥ Ui, (4)

where the utilization loss Uloss = UiS is computed by

UiS =
∑

k∈S(i)

CS
k

TS
k

+
1

Ti

∑

k∈L(i)

CL
k . (5)

In order to minimize UiS, the execution time of the ISRs (CS
k ,CL

k) must be minimized.
In this way, an ISR will perform the minimum processing necessary and activate a
task. Once activated, this task will execute (as other tasks) under the control of the
kernel scheduler, assigning a priority to the task according to its timings requirements.

Although this arrangement minimizes the disturbance produced by the ISRs, it does
not solve the predictability problem, because it is not possible to predict the frequency
of the interrupts from all devices in the system. Too many interrupts occurring during

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

32:8 L. E. Leyva-del-Foyo et al.

a short time interval make the system unpredictable and may cause some tasks to
miss their deadlines.

In order to address this problem, some systems include additional mechanisms to
set a bound on the number of the interrupts during certain time intervals [Regnier
et al. 2008]. However, it is clear that these mechanisms introduce an additional
overhead.

4.2 Increase in the Response Time

In the traditional scheme, the response time of an event is equal to the worst case
response time of the task that communicates with the ISR. The existence of two spaces
of priorities causes an increase on the response time of the tasks. The response time
Ri of task ti with execution time Ci and minimum interarrival time Ti can be computed
by the following recurrence equation [Joseph and Pandya 1986].

Rn
i = Ci + Bi +

∑

j∈P(i)

⌈

Rn−1
i

T j

⌉

C j, (6)

where Rn
i denotes the nth iterative value (R0

i = Ci), Bi is the blocking time of task
ti, and P(i) is the set of tasks with higher priority than that of ti. The third term in
Equation (6) denotes the total interference suffered by ti from tasks in the P(i) set. This
iterative process ends successfully when Rn−1

i = Rn
i or unsuccessfully when Rn

i > Di,
where Di denotes the deadline of task ti. In order to consider the effect of the two spaces
of independent priorities in the response time of task ti, we must add to Equation (6)
the interference of the ISR sets S(i) and L(i) to the response time of task ti. Adding this
interference to Equation (6), we have

Rn
i =

⎛

⎝Ci + Bi +
∑

j∈P(i)

⌈

Rn−1
i

T j

⌉

C j

⎞

⎠ +

⎛

⎝

∑

k∈S(i)

⌈

Rn−1
i

T j

⌉

CS
k +

∑

k∈L(i)

CL
k

⎞

⎠ . (7)

The first section of Equation (7) includes three terms identical to those of Equa-
tion (6). The remaining terms (second section) denote the disturbance due to the use
of an independent space of priorities on the response time Ri. However, since Equa-
tion (7) is a recurrence equation, we cannot quantify the terms of both sections sep-
arately, as is done in the utilization case (Section 4.1). It is important to note that a
small increase in the second section of the equation can produce a big increase in the
response time of the task.

4.3 Overhead in the Integrated Model

The drawback of the integrated model is the overhead introduced by the context
switching of the HATs (that were treated before as ISRs). This overhead causes a
decrease in the utilization bound.

To calculate the difference between the traditional and the integrated model, we
first calculate the overhead of the traditional model. Let H(i) be the set of all activities
tH

j with execution time CH
j and minimum interarrival time TH

j smaller than the period

Ti of task ti, which are handled by an ISR in the traditional model. Let δ I be the total
CPU time for the enter/leave code of the ISR needed to save and restore the state of the
CPU and keep track of the nesting of the ISRs. Let cH

j be the execution time from the

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

Integrated Task and Interrupt Management for Real-Time Systems 32:9

interrupt handler itself. Then, the total execution time of an ISR in the H(i) set can be
computed by CH

j = cH
j + δ I. Therefore, Equation (2), including δ I, can be rewritten as

U I
i =

Ci

Ti

+
∑

j∈(P(i)−H(i))

C j

T j

+
∑

j∈H(i)

cH
j + δ I

TH
J

. (8)

Since all activities in the H(i) set in the integrated model are treated as HATs, their
context switching time must be included. Let δP be the context switching time. Then,
the execution time CH

j of a HAT in the H(i) set can be denoted by CH
j = cH

j + 2δP. In

consequence, Equation (2), including δP, can be rewritten as

U P
i =

Ci

Ti

+
∑

j∈(P(i)−H(i))

C j

T j

+
∑

j∈H(i)

cH
j + 2δ p

TH
J

. (9)

Therefore, the decrease in utilization
(

Uloss = U PI
i

)

due to the overhead produced by
the activities in the H(i) set as HATs is given by

U PI
i = U P

i − U I
i =

∑

j∈H(i)

cH
j + 2δ p

TH
J

−

∑

j∈H(i)

cH
j + δ I

TH
J

U PI
i =

∑

j∈H(i)

2δP − δ I

TH
J

. (10)

The overhead of the integrated model will be smaller than the one caused by the
priority inversion of the traditional model if the following condition holds.

U PI
i < UiS. (11)

Following Equation (11), if we compare the decrease in the utilization bound of the
traditional interrupt model UiS (Equation (5)) against the decrease introduced by the

integrated interrupt model U PI
i (Equation (10)) due to the additional overhead in con-

text switching, it is possible to observe that in most of the cases, the savings obtained
using the traditional model are far smaller than those of the integrated model because
of the potentially large priority inversion introduced in the traditional model.

In any case, it could be possible to design a hybrid model with a configuration in
which some activities are treated as ISRs and others as HATs to satisfy the condition
stated in Equation (11). For instance, since the timer interrupt always has the high-
est priority in the system and will never be handled by the application, it could be
considered as an ISR. This reduces the H(i) set, therefore reducing U PI

i .

5. DESIGN OF THE LOW-LEVEL INTERRUPT MANAGEMENT SYSTEM

In this section, we describe the design of the integrated interrupt management sys-
tem described in Section 3. The UML diagram of Figure 2 shows the relationships
among the components involved in the interrupt management system. All kernel com-
ponents that communicate with the interrupt management system use the iKRNLINT
interface.

The interrupt management system is divided into two components: KRNLINT
(kernel interrupt management) and INTHAL (interrupt hardware abstraction layer)
The KRNLINT contains the hardware-independent management code. The INTHAL,
on the other hand, contains the hardware-dependent management code. All commu-
nication between KRNLINT and INTHAL occurs through the iINTHAL interface.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

32:10 L. E. Leyva-del-Foyo et al.

Fig. 2. INTHAL component interfaces.

5.1 Kernel Interrupt Management Component

The KRNLINT component supplies the low-level mechanisms to allow the rest of the
system (specifically the scheduling modules and the synchronization and communica-
tion modules) to treat the interrupts using the same scheduling and synchronization
policies than those used for the real-time tasks. The responsibilities of this component
are the following.

— To enable the association of synchronization objects (i.e., semaphores, mailboxes,
etc.) with each one of the IRQ lines (addSync() in Figure 2). These synchronization
objects are identified by a single synchronization identifier (syncId).

— To generate a signal for the synchronization objects each time an IRQ arrives.
— To supply mechanisms for interrupt management.

The KRNLINT component creates the kernel interrupt abstractions, which are iden-
tified by a predefined interrupt identifier of type irqId. Each kernel interrupt is asso-
ciated with a priority within the unified space.

5.2 Interrupt Hardware Abstraction Layer

The INTHAL component provides interrupt management at the lowest level. It is
in charge of those aspects that depend on the interrupt hardware. The goal of this
component is to provide an abstraction to make the system as independent as pos-
sible from the computer architecture. The responsibilities of this component are the
following.

— To provide a set of interrupt request lines independent of the hardware architecture
that go from IRQ0 to IRQn (only n depends on the hardware architecture).

— To provide an interface to set the priorities for each IRQx lines, independently of
the interrupt hardware.

— To provide the capacity for setting an IRQ level under which interrupts are disabled.

