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Integrated Task Assignment and Path Planning for

Capacitated Multi-Agent Pickup and Delivery
Zhe Chen, Javier Alonso-Mora , Senior Member, IEEE, Xiaoshan Bai , Daniel D. Harabor, and Peter J. Stuckey

Abstract—Multi-agent Pickup and Delivery (MAPD) is a chal-
lenging industrial problem where a team of robots is tasked with
transporting a set of tasks, each from an initial location and each
to a specified target location. Appearing in the context of auto-
mated warehouse logistics and automated mail sortation, MAPD
requires first deciding which robot is assigned what task (i.e., Task
Assignment or TA) followed by a subsequent coordination problem
where each robot must be assigned collision-free paths so as to
successfully complete its assignment (i.e., Multi-Agent Path Finding
or MAPF). Leading methods in this area solve MAPD sequentially:
first assigning tasks, then assigning paths. In this work we propose
a new coupled method where task assignment choices are informed
by actual delivery costs instead of by lower-bound estimates. The
main ingredients of our approach are a marginal-cost assignment
heuristic and a meta-heuristic improvement strategy based on
Large Neighbourhood Search. As a further contribution, we also
consider a variant of the MAPD problem where each robot can
carry multiple tasks instead of just one. Numerical simulations
show that our approach yields efficient and timely solutions and
we report significant improvement compared with other recent
methods from the literature.

Index Terms—Task assignment, motion and path planning .

I. INTRODUCTION

I
N AUTOMATED warehouse systems, a team of robots works
together to fulfill a set of customer orders. Each order com-

prises one or more items found on the warehouse floor, which
must be delivered to a picking station for consolidation and
delivery. In automated sortation centres, meanwhile, a similar
problem arises. Here, the robotic team is tasked with carrying
mail tasks from one of several emitter stations, where new
parcels arrive, to a bin of sorted tasks, all bound for the same
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Fig. 1. MAPD applications: (a) an automated fulfillment center with robots
carrying multiple objects [6]; (b) an automated sortation centre [7].

processing facility where they will be dispatched for delivery.
Illustrated in Fig. 1, such systems are at the heart of logistics op-
erations for major online retailers such as Amazon and Alibaba.
Practical success in both of these contexts depends on computing
timely solutions to a challenging optimization problem known in
the literature as Multi-agent Pickup and Delivery (MAPD) [1].

In MAPD, we are given a set of tasks (equiv. packages) and a
team of cooperative agents (equiv. robots). Our job is twofold:
first, we must assign every task to some robot; second, we
need to find for each robot a set of collision-free paths that
guarantee every assigned task to be successfully completed.
Each of these aspects (resp. Multi-robot task assignment (TA) [2]
and Multi-agent Path Finding (MAPF) [3]) is itself intractable,
which makes MAPD extremely challenging to solve in practice.
Further complicating the situation is that the problem is lifelong
or online, which means new tasks arrive continuously and the
complete set of tasks is a priori unknown.

A variety of different approaches for MAPD appear in the
recent literature. Optimal algorithms, such as CBS-TA [4],
guarantee solution quality but at the cost of scalability: only
small instances can be solved and timeout failures are common.
Decentralised solvers, such as TPTS [1], can scale to problems
with hundreds of agents and hundreds of tasks but at the cost
of solution quality: assignments are greedy and made with little
regard to their impact on overall solution costs. Other leading
methods, such as TA-Hybrid [5], suggest a middle road: MAPD
is solved centrally but as a sequential two-stage problem: task
assignment first followed by coordinated planning after. The
main drawback in this case is that the assignment choices are
informed only by lower-bound delivery estimates instead of
actual costs. In other words, the cost of the path planning task
may be far higher than anticipated by the task assignment solver.

In this work we consider an alternative approach to MAPD
which solves task assignment and path planning together. We
design a marginal-cost assignment heuristic and a meta-heuristic
improvement strategy to match tasks to robots. The costs
of these assignments are evaluated by solving the associated
coordination problem using prioritised planning [8]. We then
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iteratively explore the space of possible assignments by destroy-
ing and repairing an incumbent solution using Large Neigh-
bourhood Search [9]. We give a complete description of this
algorithm and we report convincing improvement in a range
of numerical simulations vs. the Token Pass and Task Swap
(TPTS) algorithm in [1], arguably the current state-of-the-art
sub-optimal method in this area. As a further contribution we
also consider and evaluate a natural extension of the MAPD
problem where each agent is allowed to carry more than one
task at a time, reflecting emerging robotic warehouse systems
(see e.g. [6], Fig. 1(a)). For comparison, all other work in the
literature assume the capacity of each agent is always 1 which
implies immediate delivery is required after every pickup. We
show that in the generalised case solution costs can decrease
substantially, allowing higher system performance with the same
number of agents.

