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Summary 

Both healthy aging and Alzheimer’s disease (AD) are characterized by concurrent 

alterations in several biological factors. However, generative brain models of aging 

and AD are limited in incorporating the measures of these biological factors at different 

spatial resolutions. Here, we propose a personalized bottom-up spatiotemporal brain 

model which accounts for the direct interplay between hundreds of RNA transcripts 

and multiple macroscopic neuroimaging modalities (PET, MRI). In normal elderly and 

AD participants, the model identifies top genes modulating tau and amyloid-β burdens, 

vascular flow, glucose metabolism, functional activity, and atrophy to drive cognitive 

decline. The results also revealed that AD and healthy aging share specific biological 

mechanisms, even though AD is a separate entity with considerably more altered 

pathways. Overall, this personalized model offers novel insights into the multiscale 

alterations in the elderly brain, with important implications for identifying effective 

genetic targets for extending healthy aging and treating AD progression. 
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Highlights 

- A multiscale model integrating gene expression and neuroimaging identifies 

causal genes driving healthy aging and Alzheimer’s disease progression. 

- The specific neuroimaging modalities modulated by the causal genes are 

revealed. 

- Healthy aging and Alzheimer’s disease share specific biological pathways even 

though Alzheimer’s disease has more altered pathways. 

 

Introduction 

Innovations in healthcare and drug delivery have led to increase in human life 

expectancy. However, increased lifespan is accompanied by more predisposition to 

frailty and late-onset Alzheimer’s disease (AD) (Guerreiro et al., 2015; Singh et al., 

2019). Both healthy aging and AD are complex multifactorial processes, and 

understanding their molecular mechanisms is crucial for extending longevity and 

improving quality of life (Alkadhi et al., 2011; Kowald et al., 1996). Indeed, at the 

microscopic scale (~10-6 m), transcriptomics and proteomics analysis of the brain have 

paved the way for deciphering the mechanistic underpinnings of healthy aging and AD 

(Dillman et al., 2017; Y. Iturria-Medina et al., 2020; E. C. B. Johnson et al., 2020; 

Mostafavi et al., 2018; Tanaka et al., 2018). In parallel, macroscopic (~10-2 m) imaging 

phenotypes from PET and MRI are facilitating the detailed characterization of brain 

changes, such as amyloid-β (Aβ) and tau accumulation, glucose hypometabolism, 

altered cerebrovascular flow and atrophy (Dukart et al., 2013; Jack et al., 2018; 

Rodrigue et al., 2012; N. Zhang et al., 2017). However, in both aging and disease 

research, most studies incorporate brain measurements at either micro (e.g. 

transcriptomics) or macroscopic scale (e.g. PET imaging), failing to detect the direct 

causal relationships between several biologically factors at multiple spatial resolutions.  

Although AD is characterized by the accumulation of amyloid plaques and 

neurofibrillary tangles, many other biological aberrations have been associated with 

the disease (neuroinflammation, vascular abnormalities, white matter hyperintensities), 

leading to changes in diagnostic criteria in recent times (DeTure et al., 2019). The 

complexity of AD is further compounded by the interplay between these multiple 

biological factors. A growing body of evidence points to the synergistic interaction 
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between Aβ and tau in driving neuronal loss, functional dysregulation and glucose 

hypometabolism in AD (Iaccarino et al., 2017; Ittner et al., 2011; Pascoal et al., 2017; 

Pickett et al., 2019) . Also, cerebral blood flow (CBF) promotes Aβ clearance, 

suggesting that vascular dysregulation could impact neuronal function and facilitate 

Aβ deposition (Qosa et al., 2014; Zlokovic, 2011). To account for the synergy between 

multiple biological factors, we previously introduced a multifactorial causal model 

(MCM) (Iturria-Medina et al., 2017), which uses multimodal imaging data to 

characterize the macroscale intra-regional interactions among any pair of biological 

factors (tau, Aβ, CBF) while accounting for the inter-regional spreading of the 

pathological alterations across axonal and/or vascular connections. However, this 

multifactorial model did not consider the microscopic properties of the modelled brain 

regions.  

In an initial attempt to integrate brain variables at multiple scales, a few recent studies 

have used the regional expression patterns of pre-selected genes as complementary 

information in intra-brain disease spreading models (Freeze et al., 2018; Freeze et al., 

2019; Zheng et al., 2019). Applied to Parkinson’s disease (PD), improvements in the 

capacity to explain the regional brain atrophy patterns were observed, based on each 

brain region’s genetic predisposition to the disease. However, most of these studies 

have selected very specific genes already known for their crucial role in disease (e.g. 

SNCA, TMEM175, GBA), while disregarding the individual and combined roles of 

several other relevant gene candidates. Moreover, the analyses have focused on the 

influence of transcriptomics on a single biological factor at a time, without accounting 

for the multiplicity of biological alterations and interactions that occur at different spatial 

scales. As a result, we continue to lack brain generative models integrating a large set 

of genetic activities with multimodal brain properties. 

An integrated multiscale and multifactorial brain model (from genes to neuroimaging 

and cognition) may be critical to further our understanding of both healthy aging and 

neurodegeneration, and engender the development of inclusive biomarkers for 

personalized diagnosis and treatment. Driven by this motivation, here we combine 

whole-brain transcriptomics, PET and MRI in a comprehensive generative and 

personalized formulation which we successfully validated in healthy aging and AD 

progression. This novel approach concurrently accounts for the direct influence of 

hundreds of genes on regional macroscopic multifactorial effects, the pathological 
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spreading of the ensuing aberrations across axonal and vascular networks, and the 

resultant effects of these alterations on cognition. The proposed framework constitutes 

a promising technique for the development of effective genetic targets for preventing 

aging-related disorders and ameliorating existing neurodegenerative conditions. 

 

Results 

Capturing Gene and Macroscopic Factor Interactions in the Human Brain 

Genes control many biological functions, and their dysregulation can cause abnormal 

development, accelerated aging or disease (Kuintzle et al., 2017; Lee et al., 2013). 

Aiming to characterize the direct influence of genes on multiple brain processes, here 

we have developed a multiscale and multifactorial spatiotemporal brain model (Figs. 

1A-C) linking whole-brain gene expression with multiple macroscopic factors typically 

quantified via molecular PET and MRI modalities (i.e. Aβ and tau proteins, CBF, 

glucose metabolism, neuronal activity, and grey matter density). This novel approach, 

called Gene Expression Multifactorial Causal Model (GE-MCM; see Methods), allows 

quantifying the gene-specific impacts on the longitudinal changes associated with 

each local macroscopic factor considered, and the gene mediation effects on the 

pairwise factor interactions (e.g. negative tau effects on neuronal activity) while 

accounting for the simultaneous spreading of the aberrant effects across physical 

brain networks (e.g. tau and Aβ region-region propagation via anatomical and vascular 

connectomes). By using standardized GE maps (Hawrylycz et al., 2012), longitudinal 

multimodal imaging data and a robust optimization algorithm, the GE-MCM identifies 

individual transcriptomic-imaging parameters controlling the dynamic changes 

observed in the macroscopic biological factors considered (Figs. 1A-C). These 

personalized parameters are assumed to be the gene-specific deviations required for 

model fitting and thus they quantitatively measure individual gene dysregulation 

patterns. We hypothesized that the post-hoc analysis of these transcriptomic-imaging 

parameters will reveal essential pathogenetic mechanisms in health and disease. 
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Figure 1: Modelling the gene-imaging interactions driving healthy aging and AD progression. 

A) The longitudinal alteration of macroscopic biological factors in healthy and diseased brain 

due to gene-imaging interactions and the propagation of the ensuing alterations across brain 

network. B) Regional multifactorial interactions between six macroscopic biological 

factors/imaging modalities are modulated by local gene expression. C) Causal multifactorial 

propagation network capturing the interregional spread of biological factor alterations through 

physical connections. D) By applying a multivariate analysis through singular value 

decomposition (SVD), the maximum cross-correlation between age-related changes in 

cognitive/clinical evaluation and the magnitude of genetic modulation of imaging modalities 

are determined in a cohort of stable healthy subjects (for healthy aging), and MCI converters 

and AD subjects (for AD progression). The key causal genes driving healthy aging and AD 
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progression are identified through their absolute contributions to the explained common 

variance between the gene-imaging interactions and cognitive scores. 

 

Next, with the complementary interest of further clarifying the genetic mechanisms 

underlying healthy aging and AD development, the GE-MCM framework was applied 

to a cohort of 151 healthy and 309 diseased subjects from ADNI (Methods, and Fig. 