The priorities for each IRQ can be set between 0 and the highest scheduling prior-
ity (in our implementation, it is 255). The value 0 indicates that the related IRQ is
disabled.

When the system is started, all IRQs are in an ignored state. An IRQ changes to a
captured state when the kernel requests attention to the IRQ explicitly by invoking an
enableIrq() service. A captured IRQ can be in an enabled or disabled state. It is enabled

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

Integrated Task and Interrupt Management for Real-Time Systems 32:11

when their IRQ level is above the current IRQ level. The activation of the captured and
enabled IRQs produces the invocation of the IRQHandler() kernel routine. An IRQ is
disabled when its level is below or equal to the current IRQ level (so the IRQHandler()
is not invoked).

Once an IRQ is captured, its priority can be modified using setIrqPriority(irq, pri-
ority). The current IRQ level can be set at any moment using setIrqLevel(priority).
All IRQs with a priority below the system IRQ level are disabled. After an IRQ has
been captured and each time it is triggered, if its priority is higher than the current
system IRQ level, then the control is transferred to the IRQHandler(irq) (passing the
corresponding IRQ as a parameter).

This design allows the kernel to be independent of the interrupt hardware. Sev-
eral alternative modules of the INTHAL can be implemented, each one for different
interrupt hardware architectures. A possible implementation may use an FPGA to
implement a custom programmable interrupt controller (CPIC) that cooperates with
the kernel to jointly schedule tasks and IRQs. This implementation would introduce
a minimum overhead, but it is not possible on systems with conventional interrupt
hardware.

6. IMPLEMENTATION OVER CONVENTIONAL PC INTERRUPT HARDWARE

In this section, we provide an implementation over the conventional PC hardware.
First, for the sake of completion, we provide an introduction of the interrupt hardware
in order to understand the remainder of this section.

6.1 Conventional Interrupt Hardware Overview

Computer systems using the Intel family processors and compliant with the industry
standard use an interrupt hardware composed of two programmable interrupts con-
trollers (PIC) 8259A chips (or equivalent inside the motherboard chipset) connected in
cascade (through the IRQ2 of the first 8259A – master PIC). This configuration pro-
vides 16 IRQ lines (IRQ0. . . IRQ15).

Each 8259A can control eight prioritized IRQ lines and has several internal 8-bit
registers that affect its operation. The most important registers for our scheme are (1)
the interrupt request register (IRRE) in which each bit set in this register indicates
that the corresponding IRQ line has signaled an interrupt; (2) the interrupt mask
register (IMRE) in which each bit set in this register indicates that the corresponding
IRQ line is masked (or disabled), otherwise it is enabled (or unmasked); and (3) the
interrupt service register (ISRE) in which each bit set in this register indicates that the
corresponding IRQ is being serviced.

The bits in the ISRE register are set when the processor acknowledges the corre-
sponding IRQ issued by the PIC. This acknowledgment protocol is controlled by the
hardware. The software can only disable it by clearing the processor’s global interrupt
flag (disabling all interrupts). The IRRE keeps track of the interrupts that are in ser-
vice in the CPU so that when an IRQ arrives, it does not cause an interrupt to the CPU
while higher- or equal-priority interrupts are being serviced.

A bit in the ISR can be cleared (producing the enabling of lower or equal priority
interrupts) according to the following end of interrupt (EOI) modes.

— Normal (or explicit) EOI mode. The ISRE’s bits are cleared when the (interrupt
service routine) software issues an EOI command to the PIC.

— Automatic EOI mode. The ISRE’s bit, which corresponds to the requested IRQ, is
automatically cleared when the CPU acknowledges the interrupt request. After
that, the 8259A can send another lower or equal-priority request to the processor,
interrupting the previous one.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

32:12 L. E. Leyva-del-Foyo et al.

Most commercial operating systems use the normal EOI, because it allows the PIC
to control the priority of the IRQs.

6.2 Emulation Using Physical Interrupt Masking

Neither the 8259A traditional programmable interrupt controller (PIC) nor the modern
advanced PIC (APIC) included in the recent PCs supports the joint scheduling with the
kernel of the interrupt requests required by the integrated model.

To cope with this problem, the INTHAL cancels the built-in hardware interrupt pri-
orities and establishes an interrupt priority scheme compatible with the kernel sched-
uler. This is accomplished in two stages.

(1) Cancellation of the PIC’s automatic priority handling. Essentially, the INTHAL
must ensure that the ISRE registers of both 8259A are set to allow all IRQs enabled
explicitly by the IMREs. This is possible by capturing all ISRs and using one of the
following EOI modes.
— EOI Mode. Sending the end of interrupt command (EOI) to the 8259A controller.
— AEOI Mode. Using the 8259A automatic end of interrupt operation mode.

(2) Software Priority Management. Once each IRQ occurs, the INTHAL must explic-
itly set the IMRE registers of each 8259A with a mask to disable all IRQs with
lower or equal priority (including the current IRQ) and enable all IRQs with higher
priorities.

This emulation is handled by the INTHAL, which is in charge of maintaining the
state of a virtual custom programmable interrupt controller (VCPIC) capable of sup-
porting the integrated model. The VCPIC keeps a table with the current priority for
each IRQ and the current system priority level. Any time there is a change in the sta-
tus of the VCPIC, the INTHAL calculates and sets the appropriate mask for the IMRE
of the two 8259A interrupt controllers.

Figure 3 shows an UML sequence diagram illustrating the elements involved on
the interrupt treatment and their sequence of events (and messages) produced when
an interrupt occurs. In the left side of the figure, two hardware elements are de-
picted: the device which issues the interrupt and the PIC 8259. The other hardware
element involved is the CPU. Instead of depicting the CPU, we are depicting the soft-
ware elements involved in the interrupt request: the VCPIC (INTHAL) and KRNLINT
components of the kernel, as well as the synchronization object associated with the in-
terrupt (IRQx Sync Object) and the HAT which handles the request from the device
(IRQxHAT).

Note that, at the right side of the figure, IRQxHAT is handling the interrupt by
invoking the wait() operation on the associated object IRQxSync Object (message 1).
This operation blocks the task until the IRQ occurs (message 2).

When any device issues an IRQ (message 3), the PIC and the CPU interrupt vector
table allow the invocation of the LLIH in the INTHAL by sending the IRQ as an argu-
ment (message 5). The heart of this handler is the integrated priority-space emulation
algorithm (message 6), which uses the 8259 IMRE and the EOI command (messages 7
and 8).

The details of this emulation algorithm will be introduced in the following sections.
The final result of this algorithm is the setting of an adequate priority and the invoca-
tion of the IRQHandler() in KRNLINT (message 9).

The goal of the KRNLINT is to find the synchronization object associated with the
IRQ (message 10) to invoke the signal operation on that object (message 11). The signal
operation will then unblock the task waiting for the interrupt (message 12), which then
will service the IRQ from the device.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

Integrated Task and Interrupt Management for Real-Time Systems 32:13

Fig. 3. Sequence of events upon an IRQ arrival (LLIH’s role).

6.3 Analysis with Physical Masking

The implementation of the VCPIC introduces an additional overhead in context
switching due to the computing (and setting) of the current IRQ level in the system
interrupt hardware. Let δM be this overhead time. Then Equation (9), including δM,
can be rewritten as

U P
i =

Ci + 2δM

Ti

+
∑

j∈(P(i)−H(i))

C j + 2δM

T j

+
∑

j∈H(i)

cH
j + 2δ p + 2δM

TH
J

.

Now the decrease in utilization Uloss = U PI∗ due to the overhead of the integrate
model will become

U PI∗
i =

2δ M

Ti

+
∑

j∈ (P(i)−H(i))

2δ M

T j

+
∑

j∈ H(i)

2δ p + 2δ M − δ I

TH
J

. (12)

As can be noted, implementing the system in this way imposes a performance
penalty. It is worth nothing that even when U PI∗

i is not smaller than UiS, this scheme
has the advantages discussed in Section 3. In systems where the predictability is
so important, this implementation may be an alternative to the interrupts avoidance
[Kopetz et al. 1989]. These applications may trade an increase in overhead for obtain-
ing determinism without sacrificing the benefits of the treatment of external events by
interrupts.