II. RELATED WORK

A. Task Assignment

The problem studied in this letter requires both the task
assignment of robots and the planning of collision-free paths.
Nguyen et al. [10] solved a generalised target assignment and
path finding problem with answer set programming. They de-
signed an approach operating in three phases for a simplified
warehouse variant, where the number of robots is no smaller than
the number of tasks and unnecessary waiting of agents exists
between the three phases. As a result, the designed approach
scales only to 20 tasks or robots.

The task assignment aspect of the studied problem is related
to multi-robot task allocation problems, which have been widely
studied [2], [11]. Most closely related are the VRP [12] and its
variants [13], all of which are NP-hard problems. The pickup
and delivery task assignment problems have also received atten-
tion [14], [15]. In [14], the package delivery task assignment for
a truck and a drone to serve a set of customers with precedence
constraints was investigated, where several heuristic assignment
algorithms are proposed. Cordeau and Laporte [15] conducted a
review on the dial-a-ride problem, where the pickup and delivery
requests for a fleet of vehicles to transport a set of customers need
to respect the customers’ origins and destinations. In [16], the
original concept of regret for not making an assignment may
be found to assign customers to multiple depots in a capacity-
constrained routing, where the regret is the absolute difference
between the best and the second best alternative. For the vehicle
routing and scheduling problem with time windows in [17],
Potvin and Rousseaua used the sum of the differences between
the best alternative and all the other alternatives as the regret to
route each customer. Later on, in [18], agent coordination with
regret clearing was studied. In the letter, each task is assigned
to the agent whose regret is largest, where the regret of the task
is the difference between the defined team costs resulting from
assigning the task to the second best and the best agent. But all
the methods above avoid reasoning about collisions of vehicles,
they assume, quite correctly for vehicle routing, that routes of
different vehicles do not interfere. This assumption does not hold
however for automated warehouses or sortation centres.

B. Multi-Agent Pickup and Delivery

For warehouses or sortation centres, it is necessary to con-
sider the interaction between agent routes. The MAPD problem

describes this scenario. Ma et al. [1] solves the MAPD prob-
lem online in decentralised manner using a method similar to
Cooperative A* [8], and in a centralised manner, which first
greedily assigns tasks to agents using a Hungarian Method and
then uses Conflict Based Search (CBS) [19] to plan collision-free
paths. Liu et al. [5] proposed TA-Hybrid to solve the problem
offline, which assumes all incoming tasks are known initially.
TA-Hybrid first formulates the task assignment as a travelling
salesman problem (TSP) and solves it using an existing TSP
solver. Then it plans collision-free paths using a CBS-based
algorithm.

Researchers have also investigated how to solve this problem
optimally. Honig et al. [4] proposed CBS-TA, which solves the
problem optimally by modifying CBS to search an assignment
search tree. However, solving this problem optimally is chal-
lenging, which leads to the poor scalability of CBS-TA. Other
limitations of CBS-TA and TA-Hybrid are that they are both
offline and hard to adapt to work online, and they don’t allow an
agent to carry multiple items simultaneously.

C. Multi-Agent Path Finding

Multi-agent path finding (MAPF) is an important part of
MAPD problem and is well studied. Existing approaches to
solve MAPF problems are categorised as optimal solvers,
bounded-suboptimal solvers, prioritised solvers, rule-based
solvers, and so on. Optimal solvers include Conflict Based
Search (CBS) [19], Branch-and-Cut-and-Price (BCP) [20], A*
based solvers [21] and Reduction Based Solvers [22]. These
solvers solve the problem optimally and their weakness is the
poor scalability. Bounded-suboptimal solvers such as Enhanced
CBS (ECBS) [23] can scale to larger problems to find near
optimal solutions. Prioritised solvers plan paths for each agent
individually and avoid collisions with higher priority agents. The
priority order can be determined before planning as in Cooper-
ative A* (CA) [8], or determined on the fly as in Priority Based
Search (PBS) [24]. Rule-base solvers like Parallel Push and
Swap [25] guarantee to find solutions to MAPF in polynomial
time, but the quality of these solutions is far from optimal. Some
researchers focus on the scalability of online multi-agent path
finding in MAPD problem. Windowed-PBS [26] plans paths for
hundreds of agents in MAPD problem, however it assumes that
tasks are assigned by another system.