1). The standardized transcriptomic data was derived from 6 neurotypical brains from 

AHBA (Hawrylycz et al., 2012), comprising RNA intensities of 976 landmark genes 

with leading roles in central biological functions. These genes correspond to a set of 

universally informative transcripts, previously identified as ‘'Landmark Genes’' based 

on their capacity to cover most of the information in the whole human transcriptome 

across a diversity of tissue types (Subramanian et al., 2017).  

The predictive performance of the model across different clinical categories is shown 

in Figure 2. We calculated the coefficient of determination (𝑅2) of the model for the six 

longitudinal PET and MRI modalities, and averaged them across all subjects in each 

clinical group. The 𝑅2 was highest for AD (0.80 ± 0.20), followed in order by LMCI 

(0.59 ± 0.23), EMCI (0.57 ± 0.21) and HC (0.51 ± 0.24). The improvement observed 

in model performance with disease progression could be due to the larger variation in 

biological factor alteration in the later stages of the AD continuum. Nevertheless, these 

results support the capacity of the GE-MCM approach to reproduce the longitudinal 

observations in the six molecular PET and MRI modalities.  
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Figure 2: Reconstruction of individual multifactorial alteration patterns across all subjects in 

the AD continuum. Plots are shown for the 𝑅2 obtained across all six biological factors in the 

HC (n=151), EMCI (n=161), LMCI (n=113) and AD (n=35) cohorts. Points are laid over a 2.58 

standard error of the mean (SEM) (99% confidence interval) in red and at 1 SD in blue. Notice 

that model performance improves with disease progression. We attribute this effect to the 

typical larger variation in longitudinal biological factor alterations with disease evolution, which 

provides the optimization algorithm with further biological information and results in a more 

accurate data fitting and parameters identification. 

 

Identifying Genes Driving Biological and Cognitive Changes in Healthy Aging 

Age is a significant risk factor for developing many complex disorders. Even though 

lifestyle and environmental factors contribute to healthy aging, understanding the 

genetic basis of aging will offer valuable biological insights with implications for 

disease prevention and longevity (Niccoli et al., 2012; Rodríguez-Rodero et al., 2011). 

Hence, we sought to identify causal genes underlying longitudinal cognitive changes 

in healthy aging. We analyzed the predictive relationship between the obtained 

transcriptomic-imaging parameters and multiple cognitive evaluations in 113 HC 

subjects who remained clinically stable within 7.8 years (SD = 2.9 years). The cognitive 
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changes were obtained as the age-related slopes of MMSE, ADAS, executive function 

(EF), and memory score (MEM) over an average of 7.2 time points (SD=2.6). For this 

analysis, we only used 68 stable transcriptomic-imaging parameters whose 99% CI 

excluded zero across the HC non-converters (see Model evaluation subsection in 

Methods). Using a multivariate singular value decomposition (SVD), we found the 

common latent variables between the gene-imaging parameters and the slopes of 

multiple cognitive measures, and the variances explained by the principal components 

(PC) are shown in Fig. 3A.  Running 10000 permutations identified the first PC as the 

only significant component (explained variance= 50.3%; P=0.0074).    

Next, we calculated the contribution of each gene-specific parameter on this significant 

PC (Model Evaluation) and assessed the statistical reliability of the genetic 

contributions by running 10000 bootstrap iterations. A bootstrap ratio threshold of 2.58 

(approximately equivalent to P<0.01 (Efron et al., 1986)) was applied, revealing 8 

genes with stable causal contributions to the multimodal imaging dynamics and 

associated cognitive changes in healthy aging (Fig. 3B). Notice that the saliences of 

some genes are negative, implying that their modulation effects are negatively 

associated with the rate of cognitive change. Specifically, as shown in Figure 3C, 

TSKU modulates Aβ while tau is modulated by GNA15 and LSM6 to drive age-related 

alterations in Aβ. Also, BIRC5, SESN1 and PLSCR3 respectively modulate tau, CBF 

and Aβ in driving alterations in neuronal activity. Similarly, age-related changes in tau 

are driven by C5 and CASP10 through their direct effects on functional activity and 

CBF, respectively. 
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Figure 3: Identification of top genetic modulators of cognitive change in healthy aging. A) 

Common variance (and associated p-values) captured by the top-5 PCs of the SVD in 

explaining the rate of change of cognitive scores due to healthy aging. Only the first PC is 

significant (P<0.05). B) Genetic contributions (and 99% CI) on the first PC, depicted only for 

the eight highly stable aging-related genes whose bootstrap ratios are above 2.58. C) Top 

genetic determinants of multifactorial alterations in healthy aging. The innermost ring shows 

the longitudinal biological factor altered with aging, middle ring displays the interacting 

biological factors driving the longitudinal alteration, and the outermost ring represents the 

causal genes modulating the interactions among biological factors (e.g. SESN1 directly 

modulates blood flow to drive age-related alteration in neuronal activity).  
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Revealing Top Genes and Molecular Pathways Controlling Multifactorial 

Alterations and Clinical Deterioration in AD 

A crucial challenge for early detection and prevention of AD is the development of 

cheap and non-invasive biomarkers (such as genes) as well as the understanding of 

the molecular mechanisms underlying its pathogenesis (Y. Iturria-Medina et al., 2020) . 

Here, we proceed to identify genes driving neuropathological progression in the AD 

spectrum, restricting our analysis to 129 participants who were either diagnosed with 

AD (35) at baseline or converted to AD (94) after baseline diagnosis (7 HC and 87 

MCI). Like the aging analysis, we only kept 993 statistically stable transcriptomic-

imaging parameters whose 99% CI excluded zero (see Model Evaluation subsection 

in Methods). We used SVD to obtain the common latent variables (variance) between 

the gene-imaging parameters and slopes of multiple cognitive measures (MMSE, 

ADAS, EF and MEM across 6.3±3.0 longitudinal time points). After 10000 permutation 

runs, the first PC was significant (P = 0.009) and explained 63.8% of the variance 

between the gene-imaging interaction parameters and the slopes of cognitive 

evaluations (see Fig. 4A). A bootstrap ratio threshold of 2.58 (approximately equivalent 

to P<0.01 (Efron et al., 1986)) was applied, identifying 111 genes (Fig. 4B) with stable 

causal contributions to the macroscopic factor interactions and associated cognitive 

changes in AD. The factors directly modulated by these causal genes and the ensuing 

factorial alterations are shown in Fig. 4C.  
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Figure 4: Uncovering the top genetic determinants of AD progression. A) The common 

variance captured by the principal components (PCs) of the SVD in explaining how clinical 

evaluations change with AD evolution. P-values after 10000 permutations are also shown B) 

Contributions of top AD causal genes (with 99% CI) to the first PC. Top causal genes are 

identified by selecting those genes whose bootstrap ratios of saliences are above 2.58. C) 

Multifactorial interactions between the identified genes and imaging modalities. The innermost 

ring shows the longitudinal biological factor changes with AD, middle ring displays the 

interacting biological factors driving the longitudinal alteration, and the outermost represents 

the causal genes modulating the interactions among biological factors. A gene directly 

influences how a biological factor interacts with other factors to cause a factorial alteration 

along the disease’s course. 
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Finally, we performed a large-scale gene functional analysis with PANTHER (Mi et al., 

2013) to uncover the molecular pathways and biological functions associated with the 

111 identified disease-driving genes. Sixty-five (65) functional pathways were 

identified and most of them, including Alzheimer disease-presenilin pathway, are 

highly representative of the biological processes commonly associated with 

neuropathology and cognitive decline (please see Supplementary File 5). The 

pathways with the leading number of genes are apoptosis, cholecystokinin receptor 

signalling, inflammation mediated by chemokine and cytokine, and gonadotropin-

releasing hormone receptor (see Discussion). 

 

Discussion 

Gene Expression Patterns Modulate Multifactorial Interactions in Healthy Aging 

and AD Progression 

An unprecedented attribute of this study is the insight it provides into the multiscale 

interactions among aging and AD-associated biological factors, and the possible 

mechanistic roles of the identified genetic determinants. In concordance with our 

results in healthy aging (see Fig. 3C), BIRC5 have been shown to regulate microtubule 

dynamics and interact with tau (Zhao et al., 2003). Sestrins, including SESN1, 

preserve blood brain barrier integrity and serve a neuroprotective effect after cerebral 

ischemia (S.-D. Chen et al., 2019; Li et al., 2016; Shi et al., 2017). C5 belongs to the 

complement immune system, and it modulates synaptic pruning and plasticity by 

interacting with microglia. (Wang et al., 2020). 