7. USING THE VIRTUAL INTERRUPT MASKING

In this section, we introduce an alternative to the software implementation. It is a
variant of the optimistic interrupt protection model that we called virtual interrupt
masking.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

32:14 L. E. Leyva-del-Foyo et al.

7.1 Optimistic Interrupt Protection

Kernels of general-purpose OS often disable the interrupts to avoid preemptions when
certain code sections modify data shared with ISRs. At the end of these critical sec-
tions, the kernel must enable the interrupts again. With the aim of speeding up this
entry/leave protocol to the critical sections, a technique called optimistic interrupt pro-
tection (OIP) was introduced by Stodolsky et al. [1993] and consists of the following
stages.

(1) When entering a critical section inside the kernel, the protocol sets a software in-
terrupt mask to indicate what interrupts must be masked. The hardware interrupt
mask is not changed.

(2) A prologue code section is located at the entry of all interrupt handlers. This pro-
logue code checks the software interrupt mask to verify if the issued interrupt is
logically masked, and if so, the execution of the remainder of the ISR is deferred to
a later moment.

(3) When leaving the critical section, the protocol checks if there are any pending
interrupts. If this is the case, the control is transferred to the corresponding ISR
before resuming the “normal” computation.

In order to simplify the code, OIP recommends that in the event of a logically
masked interrupt, besides remembering the interrupt request and before returning
the control, the interrupt prologue should update the hardware mask, as specified in
the software mask. In this case, after the deferred interrupts are handled as part of
the leaving protocol of the critical section, the hardware interrupt mask must also be
restored to its original level.

7.2 Adapting OIP to Real-Time Systems

The performance penalty analyzed in Section 6.3 can be decreased substantially if
the OIP approach is adapted to our integrated model. With this technique, when the
system IRQ level is raised from level A to level B, the IRQs with priority levels between
A and B are not really disabled so that these undesired IRQs can occur. If any of these
IRQs occurs, then the IRQ is really masked to avoid future occurrences. Let PC be
the current system priority level, then any IRQ I with priority Pi that occurs in an
undesired way fulfills with the condition Pi ≤ PC.

Unlike the initial idea of optimistic protection, the masking of undesired IRQs (in
the 8259’s IMRE) after their occurrence is not optional for simplifying the implemen-
tation logic but, rather, becomes mandatory. Therefore, the occurrence of a second
undesired IRQ is avoided, and the temporal predictability is guaranteed. In this case,
the IRQ is recorded so that it can be issued when the priority level is low enough. Fur-
thermore, when the system priority PC is decreased, it is necessary to verify whether
an IRQ that has been masked could occur at the new level and, in this case, modify the
mask of those IRQs that should be enabled.

7.3 Adapting the Masking for the Integrated Model

There are three possible ways to carry out the masking of an undesired IRQ I in the
LLIH, all of them guaranteeing a maximum bound in the priority inversion due to the
disturbance of these undesired IRQs.

(1) Masking only the undesired IRQ I that occurred. This masking involves computing
and setting a mask that disables the specific IRQ (without modifying the others).

(2) Masking all IRQs with priorities below or equal to Pi. This option has two ad-
vantages: (1) it is easy to implement because it is only required to set the mask

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

Integrated Task and Interrupt Management for Real-Time Systems 32:15

(precalculated by setIrqPriority()), and (2) when setIrqLevel() is called to raise the
priority level, it does not have to calculate the mask corresponding to the new
priority level (it must be done only when decreasing the priority level). Since se-
tIrqLevel() must be executed at each context-switching, advantage (2) causes a
smaller context-switching overhead. However, this option has the drawback of al-
lowing the occurrence of other undesired IRQs (all IRQ x with priority Px that
fulfill the condition Pc < Px < Pi). This would cause not only the masking of other
IRQs but also would produce a larger worst case disturbance due to undesired
IRQs.

(3) Masking all IRQs with priorities below or equal to PC. This option is equivalent to
setting the physical IRQ level (physical mask) equal to the system (logical) priority
level (logical mask). With this option, the service setIrqLevel() must compute the
interrupt mask that corresponds to each level. This must be done even if the invo-
cation raises or diminishes the current system priority level. The drawback here is
a higher average-case context-switch overhead. However, it guarantees that once
an undesired interrupt occurs, any other one will not occur when the system prior-
ity level is higher or equal to the current level (the first undesired IRQ masks all
the others). This provides the best possible worst case in the disturbance due to
undesired interrupts.

7.4 Adapting the Recording of Undesired IRQs

After an undesired interrupt occurs and after it is masked, it must be recorded to allow
its occurrence only when the system priority goes below the priority of this interrupt.
Here, the integrated model of interrupt management enables both VCPIC (INTHAL)
and Kernel (KRNLINT) recording (described next).

7.4.1 VCPIC (INTHAL) Recording. This option is equivalent to the initial idea of the
interrupt prologue in the optimistic interrupt masking (and the only one available
with traditional interrupt management). In order to achieve this, it is necessary to
keep an occurrence flag for each possible IRQ (called continuation in Stodolsky et al.
[1993]) to record the occurrence of the undesired IRQs. When the system IRQ level
goes down, the interrupt occurrence is simulated, executing IRQHandler(irq) in the
INTHAL’s setIrqLevel() service. This option has the advantage of making the kernel
independent of the masking modes in the INTHAL.

Although this option increases the execution time δM of setIrqLevel(), it is not a
problem for the traditional interrupt management systems (for which the optimistic
masking was designed), because setIrqLevel() is not executed at every context switch-
ing (as in the integrated model) but as part of the entry/leave protocol of the kernel’s
critical sections. In fact, this service is less expensive than the direct handling of the
IRQ level.

Due to a change to the scheme and to the kernel design objectives, for the integrated
scheme and for real-time operating systems, we have the following issues.

(1) Now the setIrqLevel() is not called as part of the entry/leave protocol to the ker-
nel’s critical sections but as part of each context switch. In fact, the context switch
itself constitutes a critical section; hence, it is not possible to simulate an interrupt
within setIrqLevel(). Note that by using the integrated model, interrupt disabling
inside the kernel is not needed. The kernel’s critical sections are protected sim-
ply by disabling the preemption (modeled by immediate priority ceiling protocol
[Theodore 1990]).

(2) The efficiency of the integrated scheme and the achieved schedulability is very
sensitive to the worst case execution time of the setIrqLevel() service δM. Hence,
any small increase in δM is an important disadvantage.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

32:16 L. E. Leyva-del-Foyo et al.

Table I. Optimistic Masking vs. Virtual Masking

Techniques Optimistic Masking Virtual Masking

Target systems General-purpose OS Real-Time OS

Physical masking
Optional, with the aim of Mandatory, for guaranteeing the

simplifying the implementation temporal predictability

Omitting the execution of Explicit in the prologue of Automatic in the scheduler (does
an undesired IRQ each ISR not run due to its priority)

Undesired interrupt Explicit in the prologue of Automatic in the synchronization
recording each ISR object associated to the IRQ

Deferred handler Explicit in the exit protocol of Automatic in the kernel scheduler
execution the critical sections (when it is the highest priority)

7.4.2 Kernel (KRNLINT) Recording. A solution for these two preceding issues can be
found in the model itself. Due to the integration of communication and synchronization
between interrupt handlers and tasks, the VCPIC does not need to hide the occurrence
of an undesired IRQ from the kernel, either to notify the kernel if an IRQ is desired or
not. The kernel itself has enough information to differentiate desired from undesired
interrupts (using the system priority level).