D. Practical Considerations

This research focuses on the task assignment and path plan-
ning for real world applications. However, it also needs to
consider plan execution and kinematic constraints necessary to
achieve a computed plan in practice.

One issue that can arise in practice is unexpected delays, such
as those that can be caused by a robot’s mechanical differences,
malfunctions, or other similar issues. Several robust plan execu-
tion policies were designed in [27] and [28] to handle unexpected
delays during execution. The plans generated by our algorithms
can be directly and immediately combined with these policies.
Furthermore, k-robust planning was proposed in [29], which
builds robustness guarantees into the plan. Here an agent can be
delayed by up to k timesteps and the plan remains valid. Our
algorithms can also adapt this approach to generate a k-robust
plan.

Actual robots are further subject to kinematic constraints,
which are not considered by our MAPF solver. To overcome
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this issue, a method was introduced in [30] for post-processing
a MAPF plan to derive a plan-execution schedule that considers
a robot’s maximum rotational velocities and other properties.
This approach is compatible with and applicable to any MAPF
plan computed by our approach.

III. PROBLEM FORMULATION

Consider that multiple dispersed robots need to transport a set
of tasks from their initial dispersed workstations to correspond-
ing destinations while avoiding collisions, where each task has a
release time, that is the earliest time to be picked up. The robots
have a limited loading capacity, which constrains the number
of tasks that each robot can carry simultaneously. Each robot
moves with a constant speed for transporting the tasks and stops
moving after finishing its tasks. The objective is to minimise the
robots’ total travel delay (TTD) to transport all the tasks while
avoiding collisions.

A. Formula Definition as an Optimisation Problem

We use P = {1, . . . , n} to denote the set of indices of n
randomly distributed tasks that need to be transported from their
initial locations to corresponding dispersed destinations. Each
task i ∈ P is associated with a given tuple (si, gi, ri), where si
is the origin of i, gi is the destination of i, and ri is the release
time of i. R = {n+ 1, . . . , n+m} denotes the set of indices
of m > 1 robots that are initially located at dispersed depots.
We use sk to represent the origin of robot k ∈ R. To transport
task i, one robot needs to first move to the origin si of i to pick
up the task no earlier than its release time ri, and then transport
the task to its destination gi. It is assumed that the robots can
carry a maximum of C tasks at any time instant. Let nk(t) ≤ C
be the number of tasks carried by robot k ∈ R at time instant t,
and pk(t) be the position of robot k at t. We model the operation
environment as a graph consisting of evenly distributed vertices
and edges connecting the vertices, and assume that the tasks and
robots are initially randomly located at the vertices. When the
robots move along the edges in the graph, they need to avoid
collision with each other: so two robots cannot be in the same
vertex at the same time instant t, and they also cannot move
along the same edge in opposite directions at the same time. Let
I = {s1, . . ., sn+m, g1, . . ., gn}, and t(i, j) denote the shortest
time for a robot to travel from i to j for each pair of i, j ∈ I.
Trivially, t(i, i) = 0 for each i ∈ I.

Let σijk : I × I ×R → {0, 1} be the path-planning map-
ping that maps the indices i, j ∈ I of the starting and ending
locations and k ∈ R of the kth robot to a binary value, which
equals one if and only if it is planned that robot k directly
travels from location i to location j for performing a pick-
up or drop-off operation for transporting the tasks associated
with the locations. So σiik = 0 for all i ∈ I and k ∈ R. Let
the task-assignment mapping µik : P ×R → {0, 1} map the
indices i ∈ P of the ith task and k ∈ R of the kth robot to
a binary value, which equals one if and only if it is planned
that robot k picks up task i at si no earlier than ri and then
transports i to its destination. We use variable a(j), initialised
as a(j) = 0, to denote the time when a robot performs a
pick-up or drop-off operation at location j ∈ I to transport
a task. Thus, nk(a(si) + 1) = nk(a(si)) + 1 if pk(a(si)) =
si, and nk(a(gi) + 1) = nk(a(gi))− 1 if pk(a(gi)) = gi, ∀i ∈
P, ∀k ∈ R.