Several animal and biostatistical studies also corroborate the functional relationships 

observed in AD results. In agreement with the interactions driving longitudinal 

alteration in blood flow (see Fig. 4C), FKBP4 encodes the FKBP52 protein which has 

been demonstrated to alter tau phosphorylation pattern and stimulate its abnormal 

aggregation (Giustiniani et al., 2015). FKBP52 also decreased significantly in brains 

of AD patients (Giustiniani et al., 2012). A bioinformatic and functional validation study 

identified the role of GNAS in glucose metabolism through insulin regulation (Taneera 

et al., 2019). Notably, several GWAS and animal studies have consistently linked 

MEF2C to AD and its associated cognitive decline (Beecham et al., 2014; Davies et 
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al., 2015; Lambert et al., 2013, (Sao et al., 2018)).  Knocking out MEF2C in mice 

induced glucose metabolism impairment (Anderson et al., 2015). PLSCR1 could drive 

atrophy due to its apoptotic effect and interaction with calcium ion in maintaining the 

organization of phospholipid bilayers of membranes (Sahu et al., 2007). CXCR4 also 

regulates apoptosis and neuronal survival through glial signalling and the Rb/E2F 

pathway, respectively (Bezzi et al., 2001; Khan et al., 2008) . Nitric oxide synthase 

interacting protein (NOSIP) controls the expression of nitric oxide synthase (NOS), the 

major source of nitric oxide in the brain (Dreyer et al., 2004).  In brain endothelial cells, 

downregulating NOS upregulates APP (amyloid precursor protein) and BACE1 (β-site 

APP-cleaving enzyme1) both of which control amyloid dynamics (Austin et al., 2010).   

We also found congruous functional associations for the genes driving longitudinal 

alterations in Aβ. Apart from its apoptotic role, CASP3 has been shown to regulate 

synaptic plasticity and functional activity in vivo (D'Amelio et al., 2010). TRIB3 controls 

glucose metabolism, insulin signalling and the expression of other glucose metabolism 

genes ((Prudente et al., 2012; W. Zhang et al., 2013; W. Zhang et al., 2016). Among 

the genes altering tau with AD progression, nuclear factor of activated T cells (NFAT) 

overexpression in animal model increased Aβ production and promoted BACE1 

transcription (Mei et al., 2015).  TIMELESS (TIM) is a gene with central role in 

controlling circadian neuronal activity (Kurien et al., 2019). Interestingly, dysregulated 

circadian rhythm is causally associated with AD (Homolak et al., 2018). Furthermore, 

our results on glucose metabolism dysregulation align with previous functional studies. 

RAB21 may induce atrophy through apoptosis and cell growth inhibition (Ge et al., 

2017). Due to its function in detoxifying reactive aldehydes produced from lipid 

peroxidation, the carbonyl reductase enzyme CBR1 could prevent oxidative stress-

induced atrophy (Maser, 2006). DNAJ proteins belong to the group of chaperones that 

regulate protein homeostasis, and an earlier study implicated DNAJB6 in α-synuclein 

aggregation (Aprile et al., 2017). Investigating the effect DNAJB6 on tau processing 

as suggested by our result could provide further insight into the roles of the gene of 

AD. 

Supporting our results for longitudinal alterations in functional activity, downregulating 

EIF4EBP1 prevents toxin-induced neuronal atrophy in PD model by blocking the 

action of apoptotic caspsase-3 (Xu et al., 2014).  The gene also mediates synaptic 

reorganization and refinement, independent of post synaptic activity (Chong et al., 
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2018). Even though APBB2 (amyloid beta A4 precursor protein-binding, family B, 

member 2) primarily binds to APP, knocking out APBB2 in mice causes glucose 

intolerance and β cell dysfunction (Ye et al., 2018). In transgenic mice, deleting STAT3 

in β cells and neurons impaired glucose metabolism  (Cui et al., 2004). It also regulates 

liver glucose homeostasis by modulating the expression of gluconeogenic genes 

(Inoue et al., 2004). A gene co-regulatory network analysis identified RAB11FIP2 as 

a differentially expressed gene in axon regeneration, suggesting its possible role in 

atrophy (Su et al., 2018). Correspondingly, a growing body of evidence supports the 

gene-imaging interactions we found in longitudinal alterations in atrophy.  CAST 

overexpression was shown to reduce amyloid burden due to its effect on BACE1 

processing of APP (Liang et al., 2010; Morales-Corraliza et al., 2012). FHL2 prevents 

inflammatory angiogenesis and regulates the function of vascular smooth muscle cells, 

suggesting its role in blood flow (C. Y. Chen et al., 2020; Chu et al., 2008).  IGF2R 

(insulin-like growth factor 2 receptor) interacts with insulin receptors for energy 

homeostasis, and the dysregulation of the gene is associated with type 2 diabetes 

(Chanprasertyothin et al., 2015). RUVBL1 is an ATPase which modulates insulin 

signalling, and RUVBL1 knock-out mice displayed impaired glucose metabolism 

(Mello et al., 2020).  

 

Aging and Alzheimer’s Disease Have Both Common and Distinct Mechanisms 

In this study, we used a single gene expression template for all the subjects due to the 

unavailability of individual whole-brain gene expression. However, notice that even 

though this template has spatial but no temporal variation, for each gene, a model 

parameter controls its interaction (at the individual level) with each time-varying 

neuroimaging modality (i.e. the estimated transcriptomic-imaging parameters). At the 

individual level, the fitted gene-imaging parameters are assumed to reflect the gene-

specific deformations required to fit the data. Consequently, these parameters 

represent quantitative measures of the individual dysregulation or deviation in gene 

expression patterns; and when analyzed across the entire population (e.g. via SVD 

analysis), the parameters can be used to detect cognitive/clinical related genetic 

associations.” Thus, under normal aging, the parameters obtained from the model 

optimization should be close to zero. Interestingly, it was observed that only ~70 
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parameters (out of over 35000 gene-imaging interaction parameters) were 

significantly different from zero across the healthy aging population. Conversely, 

~1000 parameters significantly differed from zero across the diseased population. We 

attribute the greater number of significant parameters in AD to more genetic 

dysregulations and biological mechanism alterations in the disorder (Y. Iturria-Medina 

et al., 2020; Mostafavi et al., 2018).  

The mechanisms of healthy aging and AD substantially overlap even though AD-

related alterations are often accelerated, and the regions of alteration could be 

different (Toepper, 2017; Xia et al., 2018).  Among the aging-associated genes, 

CASP10, BIRC5, and PLSCR3 are involved in caspase-dependent apoptosis. 

Interestingly, apoptotic genes were also found in AD including CASP3, CASP7, 

PLSCR1, CREB1, RELB, IGF2R, DFFB. Sestrin (SESN1) is implicated in oxidative 

signalling, aging inhibition, and exercise mediation (Budanov et al., 2010; M. Kim et 

al., 2020; Yang et al., 2013). Correspondingly, some AD causal genes including 

MEF2C, CBR1 and NOSIP are known for their roles in oxidative stress, supporting the 

relevance of this pathway to both normal and pathological aging (Y. N. Kim et al., 2014; 

Rochette et al., 2013). Given that G-protein coupled receptors (GPCR) mediate the 

cellular response to most hormones/neurotransmitters (de Oliveira et al., 2019; 

Thathiah et al., 2011), it is unsurprising that GPCR-related genes converge on normal 

aging (GNA15) and Alzheimer’s disease (GNAS, GNB5). Having found some 

inflammation-associated genes in AD and the complement component C5 in aging 

suggests that immune/inflammatory response change is part of both healthy aging and 

AD. Indeed, apart from the overlapping pathways, LSM6 was the only gene common 

to both normal aging and AD. LSM6 regulates gene expression and mRNA splicing, 

and a proteomic study linked its expression level to aging in human muscle cells 

(Ubaida-Mohien et al., 2019). Although altered mRNA splicing is associated with AD 

(Erik C. B. Johnson et al., 2018; Koch, 2018; Twine et al., 2011), a functional validation 

can further reveal the exact role of LSM6 in the disease. 
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Towards a Genetic Approach to Extending Healthy Aging and Treating 

Alzheimer’s Disease   

The complexity of aging and the mixed aetiology of neurodegeneration necessitate an 

integrative multifactorial paradigm. In this study, we advanced the understanding of 

aging and AD pathology through the mechanistic modelling of how gene activity 

modulates relevant biological factors (e.g. tau, Aβ, CBF, neuronal activity) to drive the 

cognitive alterations typically observed in the associated populations. The obtained 

results, in line with relevant molecular and imaging literature, highlight the strength of 

our approach by confirming previously identified aging- and AD-associated genes and 

uncovering new genes with relevant pathophysiological roles. In essence, this flexible 

formulation directly decodes the genetic mediators of spatiotemporal macroscopic 

brain alterations with aging and disease progression. Consequently, this work has 

important implications for the mechanistic understanding of aging and AD 

pathogenesis and, importantly, for the implementation of a biologically defined patient 

stratification for personalized medical care. 