The fact is that when either a desired or undesired IRQ occurs (i.e., IRQHandler(irq)
is called), the kernel signals the synchronization objects associated with that IRQ and
calls the scheduler. If only signal-recording objects (semaphores, mailboxes, etc.) are
associated with IRQs, then the recording of an undesired IRQ is achieved transpar-
ently. In this case, a desired IRQ would cause the preemption of the current task
to execute the HAT that waits for that IRQ (because it has higher priority than the
current task), while an undesired IRQ would set ready the associated HAT without
preemption (because its HAT has lower priority than the current task). The HAT is
automatically scheduled when the system priority level goes down.

In virtual masking mode, if an interrupt I occur with priority Pi > PC, then LLIH
must do the same operation as in the physical masking mode with the exception of the
masking of the IRQ.

The differences between the idea of the optimistic interrupt protection [Stodolsky
et al. 1993] and our adaptation for the integrated model (virtual masking) are summa-
rized in Table I.

7.5 Analysis with Virtual Masking

When virtual masking is used, the masking of an IRQ may occur only if this IRQ really
takes place (in undesired form), while the unmasking only takes place if, as part of a
context switch to exit some activity, it is needed to enable this IRQ again.

For activities with higher priority than the current task (P(i) set), the worst case
situation takes place when all the IRQs with smaller periods than that of the current
task (H(i) set) occur in an undesired form, while the activities in P(i) of higher priority
than that of the corresponding IRQ are being executed. In this case, each of them
would cause a first writing of the mask from its handler and a second writing when
the preempted activity in P(i) ends. However, since this writings take place only if
the IRQs occur, it should not be associated with each context switch in P(i). Instead,
it is enough to associate two mask writings (2δM) to each possible activation of the
activities in H(i). Hence, the utilization UM

i due to the disturbance of the HATs in the
H(i) set over the task ti is computed as

UM
i =

∑

j∈H(i)

cH
i + 2δ p + γ + 2δM

TH
J

, (13)

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

Integrated Task and Interrupt Management for Real-Time Systems 32:17

where γ is the execution time of the prologue associated to the undesired IRQs,
which is needed to record their occurrence. Moreover, now it is also necessary to take
into account the disturbance associated with the potential execution of the small
prologues caused for attending the IRQs associated with any of the activities in the
non-real-time interrupts (S(i)) and the real-time interrupts with larger periods than
that of the current task (L(i)) sets (not the handling activity itself). This prologue
is in charge of masking this IRQ. In this case, only one masking must be taken
into account for each undesired IRQ that occurs, because the context switch of any
activity in P(i) never produces the unmasking of any of the IRQs associated with
activities in S(i) or L(i). However, the number of times that this prologue may be
executed depends on the way that the masking is performed (as described in the cases
of Section 7.3). Then, according to these cases, Equation (9) can be transformed as
follows.

(1) Masking only the current IRQ or all IRQs with priorities lower than or equal to
that of the current IRQ (i.e., cases (1) and (2) in Section 7.3). In this case, each (un-
desired) IRQ in S(i)∪L(i) can occur only once in the worst case. Hence, Equation (9)
now can be written as

U P
i =

Ci +
∣

∣S(i) ∪ L(i)
∣

∣

(

γ + δM
)

Ti

+
∑

j∈(P(i)−H(i))

C j

T j

+ UM
i . (14)

From Equation (14), the decrease in the utilization Uloss = U PI∗
i due to the overhead

of the integrated model with virtual masking (using masking cases (1) or (2) of
Section 7.3) is computed by

U PI∗
i =

∣

∣S(i) ∪ L(i)
∣

∣

(

γ + δM
)

Ti

+
∑

j∈H(i)

γ + 2δ p + 2δM

TH
J

. (15)

Note that despite that cases (1) and (2) of Section 7.3 yield the same worst-case
utilization loss, this would only occur in case (2) if all IRQs in S(i) ∪ L(i) occur in
inverse priority order.

(2) Setting the mask that matches the current system priority PC (i.e., case (3) of
Section 7.3). In this case, only one (undesired) IRQ in S(i) ∪ L(i) may occur in the
worst case. Hence, now Equation (9) can be written as

U P
i =

γ + δM

Ti

+
∑

j∈(P(i)−H(i))

C j

T j

+ UM
i . (16)

Consequently, from Equation (16), the decrease in the utilization Uloss = U PI∗
i due

to the overhead of the integrated model with virtual masking (case (3)) can be
written as

U PI∗
i =

γ + δM

Ti

+
∑

j∈H(i)

γ + 2δ p + 2δM

TH
J

. (17)

Note that, different from the traditional scheme which uses a minimal ISR and
delegates the service at task level (Section 2 and Figure (1)), this virtual masking
scheme is temporally predictable. It introduces a priority inversion due to a small
disturbance caused by the execution of a prologue of an undesired interrupt (given
by γ + δM). However, as showed in Equations (15) or (17), this priority inversion is
bounded. This scheme guarantees a predictable and efficient interrupt management

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

32:18 L. E. Leyva-del-Foyo et al.

with a very small utilization loss. Also, note that now U PI∗
i in Equation (17) depends

only on the HATs in the H(i) set and not on the SAT (as occurs in Equation (12)),
making the system more scalable.

8. IMPLEMENTING THE INTEGRATED MODEL

This section presents the detailed design of the interrupt subsystem for a real-time
kernel that is compliant with the integrated interrupt and task model. This subsys-
tem can be configured in different emulation modes to satisfy the different trade-offs
between cost and temporal predictability.

8.1 INTHAL Status Data

In order to keep the state of the VCPIC, the following arrays (with one element for
each of the 16 IRQs) and variables are maintained.

— IRQ Priority. An array of elements of a type compatible with the system priorities
(byte or word) that holds the priority of each IRQ in the system.

— IRQ Mask. An array of words (16 bits) with each word keeping one mask to be set in
the IMREs of both 8259s when the corresponding IRQ occurs. This word unmasks
the IRQ of higher priority than the matching IRQ and masks all others (including
the matching IRQ).

— Virtual Mask Mode. Flag that signals the masking mode in operation: virtual
(TRUE) or physical (FALSE).

— IRQ Level. Byte or word that keeps the current (unified) system priority level.
— Logical Mask. Interrupt mask (word value) that corresponds to the current system

priority (IRQ Level).
— Physical Mask. Interrupt mask (word value) set in the IMREs of both 8259s. In

the physical masking mode, it will always be equal to Logical Mask, but in virtual
masking mode, it may be different.

8.2 Priority Management Services

The priority management services are used to implement the unified space of prior-
ities. The interface services provided are setIrqPriority() and setIrqLevel(), and the
auxiliary services provided are set8259IMR() and setIRQMask().

The auxiliary service set8259IMR(...) must be invoked whenever it is necessary
to set the mask in the interrupt hardware. It keeps the current value of the mask
registers in the Physical Mask variable so that whenever the new mask matches the
mask already set, the expensive input/output operations are avoided. The algorithm
used in this service is shown in Figure 4. First, it verifies whether the physical mask
is different from the new mask. If this is true, it sets the masks in both 8259 IMREs
and updates the values of Logical Mask and Physical Mask.

The setIRQMask(. . .) service provides support for virtual masking. As shown in
Figure 4, its behavior is related to the masking mode stored in the state variable
Virtual Mask Mode. In physical mode, it only calls the set8259IMR() service to set
the mask in both 8259s. In virtual masking, it sets the mask only if it causes an IRQ
enable (unmasking), otherwise only the value of the logical mask (Logical Mask) is
updated.

In physical masking mode, the value of Logical Mask is always equal to that of the
IMREs of both 8259s (and Physical Mask), but in virtual masking mode, these values

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

Integrated Task and Interrupt Management for Real-Time Systems 32:19

Fig. 4. Auxiliary services set8259IMR() and setIRQMask().