Then, the objective to minimize the total travel delay (TTD)
for the robots to transport all the tasks while avoiding collisions
is to minimise

TTD =
∑

i∈P

(a(gi)− ri − t(si, gi)), (1)

subject to
∑

j∈I

σjsik =
∑

j∈I

σsijk, ∀i ∈ P, ∀k ∈ R; (2)

∑

j∈I

σjsik = µik, ∀i ∈ P, ∀k ∈ R; (3)

∑

k∈R

µik = 1, ∀i ∈ P; (4)

σijk · (pk(a(i))− i) = 0, ∀i, j ∈ I, ∀k ∈ R; (5)

σijk · (pk(a(j))− j) = 0, ∀i, j ∈ I, ∀k ∈ R; (6)

ri ≤ a(si), ∀i ∈ P; (7)

σijk · (a(i) + t(i, j)) ≤ a(j), ∀i, j ∈ I, ∀k ∈ R; (8)

nk(t) ≤ C, ∀k ∈ R, ∀t; (9)

pk(t) �= pw(t), ∀k,w ∈ R, k �= w, ∀t; (10)

(pk(t), pk(t+ 1)) �= (pw(t+ 1), pw(t)), ∀k,w ∈ R, ∀t;
(11)

σijk, µik ∈ {0, 1}, ∀i, j ∈ I, ∀k ∈ R.

Constraint (2) requires that the same robot drops off the task
picked up by it; (3) denotes that a task will be transported by a
robot if the robot picks up the task; (4) implies that each task is
transported by exactly one robot; (5) and (6) require that vehicle
k will visit all the locations, planned to be visited, at certain
time instants; (7) guarantees that the earliest time for the robots
to pickup every task is the time when the task is released; (8)
ensures that there is no shorter time for each robot to move
between two arbitrary locations i and j compared with t(i, j);
(9) guarantees that the robots’ capacity constraint is always
satisfied; (10) and (11) require that there is no collision between
any two robots.

IV. TASK ASSIGNMENT AND PATH PLANNING

Existing MAPD algorithms perform task assignment and path
planning separately. Here we propose several algorithms for
simultaneous task assignment and path planning, and path costs
from planning are used to support the task assignment.

A. Task Assignment Framework

Fig. 2 shows the overall process of how task assignment and
path planning are performed simultaneously. The key compo-
nent of this approach is a current assignment set A and a priority
heap H. A stores a set of assignments ak which contains ok, an
ordered sequence of actions (pick-up and drop-off each task)
assigned to each robot k ∈ R, k’s current collision-free path,
and the TTD for k to transport the assigned tasks. ok is initialized
as {sk}, and t(ok) is used to denote the TTD for robot k to
transport all the tasks by following ok. The priority heapH stores
a set of potential assignment heaps hi, one for each unassigned
task i ∈ P . A potential assignment heap hi for task i stores all
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Fig. 2. The flowchart of MCA/RMCA for assigning three tasks/packages
{t1, t2, t3} to three robots {1, 2, 3}. The gray box is priority heap H, green
box is potential assignment heap h, orange box is current assignment set A,
dashed border box is ordered action sequence oi for each robot i, si is i’s initial
location, and pt3 and dt3 are respectively the pick-up and destination location
of task t3.

Algorithm 1: Simultaneous Task Assignment and Path

Planning.

Require: Current Assignment Set A, task set P , robot
set R, and the loading capacity C.

1: Pu ← P
2: H ← build potential assignment heaps based on A
3: while Pu �= ∅ do
4: paik ← H.top().top()
5: A ← (A− {ak}) ∪ {paik}
6: ak ← paik
7: Delete i from Pu

8: Delete hi from H
9: for hj ∈ H do

10: // Update pajk based on ak.ok
11: pajk ← Get assignment of j on k from hj

12: pajk.o
j
k ← insert(j, ak.ok)

13: pajk.path ← planPath(pajk.o
j
k)

14: hj .update(pa
j
k)

15: // Update top elements’ paths
16: updateHeapTop(hj , ak, 1 + (RMCA)) //

Algorithm 2
17: end for
18: end while
19: return A

potential assignments of i to each robot k ∈ R based on k’s
current assignment ak. An entry in the heap hi is a potential
assignment paik of task i to robot k which includes updated
versions of ok and a revised path and cost for the agent under the
addition of task i to robot k. The algorithm continues assigning
tasks from the unassigned task setPu initialized asP , and keeps
updating H until all tasks are assigned.