Current approaches to AD treatment do not account for patient heterogeneity and such 

non-personalized methods may not only be ineffective but also cause undesired 

secondary effects in patients (Iturria-Medina et al., 2018). In a previous study, we used 

a similar imaging-based framework to show that some patients may need interventions 

targeting either tau, Aβ, CBF or metabolism, while others can require a combinatorial 

therapy (e.g. concurrently targeting tau, Aβ, and metabolic dysregulation) (Iturria-

Medina et al., 2018). Based on this extended approach (GE-MCM), a gene therapy 

could replace the single and combinatorial treatment fingerprints described, by 

targeting highly influential genes modulating those factors in individuals. Many of the 

gene-imaging relationships found in our study have been previously reported in vivo, 

and the novel associations can be validated through experimental models. 

Understanding these relationships is crucial for effective drug development and 

administration. For instance, we found that APBB2 is mediator of glucose metabolism. 

Thus, metabolic side effects may be considered when selecting APBB2 as a 

therapeutic target of amyloid processing.  

We have used inferred mRNA values for unobserved regions due to the unavailability 

of high-spatial resolution GE data. Nevertheless, the correlations between observed 
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and predicted mRNA values are very high for majority of the genes (see Figure 1–

figure supplement 2), further supporting the feasibility of interpolating mRNA values 

based on spatial dependence (Gryglewski et al., 2018). It is however noteworthy that 

some genes with low correlation values might have low spatial dependence or error in 

the assay. There is inherent bias in the merged gene expression data from AHBA due 

to individual variability, and the AHBA subjects are not very representative of the 

typical age range in the ADNI cohort. Nevertheless, animal and human studies have 

reported large concordance between peripheral and brain gene expression, implying 

that blood gene expression may be used as a surrogate for gene expression in brain 

tissue (Y. Iturria-Medina et al., 2020; Jasinska et al., 2009; Sullivan et al., 2006; Witt 

et al., 2013). Thus, our future work will therefore focus on using personalized gene 

expression data from blood samples. The applicability and generalizability of the 

current formulation would also be tested in other neurological conditions (e.g. 

Parkinson’s disease and frontotemporal dementia). 

 

Materials and Methods 

Data Description and Processing 

Study Participants 

This study involved 944 individuals with six multimodal brain imaging from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI, RRID:SCR_003007) 

(adni.loni.usc.edu; see Figure 1 - figure supplement 1). First, for each imaging modality, 

a multivariate outlier identification was performed based on the Mahalanobis distance, 

with a significant squared distance (P < 0.05) denoting an outlier (Iturria-Medina et al., 

2016). From the 911 subjects that survived outlier detection, we chose 509 subjects 

having at least four imaging modalities (between amyloid PET, tau PET, glucose 

metabolism PET, resting state fMRI, cerebral blood flow ASL, and structural MRI). 

Then, 460 subjects with at least three time points in any of the imaging modalities were 

selected for our analyses. Next, for each of these subjects (N=460), missing imaging 

modalities at each time point having actual individual data were automatically imputed 

using the trimmed scores regression with internal PCA (Folch-Fortuny et al., 2016). 

The accuracy of the imputation was validated with a leave-one-out cross-validation 
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(e.g.  tau imaging data can be significantly recovered for each subject with actual data, 

P < 10-6). Hence, all the 460 subjects used in subsequent analyses have completed 

all six neuroimaging modalities and average of 4.7 (±2.5) longitudinal time points. 

Please see Figure 1–figure supplement 1 for a detailed flowchart of subject selection, 

and Supplementary File 1 for demographic characteristics. Among the 460 participants, 

151 were clinically identified as asymptomatic or healthy control (HC), 161 with early 

mild cognitive impairment (EMCI), 113 with late mild cognitive impairment (LMCI) and 

35 with probable Alzheimer’s disease (AD). 

Whole-Brain Gene Expression Data and Brain Parcellation 

Microarray data was downloaded from the Allen Human Brain Atlas (AHBA, 

RRID:SCR_007416) website (www.brain-map.org)(Hawrylycz et al., 2012). The AHBA 

data consists of mRNA expression in 3702 tissue samples obtained from 6 

neurotypical adult brains.  The data were preprocessed by the Allen Institute to reduce 

the effects of bias due to batch effects. Description of the processing steps can be 

found in the technical white paper (Allen Human Brain Atlas, 2013). For each brain, 

there are 58,692 probes representing 20,267 unique genes. Transcriptome shows 

spatial dependence, with adjacent regions having similar expression patterns values 

(Gryglewski et al., 2018). Gaussian kernel regression affords a method of predicting 

gene expression values for unobserved regions based on the mRNA values of 

proximal regions. The regression is done as a weighted linear combination of 

unobserved mRNA, with the weight decreasing outward from proximal to distal regions. 

In order to select a representative probe for genes with multiple probes, Gaussian 

kernel regression was applied to predict the mRNA intensity in each of the 3702 

samples in MNI space (Evans et al., 1994) using leave-one-out cross-validation. The 

probe with the highest prediction accuracy (among the multiple probes for a gene) was 

chosen as the representative probe for that gene. Next, because GE values were not 

available for all the grey matter voxels of the brain, Gaussian kernel regression was 

also used to predict the GE for the remaining MNI coordinates without mRNA 

expression intensity. Hence, a whole brain GE data was obtained for the selected 

20267 probes/genes. It was infeasible to use these ~20000 AHBA genes for modelling, 

hence we selected 976 AHBA genes that can be found in the list of 978 landmark 

genes identified by (Subramanian et al., 2017). These landmark genes are universally 
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informative transcripts with the capacity to cover most of the information in the whole 

human transcriptome across a diversity of tissue types (see Supplementary File 2). 

The brain was parcellated into 144 grey matter regions and the average expression 

value of each gene was calculated for each region. The brain parcellation was derived 

from a combination of two atlases: 88 regions were identified through cytoarchitecture 

from Julich atlas (Palomero-Gallagher et al., 2019) and 56 regions were derived from 

Brodmann atlas. Six regions were excluded due to zero or strong outlier PET imaging 

signals in their volumes. The remaining 138 regions were used for analyses (see 

Supplementary File 3).  

Cognitive and Clinical Evaluations 

The participants were characterized cognitively using the mini-mental state 

examination (MMSE), memory composite score (MEM), executive function composite 

score (EF) (Gibbons et al., 2012), and Alzheimer’s Disease Assessment Scale-

Cognitive Subscales 11 and 13 (ADAS-11 and ADAS-13, respectively). They were 

also clinically diagnosed at baseline as healthy control (HC), early mild cognitive 

impairment (EMCI), late mild cognitive impairment (LMCI) or probable Alzheimer’s 

disease patient (AD).  

Multimodal Imaging Modalities 

ASL MRI: Resting Arterial Spin Labeling (ASL) data were acquired using the Siemens 

product PICORE sequence (N = 213) with acquisition parameters as: 

TR/TE = 3400/12 ms, TI1/TI2 = 700/1900 ms, FOV = 256 mm, 24 sequential 4 mm 

thick slices with a 25% gap between the adjacent slices, partial Fourier factor = 6/8, 

bandwidth = 2368 Hz/pix, and imaging matrix size = 64 × 64. The data were processed 

in six steps as follows: 1) motion correction, 2) perfusion-weighted images (PWI) 

computation, 3) intensity scaling, 4) CBF images calculation, 5) spatial normalization 

to MNI space (Evans et al., 1994) using the registration parameters obtained for the 

structural T1 image with the nearest acquisition date, and 6) mean CBF calculation for 

each of the considered brain regions. Details of the processing can be found at 

www.adni.loni.usc.edu under “UCSF ASL Perfusion Processing Methods”.   

Amyloid-β (Aβ) PET: A 370-MBq bolus injection of AV-45 was administered to each 

subject, and after about 50 minutes, 20-minute continuous brain PET imaging scans 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.23.21252283doi: medRxiv preprint 

http://www.adni.loni.usc.edu/
https://doi.org/10.1101/2021.02.23.21252283
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

were acquired (N = 459). The images were reconstructed immediately after the scan, 

and when motion artifact was detected, another 20-minute continuous scan was 

acquired. The acquired PET scans were then preprocessed in four main steps 

described in (Jagust et al., 2010): 1) dynamic co-registration to reduce motion artifacts 

2) across time averaging, 3) re-sampling and reorientation of scans from native space 

to a standard voxel image grid space (“AC-PC” space), and 4) spatial filtering to 

convert the mages to a  uniform isotropic resolution of 8 mm FWHM. Finally, using the 

registration parameters obtained for the structural T1 image with the nearest 

acquisition date, all Aβ scans were transformed to the MNI space (Evans et al., 1994). 

Using the cerebellum as an Aβ non-specific binding reference, SUVR values were 

calculated for the 138 brain regions under consideration. 