Fig. 5. SetIrqPriority() service.

may be different. However, the bits in “1” in Physical Mask always must be a subset
of the bits in “1” in Logical Mask. In other words, the following must hold.

(NOT Logical Mask AND Physical Mask) = 0

The setIrqPriority(irq, priority) service allows the setting of the priority level
of an IRQ. Its function is to establish a correspondence between the priorities as-
signed to each IRQ (within the system priority space) with the value of the mask
to be set in the interrupt hardware (IMREs of both 8259). Its algorithm (shown in
Figure 5) keeps the IRQ Priority and IRQ Mask arrays (see Section 8.1). At each
invocation, the entry in IRQ Priority that corresponds with the IRQ being changed
is updated. Next, the mask associated with each IRQ is obtained from the new
priority configuration and stored in the IRQ Mask array. Also, if this IRQ goes from

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

32:20 L. E. Leyva-del-Foyo et al.

Fig. 6. SetIrqLevel() service.

Fig. 7. LLIH for captured IRQs.

enabled to disabled or vice versa, then setIRQMask() is called to update the interrupt
mask.

The setIrqLevel(priority) service sets the current system IRQ level and maintains
the IRQ Level variable (Figure 6). It uses the IRQ Priority and IRQ Mask arrays
to determine the mask to be set for the new priority level. This mask is the one
that disables all IRQs with a priority level lower or equal to the IRQ Level. After
computation, if this mask causes the masking or the unmasking of some IRQ, then it
is set according to the masking mode (physical or virtual) using the setIRQMask().

8.3 INTHAL Low-Level Interrupt Handler (LLIH)

The INTHAL has a LLIH for each possible ISR state (captured or ignored). The control
is transferred to these handlers whenever an IRQ with the associated state occurs. The
handler gets the requested IRQ as an argument. The CAPTURED ENTRY algorithm
(which is the LLIH associated to the captured interrupts) is shown in Figure 7. Its
main responsibilities are (1) to cancel the PICs conventional priority scheme, (2) to
enforce the unified priority space, and (3) to transfer the control to the kernel interrupt
handler.

When operating in the physical masking mode, if an interrupt I with priority
Pi,occurs, it is because the condition Pi > IRQ Level is satisfied. In this case, all IRQs

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

Integrated Task and Interrupt Management for Real-Time Systems 32:21

with priorities lower or equal than the IRQ Level are masked, and the system prior-
ity level is raised to set it equal to Pi. Finally, the kernel handler (IRQHandler()) is
called.

When operating in the virtual masking mode, in spite of the current system priority
level IRQ Level, the occurrence of any interrupt is possible. Here, two situations may
occur.

— An interrupt I with priority Pi > IRQ Level occurred (desirable interrupt). In this
case, the same operations that took place in the physical masking mode must be
carried out with the exception of the IRQ masking.

— An interrupt I with priority Pi ≤ IRQ Level occurred (undesirable interrupt). In
this case, to avoid the occurrence of a second undesirable IRQ, the IMREs of both
8259s must be set using the mask which matches the priority level that was active
when the IRQ took place (also, the physical mask is updated). Finally, the IRQHan-
dler() is invoked to record its occurrence (even though the interrupt is undesired,
see Section 3). Note that in this case, the current IRQ level is not modified.

8.4 Implementing the Integrated Model in an RTOS

The implementation of the integrated model in an RTOS requires the following.

— The INTHAL component interfaces (described in Figure 2) which constitute the in-
terrupt management system of the integrated model must be included in the RTOS.

— All accesses to the interrupt hardware must be made through the iKRNLINT and
iINTHAL interfaces.

— The CAPTURED ENTRY algorithm (LLIH) described in Figure 7 must be imple-
mented for each IRQ captured. The responsibilities of this algorithm are described
in Section 8.3.

— The setIrqPriority(irq,priority) must be used to set the priority level of the IRQs.
This function links the IRQ to the priority of the system. The setIrqLevel() service
must be used by the kernel whenever a change on the current task priority level is
needed. This service will notify this change to the interrupt hardware.

— A synchronization object (semaphore or mailbox) must be attached to the IRQs to
be used by the interrupt API. This must be done through the KRNINT component
described in Figure 2 of Section 5.1. Each time an IRQ arrives, a signal to the
synchronization object must be generated.

9. EXPERIMENTAL RESULTS

The experiments were executed in the PARTEMOS real-time micro kernel.
PARTEMOS was developed to support the integrated model along with the typical ser-
vices found in commercial real-time operating systems. The services in PARTEMOS
include task and interrupt management, synchronization services using semaphores,
communication services using mailboxes, and exception handing [Leyva-del-Foyo et al.
2006a].

Two types of experiments were conducted. The first type allowed us to verify exper-
imentally the deterministic behavior of the implementation of a single priority space
with and without virtual masking. The second type was developed to compare the
overhead of the different implementations of the integrated model over a conventional
PC hardware. The experiments were executed on an Intel Pentium 4 PC running at
2.8GHz with 1GB of memory and 1MB of L2 cache. The time stamp counter of the CPU
was used for measurements.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

32:22 L. E. Leyva-del-Foyo et al.

Fig. 8. Execution trace—separate priorities.

9.1 Behavior Characterization

In the first type of experiments, we conduct three different cases with different config-
urations of a task set consisting of the following tasks.

— tS
1 is an IRQ handler (without hard real-time requirements) that attends the serial

port (receiving 100 bytes per second) with a minimum interarrival time TS
1 of 10 ms

and a worst case execution time CS
1 of 5 ms (utilization US

1 = 0.5).
— t2 is a periodic hard real-time task with a period T2 of 50 ms, a worst case execution

time C2 of 20 ms (with a utilization U2 = 0.4), and a deadline of 30 ms.

In all experiments, the traces for the start and end of both activities were logged in
addition to a trace for each time that the LLIH is invoked passing as a parameter the
IRQ associated with the serial port (and to the HAT tS

1).

In the first case, no integrated priority space is used, and hence the tS
1 has a higher

priority than t2. Figure 8 depicts the execution trace of the task set over a period of
time. In this trace, two things are worth noting. After the first activation of task t2 at
time 0, it suffers multiple preemptions by the ISR. Also, these preemptions force t2 to
miss its deadline at time 30,000 µs. This situation is repeated for all activations of t2
shown.

In the second and third cases, we used our integrated model to assign to task t2 a
priority higher than that of the HAT tS

1 . Note that for this particular task set, this
priority configuration is the only one that guarantees the temporal requirements of
the periodic task. This configuration is only possible with the integrated interrupt and
task model.

In the second case, we used the emulation of the VCPIC with physical masking.
Figure 9 depicts the execution trace of this case. It is worth noting that (1) the IRQ
cannot preempt the periodic task t2 (there is not a LLIH trace), hence once it is ac-
tivated (at 0 µs, 50,000 µs, 10,000 µs, and 150,000 µs), it runs without disturbance.
Without this disturbance, task t2 can finish properly before its deadline in all instances,
as shown in the figure (at 30,000 µs, 80,000 µs, and 13,000 µs). (2) For each period of
t2 only four IRQs are accepted and handled (instead of five that should be accepted).
During the 20 ms of execution of t2, two IRQs are issued by the serial port, but they
are not attended to, because they have lower priority than task t2. However, the hard-
ware records one of them causing the back-to-back execution of the HAT at 20,000 µs,
70,000 µs, and 12,000 µs.

It is worth commenting about the loss of some interrupt request signals observed
in Figure 9, which is caused by this priority configuration. The first comment is
that at this point we have an unavoidable trade-off: in this task set, the system

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

Integrated Task and Interrupt Management for Real-Time Systems 32:23

Fig. 9. Execution trace—physical masking.