Algorithm 1 shows the pseudo-code for task assignment
framework. At the start of the algorithm,A has no assigned tasks
and paths. H is initialized to include one potential assignment
heap for each task. Each potential assignment heap tries to assign
the task i to every robot based on A.

The main while loop of the algorithm keeps selecting and
assigning the top potential assignment paik of the top potential

assignment heap ofH. The potential assignmentpaik assigns task

i to robot k. Then the ak ∈ A is replaced by paik, hi is deleted
from H and i deleted from Pu. When the action sequences ok
and path for robot k inA change, all other potential assignment’s

Algorithm 2: Update Potential Assignment Heap for

(R)MCA.

Require: Assignment heap hj , new assignment ak, limit
v

1: while ∃ element pajl in top v elements of hj with
collision with ak.path do

2: pajl .path ← planPath(pajl .o
j
l , ak)

3: hj .updateTop(v)
4: end while

action sequence ojk on robot k in any hj , j ∈ Pu/{i}, must be
recalculated based on the new path for agent k.

The behaviour of insert() function in Algorithm 1 will be
explained in Section IV-B and Section IV-C. The planPath()
function uses prioritised planning with space-time A* [8], which
is fast and effective, to plan a single path for agent k following
its ordered action sequence ok while avoiding collisions with
any other agents’ existing paths in A. As a result, the overall
priority order for path planning is decided by the task assignment
sequence. It is worth noting that the path planning part of
Algorithm 1 might be incomplete as the prioritised planning
is known to be incomplete [24].

For the remaining potential assignments on robot k,′ k′ �=
k, k′ ∈ R in any hj , the recalculation of action sequence ojk′

is not necessary since the assigned tasks ak′ ∈ A do not change.
However their current paths may collide with the updated agents
pathak.path. To address this issue, we could check for collisions
of all potential assignments for agents other than k and update
their paths if they collide with the new path for agent k. A faster
method is to only check and update the paths for assignments
at the top v elements of each potential assignment heap using
the updateHeapTop() function shown in Algorithm 2. Using
the second method saves considerable time and it only slightly
influences the task assignment outcome.

A potential assignment heap sorts each potential assignment
in increasing order of marginal cost. The sorting order of H is
decided by the task selection methods defined below.

B. Marginal-Cost Based Task Selection

We now introduce the marginal-cost based task assignment
algorithm (MCA). The target of MCA is to select a task i⋆ in
Pu to be assigned to robot k⋆ ∈ R, with action sequences q⋆1
and q⋆2 for k⋆ to pick up and deliver i⋆, while satisfying:

(k⋆, i⋆, q⋆1 , q
⋆
2) = arg min

k∈R,i∈Pu,
1<q1≤|ok |,

q1<q2≤|ok |+1

{t((ok ⊕q1 si)⊕q2 gi)− t(ok)},

(12)
where operator (ok ⊕q1 si)⊕q2 gi means to first insert location
si at the q1th position of the current route ok, and then insert
location gi at the q2th position of the current ok. If q1 = |ok|, si
is inserted to the second last of ok where |ok| is the length of ok
and the last action should always be go back to start location.
After assigning task i⋆ to robot k⋆ ∈ R, the unassigned task set
Pu is updated to Pu = Pu \ {i⋆}, and k⋆’s route is updated to
ok⋆ = (ok⋆ ⊕q⋆

1
si⋆)⊕q⋆

2
gi⋆ .

To satisfy equation (12), the insert() function in Algorithm 1
tries all possible combinations of q⋆1 and q⋆2 and selects q⋆1 and q⋆2
that minimise the incurred marginal TTD by following ok while
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ignoring collisions for transporting task i⋆, where k’s load is
always smaller than capacity limit C. Then the planPath()
function uses an A⋆ algorithm to plan a path following oik,
while avoiding collision with anyak′ .path, ak′ ∈ A, k′ �= k, and
calculates the real marginal cost in terms of TTD. Finally, the
updateHeapTop() function (Algorithm 2 with v = 1) updates
the potential assignment heaps. The heap of potential assignment
heaps H sorts potential assignment heaps based on marginal
cost of the top potential assignment paitop of each potential
assignment heap hi in increasing order, where i ∈ Pu.