Resting-state fMRI: Resting-state fMRI scans were acquired using an echo-planar 

pulse sequence on a 3.0T Philips MRI scanner (N = 148) with the following 

parameters: 140 time points, repetition time (TR) = 3000 ms, echo time (TE) = 30 ms, 

flip angle = 80°, number of slices = 48, slice thickness = 3.3 mm, spatial 

resolution = 3 × 3 × 3 mm3, and in-plane matrix size = 64 × 64. The scans were 

corrected for motion and slice timing. Then, they were spatially normalized to MNI 

space (Evans et al., 1994) using the registration parameters obtained for the structural 

T1 image with the nearest acquisition date. Signal filtering was performed to retain 

only low frequency fluctuations (0.01–0.08 Hz) (Chao-Gan et al., 2010). Fractional 

amplitude of low-frequency fluctuation (fALFF) was calculated and used a regional 

quantitative indicator of the brain’s functional integrity. fALFF has been shown to be 

highly sensible to disease progression (Iturria-Medina et al., 2016).  

Fluorodeoxyglucose PET: A 185-MBq (5 + 0.5 mCi) of [18F]-FDG was administered 

to each subject and brain PET imaging data were obtained approximately 20 minutes 

after injection (N = 455). The images were attenuation-corrected and then 

preprocessed as follows (Jagust et al., 2010): 1) dynamic co-registration of frames to 

reduce the effects of patient motion 2) across time averaging, 3) reorientation from 

native space to a standard voxel image grid (“AC-PC”), and 4) spatial filtering to 

convert the mages to a  uniform isotropic resolution of 8 mm FWHM. Next, using the 

registration parameters obtained for the structural T1-weighted image with nearest 

acquisition date, the FDG-PET images were normalized to the MNI space (Evans et 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.23.21252283doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.23.21252283
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

al., 1994). The cerebellum was then used as a reference to calculate standardized 

uptake value ratio (SUVR) values for the 138 regions (Klein et al., 2012). 

Structural MRI: Structural T1-weighted 3D images were obtained for all subjects 

(N=460) as described in  http://adni.loni.usc.edu/methods/documents/mri-protocols/. 

The images were corrected for intensity nonuniformity using the N3 algorithm (Sled et 

al., 1998). Next, they were segmented into grey matter (GM), white matter (WM) 

and cerebrospinal fluid (CSF) probabilistic maps, using SPM12 

(www.fil.ion.ucl.ac.uk/spm). The grey matter segmentations were transformed into 

MNI space (Evans et al., 1994) using DARTEL (Ashburner, 2007). To preserve the 

initial amount of tissue volume, each map was corrected for the effects of the spatial 

registration. Mean grey matter density and determinant of the Jacobian (DJ) 

(Ashburner, 2007) values were calculated for 138 regions covering all the brain’s grey 

matter (Klein et al., 2012). The grey matter density was used in this study as a measure 

of structural atrophy. 

Tau PET: A 370-MBq/kg bolus injection of tau specific ligand 18F-AV-1451 ([F- 18] 

T807) was given to each subject, and 30-minute (6 × 5 min frames) brain PET scans 

were acquired at 75 minutes after injection (N = 233). As described (Jagust et al., 

2010), the images were preprocessed by: 1) dynamic co-registration 2) across time 

averaging, 3) re-sampling and reorientation from native space to a standard voxel 

image grid space (“AC-PC” space), and 4) spatial filtering to obtain images of a uniform 

isotropic resolution of 8 mm FWHM. Next, using the registration parameters obtained 

for the structural T1 image with the nearest acquisition date, all tau images were 

normalized to the MNI space (Evans et al., 1994). The cerebellum was used as a 

reference to calculate SUVR values for the 138 grey matter regions. 

Anatomical Connectivity Estimation 

The connectivity matrix was constructed in DSI Studio (http://dsi-studio.labsolver.org) 

using a group average template from 1065 subjects (Yeh et al., 2018). A multi-shell 

high angular resolution diffusion scheme was used, and the b-values were 990, 1985 

and 2980 s/mm2. The total number of sampling directions was 270. The in-plane 

resolution and slice thickness were 1.25 mm. The diffusion data were reconstructed in 

the MNI space using q-space diffeomorphic reconstruction to obtain the spin 

distribution function (Yeh et al., 2011; Yeh et al., 2010). The sampling length and 
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output resolution were set to 2.5 and 1 mm, respectively. The restricted diffusion was 

quantified using restricted diffusion imaging (Yeh et al., 2017) and a deterministic fibre 

tracking algorithm was used (Yeh et al., 2013). Using the brain atlas previously 

described under Methods: Whole-Brain Gene Expression Data and Brain Parcellation, 

seeding was placed on the whole brain while setting the QA threshold to 0.15. The 

angular threshold was randomly varied from 15 to 90 degrees and the step size from 

0.5 voxel to 1.5 voxels. The fibre trajectories were smoothed by averaging the 

propagation direction with a percentage of the previous direction, which was randomly 

selected from 0% to 95%. Tracks with length shorter than 30mm or longer than 300 

mm were then discarded. A total of 100000 tracts were calculated and connectivity 

matrix was obtained by using count of the connecting tracks.  

 

Gene Expression Multifactorial Causal Model (GE-MCM) 

In the basic MCM formulation (Iturria-Medina et al., 2017), the brain is considered as 

a dynamic multifactorial causal system, where: i) each variable represents a relevant 

macroscopic biological factor at a given brain region (e.g. tau and amyloid proteins, 

CBF, neuronal activity at rest, grey matter density), and ii) alterations in each biological 

factor are caused by direct factor-factor interactions, the intra-brain propagation of 

factor-specific alterations (e.g. tau and amyloid spreading), and external inputs (e.g. 

drugs). Here, we extend this approach to incorporate GE at the regional level. 

Specifically, we examine how macroscopic biological alterations at each brain region, 

and the associated macroscopic factor-factor interactions, are controlled by the 

regional genetic activity.  

The GE-MCM is therefore defined by: (i) the influence of each gene on the local direct 

interactions among all the macroscopic factors, constrained within each brain region, 

and (ii) the potential spreading of macroscopic factor-specific alterations through 

anatomical and/or vascular networks. Mathematically, these processes can be 

described as: 

𝑑𝑆𝑖𝑚𝑑𝑡 =  ∑ (𝛼𝑜𝑛→𝑚 + ∑ 𝛼𝑘𝑛→𝑚𝐺𝑖𝑘𝑁𝑔𝑒𝑛𝑒𝑠𝑘=1  ) 𝑆𝑖𝑛𝑁𝑓𝑎𝑐𝑡𝑜𝑟𝑠𝑛=1 +  ∑ 𝐶𝑗𝑖𝑚(𝑆𝑗𝑚 −  𝑆𝑖𝑚)𝑁𝑟𝑜𝑖𝑠𝑗=1𝑗≠𝑖 𝑆𝑚               (1) 
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𝑁𝑔𝑒𝑛𝑒𝑠  = 976 is the number of genes. Each gene was normalized by z-score across 𝑁𝑟𝑜𝑖𝑠 =  138 brain grey matter regions of interest (a gene i is denoted as 𝐺𝑖; for region 

names, see Supplementary File 3). 𝑁𝑓𝑎𝑐𝑡𝑜𝑟𝑠 = 6 is the number of biological factors 

measured at the same brain regions (i.e. Aβ deposition, tau deposition, CBF, glucose 

metabolism, functional activity at rest, and grey matter density). Each node, 

corresponding to a given biological factor 𝑚 and region i, is characterized by 𝑆𝑖𝑚 ∈ ℝ.  

In the equation, 
𝑑𝑆𝑖𝑚𝑑𝑡  is the local longitudinal alteration of a macroscopic factor 𝑚 at 

region i, because of the foregoing multiscale interactions. The first term on the right 

models the local direct influences of multiple macroscopic biological factors on the 

given factor 𝑚. The interaction parameters ( 𝛼𝑜𝑛→𝑚,  𝛼𝑘𝑛→𝑚 ) and gene expression (𝐺𝑖𝑘)  

modulate the direct within-region impact of the factor 𝑛 on 𝑚, including intra-factor 

effects, i.e. when  𝑛 = 𝑚.  ∑ 𝐶𝑗𝑖𝑚(𝑆𝑗𝑚 −  𝑆𝑖𝑚)𝑁𝑟𝑜𝑖𝑠𝑗=1𝑗≠𝑖 𝑆𝑚  reflects the resultant signal 

propagation of factor 𝑚  from region 𝑖  to other brain regions through the physical 

network 𝐶𝑗𝑖𝑚. 