Fig. 10. Execution trace—virtual masking.

cannot guarantee the processing of all interrupts and also guarantee the meeting
of the deadline of the periodic hard real-time task. Indeed, this is the reason for
this priority configuration, that is, to guarantee the temporal requirements of those
software-activated tasks which have hard real-time requirements, in spite of the over-
load caused by those hardware-activated non-real-time tasks. The second comment is
that by the usage of a real-time analysis, we certainly can guarantee that interrupts
(HATs) are never missed when all interrupt sources behave as expected and, at the
same time, do not affect the timing requirements of the hard real-time tasks.

In the third case, we used the emulation of the VCPIC with virtual masking, as
proposed in Section 7. Figure 10 depicts its execution trace. In this case, it is worth
mentioning that the HAT associated with the IRQ cannot preempt periodic task t2,
hence, similar to the previous experiment, task t2 can finish before its deadline in all
instances (as shown in Figure 10 at 30,000 µs, 80,000 µs, and 13,000 µs). However, in
this case, there is a difference: now the IRQ really preempts the execution of t2. This is
shown in the figure by the LLIH traces (depicted by diamonds) which occur a little later
of 0 µs, 50,000 µs, 100,000 µs and 150,000 µs. Note that here, the corresponding HAT
is not executed and that these undesired interrupts are not serviced at those instants
of time, but instead, they are recorded (by the synchronization object) until the end of

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

32:24 L. E. Leyva-del-Foyo et al.

Fig. 11. Execution trace—kernel interrupt latency.

the periodic task (at 20,000 µs, 70,000 µs, and 120,000 µs). This is illustrated by the
activations of the corresponding HAT (where the corresponding LLIH traces are not
executed).

In this case, it is important to note that only one undesired interrupt per activation
of t2 is possible. Again, for each period of t2, only four IRQs are accepted and handled
(instead of the five IRQs that were issued by the serial port). On each execution of t2,
one IRQ is ignored. This restriction guarantees a small bound in the disturbance due
to undesired interrupts, as denoted by Equation (17).

9.2 Overhead Measurement

In this section, we analyze the implementation overhead of the integrated interrupt
and task model. In the integrated model, the interrupt latency includes the time for
setting up the priority in the interrupt controller, the time for signalling the inter-
rupt synchronization object (i.e., semaphore), and the context switch time from the
interrupted task to the HAT (these timings are not included in the traditional model).
Therefore, the interrupt latency of the HAT is the main overhead indicator.

In our measurements, we used a task with an endless loop that logged a trace with
an identification code and a timestamp. We also used a HAT associated with the IRQ,
logging a trace with another identification code and the current timestamp. The val-
ues were collected for the four combinations of the two emulation modes (physical or
virtual masking) and the two EOI modes (explicit or automatic). Figure 11 plots 1,000
latency samples.1

In all modes, the behavior of the interrupt latency is practically stable around the
average latency: 4.869 µs (for EOI with physical masking), 4.158 µs (for AEOI with
physical masking), 3.469 µs (for EOI with virtual masking), and 2.716 µs (for AEOI
with virtual masking). This stability is a very important factor for real-time systems.
Another observation is that the average values for the virtual masking modes are

1We believe that the spikes in the plots are due to speculative execution and/or cache misses.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

Integrated Task and Interrupt Management for Real-Time Systems 32:25

Table II. Interrupt Latency Figures and Port Operations

72.9% and 67% of the corresponding values for the physical masking, representing
a significant reduction in the overhead, making the integrated model suitable even
for systems with low overhead requirements. The two virtual masking modes yield
better results than the two physical masking modes. The automatic EOI mode with
virtual masking shows the best performance with very low worst case interrupt latency
(3.06 µs).

It is interesting to analyze how the results for the interrupt latency for each emu-
lation mode are related to the number of writing operations to the input/output port
for that mode. This relationship is shown in Table II, where it is easy to identify that
the number of port accesses is one of the dominant factors for the kernel interrupt
latency.

9.3 Evaluation of the Experimental Results

We will compare the overhead of the port access between the integrated and the tradi-
tional model as final comments of our experiments.

(1) In the case of the traditional scheme, the interrupt latency is not affected by the
overhead of any port access. Nevertheless, before leaving the ISR, it is incurred in
this overhead due to the need to issue an EOI command. Consequently, the port
access overhead is indeed reflected in the disturbance (or interference), causing a
decrease in the utilization bound.

(2) In the case of the integrated model using the automatic EOI mode, the port oper-
ations are included in the interrupt latency (due to the need of setting the IMRE).
Nevertheless, the EOI writing is eliminated completely. Consequently, since the
port writing is one of the dominant factors in the execution time, we expect the
overhead introduced by our scheme to be of the same order as that of the tradi-
tional interrupt scheme.

(3) If the automatic EOI mode is used in combination with the virtual masking, then
(for desired interrupts) there are no port writings neither at the entry or at the
exit of the HAT. Therefore, due to the need to use explicit EOI in the traditional
interrupt model, we expect the overhead introduced by the integrated model indeed
to be lower than that of the traditional model.

In summary, as demonstrated by Equation (17) and the experimental results,
the implementation of the integrated model using the AEOI and virtual masking
emulation mode allows an interrupt management scheme to be completely predictable
and without overhead (for desirable interrupts). Also, the decrease in the complexity

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

32:26 L. E. Leyva-del-Foyo et al.

of this integrated design favors the development of reliable systems. Consequently,
in real-time system kernels in which timely response to events and reliability are
determining factors, the integrated model offers significant benefits.

10. RELATED WORK

Several research works propose alternatives for avoiding the difficulties of the
traditional interrupt model in real-time applications. Stewart [1999] considers the
indiscriminate use of ISRs one of the most common errors in real-time programming.
Several real-time operating systems (e.g., MARS [Kopetz et al. 1989]) have adopted
radical solutions where all external interrupts are disabled, except for those that
come from the timer and propose to treat all peripherals by polling. Although this
solution completely avoids the non-determinism associated with interrupts, it has the
disadvantage of low efficiency in the usage of the CPU due to the busy wait in I/O
operations. The advantage of our integrated scheme with respect to these proposals
is that it achieves temporal determinism without significantly affecting the usage of
the CPU.

Several scheduling analysis have been proposed to consider the interrupts as the
activities with the top priorities in the system [Jeffay and Stone 1993; Lewandowski
et al. 2007]. In Stewart and Arora [2003], the exact schedulability equation is ex-
tended to include the overhead of the interrupts in systems with static priorities, and
it extended the model introduced in Lehoczky et al. [1989] to include the overhead
of interrupt handling. The resulting equation evaluates the trade-offs of performing
the interrupt handling inside an ISR versus postponing most of the treatment to a
sporadic server [Sprunt 1990].

Several strategies have been proposed for obtaining some degree of integration
among the different types of asynchronous activities. Hills [1993] proposes a “struc-
tured” interrupts treatment scheme at the task level, introducing an interface inde-
pendent from the synchronization mechanism which does not consider interrupts with
dynamic priorities. Kleiman and Eykholt [1995] treat interrupts as threads, but their
proposal does not have the goal of achieving temporal determinism but the goal of
increasing the scalability of the system in multiprocessor architectures oriented to
servers’ operating systems. Consequently, the interrupt threads use a separate (not
unified to tasks) ranking of priority levels.

Recently, there has been some research work on interrupt handling in the context
of Linux for real-time [Regnier et al. 2008]. Abeni et al. [2009] present a reservation-
based approach using interrupts as threads. Other proposed schemes [Lee et al. 2010;
Zhang 2009; Zhang and West 2006] also schedule interrupts as threads. Liu et al.
[2010] propose a hardware scheme for supporting the combination of real-time and
non-real-time interrupts. Parmer and West [2008] implement a two-level interrupts
handling scheme in which the handling is deferred to upcalls in the user space. The
upcalls are scheduled with a hierarchic and configurable scheme. Facchinetti et al.
[2005] propose a scheme for the use of Linux device drivers in a real-time kernel. This
scheme reserves CPU bandwidth for the execution of the ISRs without preemption.