C. Regret-Based Task Selection

This section introduces a regret-based MCA (RMCA), which
incorporates a form of look-ahead information to select the
proper task to be assigned at each iteration. Inspired by [16],
[18], RMCA chooses the next task to be assigned based on the
difference in the marginal cost of inserting the task into the best
robot’s route and the second-best robot’s route, and then assigns
the task to the robot that has the lowest marginal cost to transport
the task.

For each task i in the current unassigned task setPu, we usek∗1
to denote the robot that inserting i into its current route with the
smallest incurred marginal travel cost while avoiding collisions,
where

(k⋆1 , q
⋆
1 , q

⋆
2) = arg min

k1∈R,
1<q1≤|ok|,

q1<q2≤|ok |+1

{t((ok ⊕q1 si)⊕q2 gi)− t(ok)}.

(13)

The second-best robot k∗2 ∈ R \ {k∗1} to serve i is

(k⋆2 , p
⋆
1, p

⋆
2) = arg min

k2∈R\{k∗
1
},

1<p1≤|ok |,
p1<p2≤|ok |+1

{t((ok ⊕p1
si)⊕p2

gi)− t(ok)}.

(14)

Then, we propose two methods for RMCA to determine which
task i∗ ∈ Pu will be assigned.

The first method, RMCA(a), uses absolute regret which
is commonly used in other regret-based algorithms. The task
selection satisfies:

i⋆= arg max
i∈Pu

t((ok⋆

2
⊕p⋆

1
si)⊕p⋆

2
gi)− t((ok⋆

1
⊕q⋆

1
si)⊕q⋆

2
gi).

(15)
The second method, RMCA(r), uses relative regret to select

a task satisfying the following equation:

i⋆ = arg max
i∈Pu

t((ok⋆

2
⊕p⋆

1
si)⊕p⋆

2
gi)/t((ok⋆

1
⊕q⋆

1
si)⊕q⋆

2
gi).

(16)
Both RMCA(r) and RMCA(a) use the same insert() function

in Section IV-B to select an insert location for each potential
assignment. The main difference between RMCA and MCA is
that the heap H sorts the potential assignment heaps hi, i ∈ Pu

by absolute or relative regret. RMCA uses Algorithm 2 with
v = 2 to ensure that the top two elements of each heap are kept
up to date.

D. Anytime Improvement Strategies

After finding an initial solution based on RMCA, we make
use of an anytime improvement strategy on the solution. This

Algorithm 3: Anytime Improvement Strategy.

Require: A set of current assignment A, Group size n,
time limit

1: while runtime < time limit do
2: A,′ Pu ← destroyTasks(A, n)
3: A′ ← RMCA(A,′ Pu)
4: if A′.cost ≤ A.cost then
5: A = A′

6: end if
7: end while
8: return A set of current assignment A

Fig. 3. A warehouse map with 21 x 35 tiles, where blue tiles are endpoints
for tasks, orange tiles are initial locations of the robots, and black tiles are static
obstacles.

strategy is based on the concept of Large Neighbourhood Search
(LNS) [9]. As shown in Algorithm 3, the algorithm will continu-
ously destroy some assigned tasks from the current solution and
reassign these tasks using RMCA. If a better solution is found,
we adopt the new solution, and otherwise we keep the current
solution. We keep destroying and re-assigning until time out.
We propose three neighbour selection strategies to select tasks
to destroy.

1) Destroy Random: This method randomly selects a group
of tasks from all assigned tasks. The selected tasks are removed
from their assigned agents and re-assigned using RMCA.

2) Destroy Worst: This strategy randomly selects a group of
tasks from the agent with the worst TTD. The algorithm records
the tasks that are selected in a tabu list to avoid selecting them
again. After all tasks are selected once, we clear the tabu list and
allow all tasks to be selected again.

3) Destroy Multiple: This method selects a group of agents
that have the worst sum of TTD. Then it randomly destroys one
task from each agent. It also makes use of a tabu list as in the
previous strategy.