The GE-MCM model can advance our mechanistic understanding of the complex 

processes of aging and neurodegeneration. Its ability to map a healthy gene 

expression template to each subject allows us to model how the spatial distribution of 

transcriptome drives the multifactorial alteration observed in the brain. The interaction 

parameter 𝛼𝑘𝑛→𝑚 is an implicit quantitative measure of dysregulation or deviation of 

gene expression from normal patterns. By fitting the model at the individual level, it is 

possible to identify subject-specific genetic targets for personalized treatment of AD 

and enhancing healthy aging.   

Model Evaluation 

The GE-MCM differential equation (1) was solved for each participant. For each 

subject j and biological factor m, 
𝑑𝑆𝑖𝑚(𝑗)𝑑𝑡  was calculated between each pair of 

consecutive time points, and the regional values obtained were concatenated into a 

subject- and factor-specific vector (
𝑑𝑆𝑚(𝑗)𝑑𝑡 ) with 𝑁𝑟𝑜𝑖𝑠 ∙ (𝑁𝑡𝑖𝑚𝑒𝑠 − 1) unique values. This 

concatenation allowed us to express the evaluation of the model parameters ( 𝛼𝑜𝑛→𝑚,  𝛼𝑘𝑛→𝑚 ) as a regression problem (with 
𝑑𝑆𝑚(𝑗)𝑑𝑡  as dependent variable). We applied a 
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Bayesian sparse linear regression with horseshoe hierarchy to identify the distribution 

of the model parameters (Carvalho et al., 2010; Makalic et al., 2016). Due to high 

dimensionality of the data, a computationally efficient algorithm was used to sample 

the posterior Gaussian distribution of the regression coefficients (Bhattacharya et al., 

2016), and the algorithm was implemented in MATLAB (Makalic et al., 2016). Through 

Markov chain Monte Carlo, we generated 500 samples of each regression coefficient 

after discarding the first 1000 burn-in simulations. All 500 samples were averaged, 

and 5863 coefficients were obtained for every subject and biological factor. For 

subsequent analysis, we used 5856 coefficients (transcriptomic-imaging parameters) 

that corresponded to the measure of transcriptomic effect on the interaction of a 

macroscopic imaging-based factor with the other macroscopic factors, in driving a 

longitudinal biological factor alteration.  

Next, we sought to identify the top genes mediating cognitive and behavioural changes 

in healthy aging and AD progression. First, we identified 113 clinically stable HC 

subjects who did not convert to MCI or AD stage within 7.8 ± 2.9  years. In addition, 

we selected 129 diseased subjects diagnosed with AD at baseline or AD converters 

(i.e. HC and MCI subjects that advanced to AD within 3.7 ± 2.9 years). For each 

independent subset of subjects (i.e. stable HC or diseased subjects), we combined 

the transcriptomic-imaging parameters across the six longitudinal biological factor 

alterations (see Fig. 1D). We then evaluated the across-population stability of these 

model parameters via their 99% confidence intervals (99% CI). Next, rate of change 

of cognitive scores were calculated for each subject (7.2±2.6 time points for HC and 

6.3±3.0 time points for AD). We applied singular value decomposition (SVD) 

multivariate analysis to evaluate how the stable transcriptomic-imaging interactions 

mediate group-specific changes in cognitive/clinical scores (age-related slopes of 

MMSE, ADAS-11, ADAS-13, EM, and EF). For each group (i.e. HC or AD), SVD 

identified a few pairs of “principal components” that maximize the cross-correlation 

between the two sets of variables (Carbonell et al., 2020; Worsley et al., 2005). Then 

it mapped the gene-imaging parameters onto the obtained principal components (PC). 

This mapping provides a score (or contribution) of a gene-imaging parameter to a PC. 

Next, the significant PC were identified by running 10000 permutations. To identify the 

genes (gene-imaging parameters) with large and reliable contributions on the 

significant PC, we drew 10000 bootstrap samples and calculated the bootstrap ratio 
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of the gene-imaging parameters. The bootstrap ratio is obtained by dividing the gene-

imaging saliences (contributions) by their respective bootstrap standard errors. It 

allowed us to assess the reliability of the genetic contributions (McIntosh et al., 2004). 

Hence, top aging- or AD-related causal genes were identified by selecting the 

parameters with bootstrap ratio above 2.58, which is approximately equivalent to a z-

score for 99% CI if the bootstrap distribution is normal (Efron et al., 1986) . 
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SUPPLEMENTARY INFORMATION 
 
 

 
 
Figure 1–figure supplement 1: Subject selection. A multivariate outlier identification was 

performed based on 944 subjects. From the 911 subjects that survived outlier detection, 509 

subjects having at least four imaging modalities were chosen. Then, 460 subjects with at least 

three time points in any of the imaging modalities were selected. Next, for each of the 460 

subjects, missing imaging modalities at each time point having actual individual data were 

automatically imputed using the trimmed scores regression with internal PCA. 
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Figure 1–figure supplement 2: Correlation of predicted mRNA expression with actual 

mRNA expression across 976 genes. Using the actual mRNA values of 3702 samples from 

AHBA, Gaussian kernel regression was used to reproduce the mRNA intensities through a 

leave-one-out cross-validation, and the Pearson correlation coefficient between the actual and 

reproduced values was calculated for each gene. 

 
 
Supplementary File 1: Main demographic characteristics of the included ADNI subjects. 

 

Variable 
HC 

(N=151) 
EMCI 

(N=161) 
LMCI 

(N=113) 
AD 

(N=35) 

Stable 
HC 

(N=113) 

AD + 
converters 

(N=129) 

Female 76(50.3%) 68(42.2%) 51(45.1%) 16(45.7%) 59(52.2%) 58(45%) 

Mean age 
(years) 

74(5.5) 70.1(6.8) 71.7(7.1) 74.7(8.1) 73.7(5.6) 73.2(7.1) 

Mean 
education 

(years) 
16.5(2.7) 16.3(2.7) 16.2(2.9) 15.2(2.6) 16.8(2.5) 15.8(2.7) 

 
Data are number (%) or mean (std). 
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Supplementary File 2: List of 976 genes used in this study. 
 