The second generation of micro-kernels usually handles interrupts as threads
with the purpose of supporting user-level device drivers. For instance, L4 handles
interrupts using a so-called interrupt handler task (IHT) but without abstracting
the interrupt hardware [Liedtke 1996]. More recently, in the process of porting L4
to architectures other than the IA32 and with the purpose of making the IHT inde-
pendent of the interrupt hardware, a new L4 interrupt architecture was introduced
[Dannowski et al. 2001]. An interesting side effect of this new interrupt architecture
is that (in spite of the fact that the L4 micro-kernel was not designed for real-time
[Ruocco 2006]) it now yields a bounded interrupt disturbance. This approach, that we

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

Integrated Task and Interrupt Management for Real-Time Systems 32:27

call masking/unmasking protocol, is also used in the genirq abstraction of the recent
Linux RT patch [Rostedt and Hard 2007].

With the masking/unmasking protocol, the kernel also sets a common LLIH for all
IRQs. However, now the LLIH does an immediate EOI followed by the masking of the
IRQ, avoiding additional occurrences of the same IRQ until it is explicitly unmasked.
Then the LLIH sets ready an IHT which is scheduled according to its software priority
in the same way as the rest of the tasks. When the service is finished, the IHT has
the duty of explicitly unmasking the related IRQ by using an acknowledgment service
provided by the kernel.

The IRQ acknowledgment (unmasking) in the IHT works as a request for an ad-
ditional IRQ that only occurs as a reply to it. In consequence, this approach gets a
behavior similar to that of the integrated model with virtual masking, using case (1) of
masking. In the worst case, only one instance of the IRQs associated with IHTs with
lower priorities than that of task ti (that would be undesired IRQ in virtual masking)
may disturb its execution. With this technique, the priority inversion, which is caused
by interrupt disturbance, gets bounded due to interrupt disturbance. However, in this
case, there is an additional overhead in the interrupt latency of all IRQs due to the
EOI and mask-writing operation. In addition, the second mask writing is also added
to the execution time of each IRQ.

To quantify this overhead, let δEOI be the execution time for issuing the EOI to the
PIC; then Equation (9) can be written as

U P
i =

Ci +
∣

∣S(i) ∪ L(i)
∣

∣

(

γ + 2δM + δEOI
)

Ti

+ (18)

∑

j∈(P(i)−H(i))

C j

T j

+
∑

j∈H(i)

cH
i + 2δ p + γ + 2δM + δEOI

TH
J

. (19)

Hence, the decrease in the utilization Uloss = U PI∗
i due to the overhead of the

masking/unmasking protocol is

U PI∗
i =

∣

∣S(i) ∪ L(i)
∣

∣

(

γ + 2δM + δEOI
)

Ti

+
∑

j∈H(i)

γ + 2δ p + 2δM + δEOI

TH
J

. (20)

As can be noted, by comparing Equations (15) and (20), aside from the increment in the
interrupt latency due to the masking of the IRQ in the LLIH, the introduced utilization
loss is higher than the worst case overhead of the less optimized case of the integrated
model with virtual masking.

The outcome of this comparative analysis is that the integrated model with virtual
masking not only is predictable but also introduces lower overhead than that of inter-
rupt architectures of related kernels.

Figure 12 contrasts the integrated model and the different variants of the tradi-
tional model for management of tasks and interrupts. The leftmost column of the
figure shows the elements involved in the interrupt handling. The upper part of
this column shows the I/O device that issues the interrupt request. These interrupt
requests arrive at the hardware interrupt controller or PIC which schedules them
according to their hardware priorities. The bottom part of this column shows the
real-time scheduler that handles predictable software events. Above the realtime
scheduler, we depict the scheduling of software entities with priorities higher than
those of the real-time scheduler. The activation of these high priority software entities,
the arriving of interrupt requests, and its scheduling by the PIC are all outside the
control of the real-time scheduler, and hence, these are unpredictable events.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

32:28 L. E. Leyva-del-Foyo et al.

Fig. 12. Integrated model vs. “traditional” models.

The other four columns of the figure show the different executable entities in the
system for four different interrupt management schemes. The rightmost column rep-
resents our integrated model [Leyva-del-Foyo et al. 2006b, 2006c]. The other three
middle columns represent different classes of interrupt model. In the first class (hard-
ware synchronization), all interrupt handling is done in a hardware interrupt handler
(HIH) under the control of the PIC. The synchronization between HIHs and user tasks
is achieved by disabling or by locking interrupts. The two-level interrupt handling
scheme splits the handling between a first-level HIH and a second-level software inter-
rupt handler (SIH). The scheduler of these SIHs has higher priority than the real-time
scheduler. In the task (thread)-level interrupt handling scheme, there is a short HIH
outside the control of the real-time scheduler that activates an interrupt service task
(IST) and performs the bulk of the interrupt handling.

The activities that are executed under the control of the real-time scheduler are
called schedulable entities, and they all constitute the domain of predictability of the
system. Ideally, in order to provide temporal guaranties, the real-time scheduler must
schedule all activities in the system.

All activities executed with priorities higher than the real-time scheduler disrupt
the real-time scheduling: they are non-schedulable entities and conform the domain
of unpredictability of the system. In this context, Figure 12 shows a qualitative com-
parison between the integrated model and the other models. In the integrated model,
the interrupt subsystem is free of non-schedulable entities. This is possible because, in
contrast with the previous schemes (where the IRQs are not under the control of the
real-time scheduler), in the integrated model, the real-time scheduler schedules all
the IRQs.

Table III contrasts the integrated model and the existing alternatives for traditional
interrupt handling and the interrupt avoidance (or event handling by pooling). It
shows how the integrated model achieves the advantages of the last two approaches.
In other words, with the integrated model, it is possible to combine the characteristics
of low latency and low overhead (which are natural for an event handling by inter-
rupt) with the characteristics of temporal predictability and feasibility for controlling
overload (natural for an event handling by pooling).

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

Integrated Task and Interrupt Management for Real-Time Systems 32:29

Table III. Characteristic of the Integrated Model vs. Alternatives

The integrated model proposed can be implemented in many ways other than
the software-based approach presented. Indeed, in Leyva-del-Foyo and Mejia-Alvarez
[2004], we advocated a hardware implementation using a custom programmable inter-
rupts controller (CPIC) that cooperates with the CPU in the scheduling of IRQs and
Tasks (and could be implemented with FPGAs). After the publication of our integrated
model, other research has experimented with some approaches of this hardware im-
plementation [Leyva-del-Foyo and Mejia-Alvarez 2004]. Scheler et al. [2009] present
a variant of this CPIC using the peripheral control processor (PCP) of the TriCore
platform. Hofer et al. [2009] present another hardware implementation of the inte-
grated model using an ordinary hardware interrupt controller to schedule the threads
as interrupts. The last approach limits the scheduling algorithm to fixed priority with
the number of levels supported by the interrupt hardware. Both Scheler et al. [2009]
and Hofer et al. [2009] implement a restricted task and synchronization model that is
useful for low-end embedded systems. The performance results presented in Scheler
et al. [2009] show that the software implementation of the integrated model indeed
has lower overhead than the hardware implementation.

11. CONCLUSIONS

In this article, we analyzed the problems created by the traditional interrupt model
in real-time systems and presented our solution to these problems. We highlighted
that having separate scheduling and priority schemes for interrupts and tasks create
multiple mutual interference problems, as discussed in Section 2. These problems
have created the need for multiple workarounds that have been used in practice over
the years that are inefficient and difficult to use, understand, and quantify.

To solve these problems, we presented our integrated scheduling model of inter-
rupts and tasks that solves each of the problems discussed in Section 2. Furthermore,
because the synchronization of hardware priority to software priorities can be costly,
we also developed optimizations to minimize this cost. A scheduling analysis was also
presented to show the improvements in the response time and utilization with respect
to the traditional model. Finally, we presented our experimental evaluation that

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

32:30 L. E. Leyva-del-Foyo et al.

highlights the difference in determinism and interrupt latency between our model
and the traditional one.