V. EXPERIMENTS

We perform our experiments on a 21× 35 warehouse map as
shown in Fig. 3, where black tiles are static obstacles, white
tiles are corridors, blue tiles represent potential origins and
destinations (endpoints) of the tasks, and orange tiles represent
starting locations of the robots.

For the experiments, we test the performance of the designed
algorithms under different instances. Each instance includes
a set of packages/tasks with randomly generated origins and
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Fig. 4. Mean relative TTD versus number of tasks on different numbers of
agents and different capacity values.

destinations and a fleet of robots/agents, where the origin and
destination for each task are different.1

A. One-Shot Experiment

We first evaluate the designed algorithms in an offline manner
to test their scalability. Here, we assume that all the tasks are
initially released. This helps us to learn how the number of tasks
and other parameters influence the algorithms’ performance, and
how many tasks our algorithm can process in one assignment
time instant.

1) Relative TTD and Runtime: The first experiment com-
pares variants of methods for different numbers of agents and
different capacities of agents. We compare two decoupled ver-
sions of the algorithms, where we first complete the task as-
signment before doing any route planning. In these variants we
use optimal path length as the distance metric while performing
task assignment. We consider two variants: decoupled MCA
(MCA-pbs) where we simply assign tasks to the agent which
will cause the least delay (assuming optimal path length travel),
and decoupled RMCA (RMCA(r)-pbs) where we assign the task
with maximum relative regret to its first choice. The routing
phase uses PBS [24] to rapidly find a set of collision-free routes
for the agents given the task assignment. We compare three
coupled approaches: MCA uses greedy task assignment, while
RMCA instead uses maximum (absolute or relative) regret to
determine which task to assign first. For each number of tasks,
each number of agents (Agents) and each capacity (Cap), we
randomly generate 25 instances. Each task in each instance
randomly selects two endpoints (blue tiles in Fig. 3) as the start
and goal locations for the task.

Fig. 4 shows the algorithms’ relative TTD. The relative TTD is
defined as real TTD minus the TTD of RMCA(r) when ignoring
collisions. The reason we use relative TTD as a baseline is that

1Our implementation codes of the designed algorithms are available at: https:
//github.com/nobodyczcz/MCA-RMCA.git

Fig. 5. Average runtime versus number of tasks on different numbers of agents
and different capacity values.

the absolute TTD values in one-shot experiment are very large
numbers varying in a relative small range. If using absolute
TTD values, it is hard to distinguish the performance difference
of algorithms in plots. Overall we can see that the decoupled
methods are never the best, thus justifying that we want to
solve this problem in a coupled manner instead of separate task
assignment and routing. For Cap = 1, MCA is preferable since
we cannot modify the route of an agent already assigned to a
task to take on a new task and regret is not required. For Cap
= 3, RMCA(r) eventually becomes the superior approach as the
number of agents grows. When Cap = 5, RMCA(r) is clearly
the winner. Interestingly, the absolute regret based approach
RMCA(a) does not perform well at all. This may be because the
numbers of tasks assigned to the individual agents by RMCA(a)
are far from even, and the resulting travel delay changes greatly
when agents are assigned with more tasks. In other words,
RMCA(a) prefers to assign tasks to agents with more tasks. The
relative regret is more stable to these changes.

Fig. 5 shows the average runtime for the above experiment.
The results show that decoupled approaches are advantageous
in runtime, especially for instances with a large number of tasks
and small capacity. Although RMCA and MCA require more
runtime than the decoupled approaches, we demonstrate below
that MCA and RMCA are still competitive in runtime compared
with other algorithms.

2) Anytime Improvement Methods: The second experiment
uses any time improvement algorithm to improve the solution
from RMCA(r) for 60 seconds with three neighbourhood de-
stroy strategies: Destroy random (DR), Destroy worst (DW)
and Destroy multiple (DM). For each destroy strategy, we run
experiments on different destroy group sizes (how many tasks to
destroy each time). The experiment is performed on 25 instances
that each have 500 tasks with different capacity values and
agents’ numbers.