Genes 

AARS, ABCB6, ABCC5, ABCF1, ABCF3, ABHD4, ABHD6, ABL1, ACAA1, ACAT2, ACBD3, ACD, 

ACLY, ACOT9, ADAM10, ADAT1, ADGRE5, ADGRG1, ADH5, ADI1, ADO, ADRB2, AGL, AKAP8, 

AKAP8L, AKR7A2, AKT1, ALAS1, ALDH7A1, ALDOA, ALDOC, AMDHD2, ANKRD10, ANO10, 

ANXA7, APBB2, APOE, APP, APPBP2, ARFIP2, ARHGAP1, ARHGEF12, ARHGEF2, ARID4B, 

ARID5B, ARL4C, ARNT2, ARPP19, ASAH1, ASCC3, ATF1, ATF5, ATF6, ATG3, ATMIN, ATP11B, 

ATP1B1, ATP2C1, ATP5S, ATP6V0B, ATP6V1D, AURKA, AURKB, AXIN1, B4GAT1, BACE2, BAD, 

BAG3, BAMBI, BAX, BCL2, BCL7B, BDH1, BECN1, BHLHE40, BID, BIRC2, BIRC5, BLCAP, BLMH, 

BLVRA, BMP4, BNIP3, BNIP3L, BPHL, BRCA1, BTK, BUB1B, BZW2, C2CD2, C2CD2L, C2CD5, 

C5, CAB39, CALM3, CALU, CAMSAP2, CANT1, CAPN1, CARMIL1, CASC3, CASK, CASP10, 

CASP2, CASP3, CASP7, CAST, CAT, CBLB, CBR1, CBR3, CCDC85B, CCDC86, CCDC92, CCL2, 

CCNA1, CCNA2, CCNB1, CCNB2, CCND1, CCND3, CCNE2, CCNF, CCNH, CCP110, CD320, 

CD40, CD44, CD58, CDC20, CDC25A, CDC25B, CDC42, CDC45, CDCA4, CDH3, CDK1, CDK19, 

CDK2, CDK4, CDK5R1, CDK6, CDK7, CDKN1A, CDKN1B, CDKN2A, CEBPA, CEBPD, CEBPZ, 

CENPE, CEP57, CERK, CETN3, CFLAR, CGRRF1, CHAC1, CHEK1, CHEK2, CHERP, CHIC2, 

CHMP4A, CHMP6, CHN1, CHP1, CIAPIN1, CIRBP, CISD1, CLIC4, CLPX, CLSTN1, CLTB, CLTC, 

CNDP2, CNOT4, CNPY3, COASY, COG2, COG4, COG7, COL1A1, COL4A1, COPB2, COPS7A, 

COQ8A, CORO1A, CPNE3, CPSF4, CREB1, CREG1, CRELD2, CRK, CRKL, CRTAP, CRYZ, CSK, 

CSNK1A1, CSNK1E, CSNK2A2, CSRP1, CTNNAL1, CTNND1, CTSD, CTSL, CTTN, CXCL2, 

CXCR4, CYB561, CYCS, CYTH1, DAG1, DAXX, DCK, DCTD, DCUN1D4, DDB2, DDIT4, DDR1, 

DDX10, DDX42, DECR1, DENND2D, DERA, DFFA, DFFB, DHDDS, DHRS7, DHX29, DLD, DMTF1, 

DNAJA3, DNAJB1, DNAJB2, DNAJB6, DNAJC15, DNM1, DNM1L, DNMT1, DNMT3A, DNTTIP2, 

DPH2, DRAP1, DSG2, DUSP11, DUSP14, DUSP22, DUSP3, DUSP4, DUSP6, DYNLT3, DYRK3, 

E2F2, EAPP, EBNA1BP2, EBP, ECD, ECH1, EDEM1, EDN1, EED, EFCAB14, EGF, EGFR, EGR1, 

EIF4EBP1, EIF4G1, EIF5, ELAC2, ELAVL1, ELOVL6, EML3, ENOPH1, ENOSF1, EPB41L2, 

EPHA3, EPHB2, EPN2, EPRS, ERBB2, ERBB3, ERO1A, ETFB, ETS1, ETV1, EVL, EXOSC4, EXT1, 

EZH2, FAH, FAIM, FAM20B, FAM57A, FAM69A, FAS, FASTKD5, FAT1, FBXL12, FBXO11, 

FBXO21, FBXO7, FCHO1, FDFT1, FEZ2, FGFR2, FGFR4, FHL2, FIS1, FKBP14, FKBP4, FOS, 

FOSL1, FOXJ3, FOXO3, FOXO4, FPGS, FRS2, FSD1, FUT1, FYN, FZD1, FZD7, G3BP1, GAA, 

GABPB1, GADD45A, GADD45B, GALE, GAPDH, GATA2, GATA3, GDPD5, GFOD1, GFPT1, GHR, 

GLI2, GLOD4, GLRX, GMNN, GNA11, GNA15, GNAI1, GNAI2, GNAS, GNB5, GNPDA1, GOLT1B, 

GPATCH8, GPC1, GPER1, GRB10, GRB7, GRN, GRWD1, GSTM2, GSTZ1, GTF2A2, GTF2E2, 

GTPBP8, H2AFV, HACD3, HADH, HAT1, HDAC2, HDAC6, HDGFRP3, HEATR1, HEBP1, HERC6, 

HERPUD1, HES1, HIF1A, HIST1H2BK, HIST2H2BE, HK1, HLA-DMA, HLA-DRA, HMG20B, 

HMGA2, HMGCR, HMGCS1, HMOX1, HN1L, HOMER2, HOOK2, HOXA10, HOXA5, HPRT1, 

HS2ST1, HSD17B10, HSD17B11, HSPA1A, HSPA4, HSPA8, HSPB1, HSPD1, HTATSF1, HTRA1, 

HYOU1, IARS2, ICAM1, ICAM3, ICMT, ID2, IDE, IER3, IFNAR1, IFRD2, IGF1R, IGF2BP2, IGF2R, 

IGFBP3, IGHMBP2, IKBKAP, IKBKB, IKBKE, IKZF1, IL13RA1, IL1B, IL4R, ILK, INPP1, INPP4B, 
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INSIG1, INTS3, IPO13, IQGAP1, ISOC1, ITFG1, ITGAE, ITGB1BP1, ITGB5, JADE2, JMJD6, JUN, 

KAT6A, KAT6B, KCNK1, KCTD5, KDELR2, KDM3A, KDM5A, KDM5B, KEAP1, KIAA0100, 

KIAA0355, KIAA0753, KIAA0907, KIF14, KIF1BP, KIF20A, KIF2C, KIF5C, KIT, KLHDC2, KLHL21, 

KLHL9, KTN1, LAGE3, LAMA3, LAP3, LBR, LGALS8, LGMN, LIG1, LIPA, LOXL1, LPAR2, LPGAT1, 

LRP10, LRPAP1, LRRC41, LSM5, LSM6, LSR, LYN, LYPLA1, LYRM1, MACF1, MALT1, MAMLD1, 

MAN2B1, MAP2K5, MAP3K4, MAP4K4, MAP7, MAPK13, MAPK1IP1L, MAPK9, MAPKAPK2, 

MAPKAPK3, MAPKAPK5, MAST2, MAT2A, MBNL1, MBNL2, MBOAT7, MBTPS1, MCM3, MCOLN1, 

MCUR1, ME2, MEF2C, MELK, MEST, METRN, MFSD10, MICALL1, MIF, MINDY1, MKNK1, MLEC, 

MLLT11, MMP1, MMP2, MNAT1, MOK, MPC2, MPZL1, MRPL12, MRPL19, MRPS16, MRPS2, 

MSH6, MSRA, MTA1, MTERF3, MTF2, MTFR1, MTHFD2, MUC1, MVP, MYBL2, MYC, MYCBP, 

MYCBP2, MYL9, MYLK, MYO10, NARFL, NCAPD2, NCK1, NCK2, NCOA3, NENF, NET1, NFATC3, 

NFATC4, NFE2L2, NFIL3, NFKB2, NFKBIA, NFKBIB, NFKBIE, NGRN, NIPSNAP1, NISCH, NIT1, 

NMT1, NNT, NOL3, NOLC1, NOS3, NOSIP, NOTCH1, NPC1, NPDC1, NPEPL1, NPRL2, NR1H2, 

NR2F6, NR3C1, NRAS, NRIP1, NSDHL, NT5DC2, NUCB2, NUDCD3, NUDT9, NUP133, NUP62, 

NUP85, NUP88, NUP93, NUSAP1, NVL, ORC1, OXA1L, OXCT1, OXSR1, P4HA2, P4HTM, 

PACSIN3, PAF1, PAFAH1B1, PAFAH1B3, PAICS, PAK1, PAK4, PAK6, PAN2, PAPD7, PARP1, 

PARP2, PAX8, PCBD1, PCCB, PCK2, PCM1, PCMT1, PCNA, PDGFA, PDHX, PDIA5, PDLIM1, 

PDS5A, PECR, PEX11A, PFKL, PGAM1, PGM1, PGRMC1, PHGDH, PHKA1, PHKB, PHKG2, PIGB, 

PIH1D1, PIK3C2B, PIK3C3, PIK3CA, PIK3R3, PIK3R4, PIN1, PIP4K2B, PKIG, PLA2G15, PLA2G4A, 

PLCB3, PLEKHJ1, PLEKHM1, PLK1, PLOD3, PLP2, PLS1, PLSCR1, PLSCR3, PMAIP1, PMM2, 

PNKP, PNP, POLB, POLD4, POLE2, POLG2, POLR1C, POLR2I, POLR2K, POP4, PPARD, PPARG, 

PPIC, PPIE, PPOX, PPP1R13B, PPP2R3C, PPP2R5A, PPP2R5E, PRAF2, PRCP, PRKACA, 

PRKAG2, PRKCD, PRKCH, PRKCQ, PRKX, PROS1, PRPF4, PRR15L, PRR7, PRSS23, PRUNE1, 

PSIP1, PSMB10, PSMB8, PSMD10, PSMD2, PSMD4, PSMD9, PSME1, PSME2, PSMF1, PSMG1, 

PSRC1, PTGS2, PTK2, PTK2B, PTPN1, PTPN12, PTPN6, PTPRC, PTPRF, PTPRK, PUF60, PWP1, 

PXN, PYCR1, PYGL, RAB11FIP2, RAB21, RAB27A, RAB31, RAB4A, RAC2, RAD51C, RAD9A, 

RAE1, RAI14, RALA, RALB, RALGDS, RAP1GAP, RASA1, RB1, RBKS, RBM15B, RBM34, RBM6, 

REEP5, RELB, RFC2, RFC5, RFNG, RFX5, RGS2, RHEB, RHOA, RNF167, RNH1, RNMT, RNPS1, 

RPA1, RPA2, RPA3, RPIA, RPL39L, RPN1, RPP38, RPS5, RPS6, RPS6KA1, RRAGA, RRP12, 

RRP1B, RRP8, RRS1, RSU1, RTN2, RUVBL1, S100A13, S100A4, SACM1L, SATB1, SCAND1, 

SCARB1, SCCPDH, SCP2, SCRN1, SCYL3, SDHB, SENP6, SERPINE1, SESN1, SFN, SGCB, 

SH3BP5, SHB, SHC1, SIRT3, SKIV2L, SKP1, SLC11A2, SLC1A4, SLC25A13, SLC25A14, 

SLC25A4, SLC25A46, SLC27A3, SLC2A6, SLC35A1, SLC35A3, SLC35B1, SLC35F2, SLC37A4, 

SLC5A6, SMAD3, SMARCA4, SMARCC1, SMARCD2, SMC1A, SMC3, SMC4, SMNDC1, SNAP25, 

SNCA, SNX11, SNX13, SNX6, SNX7, SOCS2, SORBS3, SOX2, SOX4, SPAG4, SPAG7, SPDEF, 

SPEN, SPP1, SPR, SPRED2, SPTAN1, SPTLC2, SQRDL, SQSTM1, SRC, SSBP2, ST3GAL5, 

ST6GALNAC2, ST7, STAMBP, STAP2, STAT1, STAT3, STAT5B, STK10, STK25, STMN1, STUB1, 

STX1A, STX4, STXBP1, STXBP2, SUPV3L1, SUV39H1, SUZ12, SYK, SYNE2, SYNGR3, SYPL1, 

TARBP1, TATDN2, TBC1D31, TBC1D9B, TBP, TBPL1, TBX2, TBXA2R, TCEA2, TCEAL4, 
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TCERG1, TCFL5, TCTA, TCTN1, TERF2IP, TERT, TES, TESK1, TEX10, TFAP2A, TFDP1, TGFB3, 