Our analysis and experiments show that the implementation of our model offers a
platform that does not need workarounds to synchronize tasks and interrupts, avoid-
ing their timing penalties without incurring any additional cost. At the same time, the
programming model is simplified and easier to understand and its use leads to more-
robust systems. As a result, we believe that an integrated scheduling model has the
potential of becoming the defacto standard in operating systems in the future.

REFERENCES

ABENI, L., MANICA, N., AND PALOPOLI, L. 2009. Reservation-based scheduling for IRQ threads. In
Proceedings of the 11th Real-Time Linux Workshop. 179–186.

CARLSSON M., ENGBLOM, J., ERMEDAHL, A., LINDBLAD, J., AND LISPER, B. 2002. Worst-case execution
time analysis of disable interrupt regions in a commercial real-time operating system. In Proceedings
of the 2nd International Workshop on Real-Time Tools.

DANNOWSKI, U., SKOGLUND, E., AND UHLIG, V. 2001. Interrupt handling. In Proceedings of the 2nd Work-
shop on Microkernel-based Systems.

FACCHINETTI, T., BUTTAZZO, G., MARINONI, M., AND GUIDI, G. 2005. Non-preemptive interrupt schedul-
ing for safe reuse of legacy drivers. In Proceedings of the Euromicro Conference on Real-Time Systems
(ECRTS).

HILLS, T. 1993. Structured interrupts. Oper. Syst. Rev. 27, 1, 51–68.

HOFER, W., LOHMANN, D., SCHELER, F., AND SCHRÖDER-PREIKSCHAT, W. 2009. Sloth: Threads as inter-
rupts. In Proceedings of the 30th IEEE Real-Time Systems Symposium (RTSS’09). 204–213.

JEFFAY, K. AND STONE, D. L. 1993. Accounting for interrupt handling cost in dynamic priority task sys-
tems. In Proceedings of the IEEE Real-Time Systems Symposium. 212–221.

JOSEPH, M. AND PANDYA, P. 1986. Finding response times in real-time systems. Comput. J. 29, 5, 390–395.

KLEIMAN, S. AND EYKHOLT, J. 1995. Interrupts as threads. ACM SIGOPS Oper. Syst. Rev. 21, 2, 21–26.

KLEIN, M. H., RALYA, T., POLLACK, B., OBENZA, R., AND HARBOUR, M. G. 1989. A Practitioner’s Hand-
book for Real-Time Analysis. Kluwer Academic Publishers, Norwell, M.A.

KOPETZ, H., DAMM, A., KOZA, C., MULAZZANI, M., SCHWABI, W., SEUFT, C., AND ZAINLINGER, R. 1989.
Distributed fault-tolerant Real-time systems: The MARS approach. IEEE Micro 9, 1, 25–40.

LEE, M., LEE, J., SHYSHKALOV, A., SEO, J., HONG, I., AND SHIN, I. 2010. On interrupt scheduling based
on process priority for predictable real-time behavior. ACM SIGBED Rev. 7, 1.

LEHOCZKY, J., SHA, L., AND DING, Y. 1989. The rate monotonic scheduling algorithm: exact characteriza-
tion and average case behaviour. In Proceedings of the IEEE Real-Time Systems Symposium. 166–171.

LEWANDOWSKI, M., STANOVICH, M. J., BAKER, T. P., GOPALAN, K., AND WANG, A. 2007. Modelling device
driver effects in real-time schedulability analysis: Study of a network driver. In Proceedings of the 13th
IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’07). 57–68.

LEYVA-DEL-FOYO, L. E. AND MEJIA-ALVAREZ, P. 2004. Custom interrupt management for real-time and
embedded system kernels. In Proceedings of the Embedded Real-Time Systems Implementation Work-
shop at the 25th IEEE International Real-Time Systems Symposium (RTSS’04).

LEYVA-DEL-FOYO, L. E., MEJIA-ALVAREZ, P., AND DE NIZ, D. 2006a. Abnormal events handling for de-
pendable embedded systems. In Proceedings of the 7th Mexican International Conference on Computer
Science (ENC’06). 81–91.

LEYVA-DEL-FOYO, L. E., MEJIA-ALVAREZ, P., AND DE NIZ, D. 2006b. Predictable interrupt scheduling
with low overhead for real time kernels. In Proceedings of the 12th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications. 385–394.

LEYVA-DEL-FOYO, L. E., MEJIA-ALVAREZ, P., AND DE NIZ, D. 2006c. Predictable interrupt management
for real time kernels over conventional PC hardware. In Proceedings of IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’06). 14–23.

LIEDTKE, J. 1996. Towards real microkernels. Commun. ACM 39, 9, 70–77.

LIU, M., LIU, D., WANG, Y., WANG, M., AND SHAO, Z. 2010. On improving real-time interrupt latencies of
hybrid operating systems with two-level hardware interrupts. IEEE Trans. Comput. Forthcoming.

PARMER, G. AND WEST, R. 2008. Predictable interrupt management and schedulability in the composite
component-based systems. In Proceedings of the 29th Real-Time Systems Symposium. 232–243.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

Integrated Task and Interrupt Management for Real-Time Systems 32:31

REGEHR, J. 2008. Safe and structured use of interrupts in real-time and embedded software. In Handbook
of Real-Time and Embedded Systems, I. Lee, J. Y.-T. Leung, and S. H. Son Eds., Chapman & Hall/CRC.

REGNIER, P., LIMA, G., AND BARRETO, L. 2008. Evaluation of interrupt handling timeliness in real-time
linux operating systems. ACM SIGOPS Oper. Syst. Rev. 42, 6, 52–63.

ROSTEDT, S. AND HARD, D. V. 2007. Internals of the RT patch. In Proceedings of the Linux Symposium.
161–172.

RUOCCO, S. 2006. Real-time programming and L4 microkernels. In Proceedings of the Workshop on Operat-
ing System Platforms for Embedded Real-Time Applications.

SCHELER, F., HOFER, W., OECHSLEIN, B., PFISTER, R., SCHRÖDER-PREIKSCHAT, W., AND LOHMANN, D.
2009. Parallel, hardware-supported interrupt handling in an event-triggered real-time operating sys-
tem. The 2009 International Conference on Compilers, Architecture and Synthesis for Embedded Systems
(CASES’09). Grenoble, France, October 2009, 167–174.

SPRUNT, B. 1990. Aperiodic task scheduling for real-time systems. Ph.D. dissertation, Carnegie Mellon
University, Pittsburg, PA.

STEWART, D. B. 1999. Twenty-five-most commons mistakes with real-time software development. In Pro-
ceedings of Embedded Systems Conference.

STEWART, D. B. AND ARORA, G. 2003. A tool for analyzing and fine tuning the real-time properties of an
embedded system. Trans. Softw. Eng. 29, 4, 311–326.

STODOLSKY, D., CHEN, J. B., AND BERSHAD, B. N. 1993. Fast interrupt priority management in oper-
ating system kernels. In Proceedings of the USENIX Symposium on Micro-Kernels and Other Kernel
Architectures. 105–110.

THEODORE, P. B. 1990. Protected records, time management and distribution. ACM SIGAda Lett. X, 9,
17–28.

TINDELL, K. W. 1999. RTOS interrupt handling: Common errors and how to avoid them. Embed. Syst.
Prog. Eur.

ZHANG, Y. 2009. Prediction-based interrupt scheduling. In Proceedings of the 30th IEEE International Real-
Time Systems Symposium, Work-in-Progress Session.

ZHANG, Y. AND WEST, R. 2006. Process-aware interrupt scheduling and accounting. In Proceedings of the
27th IEEE International Real-Time Systems Symposium. 191–201.

Received May 2009; revised July 2010; accepted October 2010

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 2, Article 32, Publication date: July 2012.