Table I shows the results of relative TTD of RMCA(r)/MCA
(Relative to the TTD of RMCA(r) that ignores collisions, and

https://github.com/nobodyczcz/MCA-RMCA.git
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TABLE I
MEAN RELATIVE TTD OF ANYTIME MCA/RMCA ON 500 TASKS

the lower the better) under different anytime improvement strate-
gies. The results show that all of the three neighbourhood destroy
methods improve the solution quality of RMCA(r) and MCA.
We still see that MCA performs better than RMCA(r) when ca-
pacity and number of agents are low (The relative TTD of MCA
smaller than 0 means its TTD is smaller than TTD of RMCA(r)
that ignores collisions.), even the anytime improvement strate-
gies can not reverse this trend. Overall, destroy random and
destroy worst performs better than destroy multiple. This is not
unexpected as simple random neighbourhoods are often very
competitive for large neighbourhood search.

B. Lifelong Experiment

In this part, we test the performance of RMCA(r) in a lifelong
setting compared with the TPTS and CENTRAL algorithms
in [1]. The MAPD problem solved by TPTS and CENTRAL
assumes that each agent can carry a maximum of one package at
a time, and the objective is to minimize the makespan. This ob-
jective is somewhat misleading when we consider the continuous
nature of the underlying problem where new tasks arrive as the
plan progresses. As a result, minimizing TTD might be a better
objective since it may help in optimizing the total throughput
of the system by trying to make agents idle as soon as possible,
whereas with makespan minimization all agents can be active
until the last time point.

At each timestep, after adding newly released tasks to the
unassigned task set Pu, the system performs RMCA(r) on
current assignments set A, and runs the anytime improvement
process on all released tasks that are not yet picked up. The
RMCA(r) uses the anytime improvement strategy of destroy
random with a group size of 5. As the anytime improvement
triggers at every timestep when new tasks arrive, and involves
all released yet unpicked up tasks, we set the improvement time
as 1 s in each run.

TABLE II
LIFELONG EXPERIMENT ON DIFFERENT ALGORITHMS

We generate 25 instances with 500 tasks. For each instance,
we use different task release frequencies (f ): 0.2 (release 1 task
every 5 timestep), 2 and 10 (10 tasks are released each timestep).
For each task release frequency, we test the performance of the
algorithms under different agent capacities (Cap) and different
numbers of agents (Agents).

1) Result: Table II shows that RMCA(r) not only optimizes
TTD, its makespans are overall close to CENTRAL, and are
much better than TPTS. Comparing TTD, CENTRAL and TPTS
perform much worse than RMCA(r). This supports our argument
that makespan is not sufficient for optimizing the total through-
put of the system. In addition, the runtime per timestep (T/TS)
shows that RMCA(r) gets a better solution quality while consum-
ing less runtime on each timestep compared with CENTRAL.
A lower runtime per timestep makes RMCA(r) better suited
to real-time lifelong operations. Furthermore, by increasing
the capacity of robots, both total travel delay and makespan
are reduced significantly, which increases the throughput and
efficiency of the warehouse.

2) T-Test on TTD and Makespan: We evaluate how sig-
nificant is the solution quality of RMCA(r) with respect to
CENTRAL and TPTS by performing t-test with significance
level of 0.1 on the normalized TTD and normalized makespan
for experiments with robots’ Cap = 1. The normalized TTD is

defined as TTD·Na

Nt·f
where Nt is the number of tasks, Na is the

number of agents and f is the task frequency. This definition
is based on the observation that increasing Na decreases TTD,
and increasing Nt and f increases TTD. Similarly normalized

makespan is makespan·Na·f
Nt

(where now increasing f decreases
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TABLE III
T-TEST COMPARES RMCA(R) TO CENTRAL AND TPTS

makespan). Table III shows the t-score and p-value for the
null hypotheses that RMCA(r) and the other methods are iden-
tical. The results show that RMCA(r) significantly improves
the normalized TTD compared with CENTRAL and TPTS and
improves the normalized makespan compared with TPTS.

VI. CONCLUSION

In this letter, we have designed two algorithms MCA and
RMCA to solve the Multi-agent Pickup and Delivery problem
where each robot can carry multiple packages simultaneously.
MCA and RMCA successfully perform task assignment and
path planning simultaneously. This is achieved by using the real
collision-free costs to guide the multi-task multi-robot assign-
ment process. Further, we observe that the newly introduced
anytime improvement strategy improves solutions substantially.
Future work will extend the anytime improvement strategies to
refine the agents’ routes, and improve the algorithms’ complete-
ness on path planning.
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