TGFBR2, THAP11, TIAM1, TICAM1, TIMELESS, TIMM17B, TIMM22, TIMM9, TIMP2, TIPARP, 

TJP1, TLE1, TLK2, TLR4, TM9SF2, TM9SF3, TMCO1, TMED10, TMEM109, TMEM110, TMEM2, 

TMEM5, TMEM50A, TMEM97, TNFRSF21, TNIP1, TOMM34, TOMM70, TOP2A, TOPBP1, TOR1A, 

TP53, TP53BP1, TP53BP2, TPD52L2, TPM1, TRAK2, TRAM2, TRAP1, TRAPPC3, TRAPPC6A, 

TRIB1, TRIB3, TRIM13, TRIM2, TSC22D3, TSEN2, TSKU, TSPAN3, TSPAN4, TSPAN6, TSTA3, 

TWF2, TXLNA, TXNDC9, TXNL4B, TXNRD1, UBE2A, UBE2C, UBE2J1, UBE2L6, UBE3B, UBE3C, 

UBQLN2, UBR7, UFM1, UGDH, USP1, USP14, USP22, USP6NL, USP7, UTP14A, VAPB, VAT1, 

VAV3, VDAC1, VGLL4, VPS28, VPS72, WASF3, WASHC4, WASHC5, WDR61, WDR7, WDTC1, 

WFS1, WIPF2, WRB, XBP1, XPNPEP1, XPO7, YKT6, YME1L1, YTHDF1, ZDHHC6, ZFP36, ZMIZ1, 

ZMYM2, ZNF131, ZNF274, ZNF318, ZNF395, ZNF451, ZNF586, ZNF589, ZW10.   

 

Supplementary File 3: Brain regions used in this study. A total of 144 regions (72 regions 
each in both hemispheres) were derived from Julich and Brodmann’s atlases. 
 
 

Number Julich Atlas Number Brodmann's Atlas 

1 hOc1 44 Brodmann's area 1 

2 hOc2 45 Brodmann's area 2 

3 hOc4d 46 Brodmann's area 3 

4 hOc3d 47 Brodmann's area 4 

5 hOc3v 48 Brodmann's area 5 

6 hOc4v 49 Brodmann's area 6 

7 1 50 Brodmann's area 7 

8 2 51 Brodmann's area 10 

9 †3a 52 Brodmann's area 11 

10 3b 53 Brodmann's area 17 

11 FG1 54 †*Brodmann's area 18 

12 FG2 55 Brodmann's area 19 

13 Brodmann's area 37 56 Brodmann's area 24 

14 Te1 57 Brodmann's area 25 

15 Te2 58 Brodmann's area 26 

16 Brodmann's area 20 59 Brodmann's area 27 

17 Brodmann's area 21 60 Brodmann's area 29 

18 Brodmann's area 22 61 †*Brodmann's area 30 

19 Brodmann's area 36 62 Brodmann's area 32 

20 Brodmann's area 38 63 Brodmann's area 34 

21 5L 64 Brodmann's area 35 

22 5M 65 Brodmann's area 39 
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Number Julich Atlas Number Brodmann's Atlas 

23 PGa 66 Brodmann's area 40 

24 PGp 67 †Brodmann's area 41 

25 PFt 68 Brodmann's area 42 

26 PFm 69 Brodmann's area 43 

27 p24ab 70 Brodmann's area 44 

28 p32 71 Brodmann's area 45 

29 Brodmann's area 23 72 Brodmann's area 48 

30 6 
  

31 4p 
  

32 Brodmann's area 8 
  

33 Brodmann's area 9 
  

34 Fp1 
  

35 Fp2 
  

36 Fo1 
  

37 44 
  

38 45 
  

39 Brodmann's area 46 
  

40 Brodmann's area 47 
  

41 7A 
  

42 CA+dentate 
  

43 Brodmann's area 28 
  

* Region excluded from the left hemisphere 
† Region excluded from the right hemisphere 
 
 
Supplementary File 4: Distribution of stable gene-imaging interaction parameters in healthy 
aging and AD progression (99% CI). 
 

 
 

 

 

 

Healthy AD Healthy AD Healthy AD Healthy AD Healthy AD Healthy AD

CBF 0 17 5 34 3 28 2 19 0 13 3 31

Aβ 0 74 4 40 4 20 0 19 1 15 2 17

Functional activity 1 41 2 14 0 17 0 15 1 11 2 30

Glucose metabolism 2 78 3 35 1 24 1 33 1 10 2 28

Grey matter density 1 53 2 37 5 36 2 30 1 21 1 39

Tau 1 10 4 17 3 15 0 9 0 10 8 53

Total 5 273 20 177 16 140 5 125 4 80 18 198

Grey matter density Tau
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Supplementary File 5: Identified molecular pathways underlying AD progression.  

Pathway No of genes 

CCKR signaling map  8 

Inflammation mediated by chemokine and cytokine signaling 
pathway  

6 

Apoptosis signaling pathway  5 

Gonadotropin-releasing hormone receptor pathway  5 

Heterotrimeric G-protein signaling pathway-Gi alpha and Gs 
alpha mediated pathway  

3 

FAS signaling pathway  3 

p38 MAPK pathway  3 

Enkephalin release  3 

Beta3 adrenergic receptor signaling pathway  2 

Beta2 adrenergic receptor signaling pathway  2 

Beta1 adrenergic receptor signaling pathway  2 

5HT4 type receptor mediated signaling pathway  2 

Angiogenesis  2 

Alzheimer disease-presenilin pathway  2 

Ubiquitin proteasome pathway  2 

Wnt signaling pathway  2 

N-acetylglucosamine metabolism  2 

Cytoskeletal regulation by Rho GTPase  2 

Histamine H2 receptor mediated signaling pathway  2 

Cell cycle  2 

B cell activation  2 

Cortocotropin releasing factor receptor signaling pathway  2 

Axon guidance mediated by netrin  1 

Axon guidance mediated by Slit/Robo  1 

Metabotropic glutamate receptor group III pathway  1 

JAK/STAT signaling pathway  1 

Interleukin signaling pathway  1 

Interferon-gamma signaling pathway  1 

5HT2 type receptor mediated signaling pathway  1 

Coenzyme A biosynthesis  1 

5HT1 type receptor mediated signaling pathway  1 

Insulin/IGF pathway-protein kinase B signaling cascade  1 

Insulin/IGF pathway-mitogen activated protein kinase kinase/MAP 
kinase cascade  

1 

Huntington disease  1 

Heterotrimeric G-protein signaling pathway-rod outer segment 
phototransduction  

1 

p53 pathway  1 

p53 pathway feedback loops 2  1 

Heterotrimeric G-protein signaling pathway-Gq alpha and Go 
alpha mediated pathway  

1 

p53 pathway by glucose deprivation  1 

O-antigen biosynthesis  1 
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Xanthine and guanine salvage pathway  1 

Transcription regulation by bZIP transcription factor  1 

Thyrotropin-releasing hormone receptor signaling pathway  1 

Toll receptor signaling pathway  1 

Ras Pathway  1 

Adenine and hypoxanthine salvage pathway  1 

T cell activation  1 

Oxytocin receptor mediated signaling pathway  1 

Endothelin signaling pathway  1 

EGF receptor signaling pathway  1 

Parkinson disease  1 

DNA replication  1 

PI3 kinase pathway  1 

Opioid proopiomelanocortin pathway  1 

PDGF signaling pathway  1 

Opioid prodynorphin pathway  1 

Oxidative stress response  1 

Opioid proenkephalin pathway  1 

Cholesterol biosynthesis  1 
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