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S
ince COVID-19 was first identified in December 2019 in 
Wuhan, China1, the entire world has been adversely affected 
by the ensuing pandemic2–4. As infections decreased during 

the summer months of 2020, many countries relaxed their lock-
down and physical distancing measures in the course of reopening 
their economies and societies. Due to the increasing mobility and 
social contact rates, accompanied with the large numbers of sus-
ceptible people in the population, countries worldwide have been 
experiencing COVID-19 resurgences5,6.

In the absence of an effective vaccine, physical distancing inter-
ventions (for example, closure of schools and workplaces) are criti-
cal to contain the resurgences, even though such interventions have 
caused substantial disruptions to societies and economies7,8. As of 
January 2021, ten vaccines for severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, 
have received either full approval or limited approval for emergency 
use9. Policymakers are also looking forward to the arrival of other 
vaccines in the coming months so that physical distancing restric-
tions can be alleviated, as vaccination can reduce the portion of 
susceptible contacts that may result in transmission10,11. However, 
the extent of potential alleviation remains unclear, especially given 
that the supply of vaccines will probably not be sufficient to achieve 

herd immunity in the immediate future. Therefore, more com-
prehensive interventions including both physical distancing and 
vaccine-implementation strategies should be developed to avoid 
COVID-19 resurgences. To this end, there is an urgent need to 
understand the interrelationships among mobility, social contacts, 
physical distancing, vaccination and virus transmission for tailoring 
and adjusting preventive interventions.

Human movement and contact rates have fundamental roles 
in shaping the transmission patterns of infectious diseases12,13. 
Their impact on COVID-19 inter-city spread has been exten-
sively investigated using anonymized mobile phone data14–16, and 
previous studies have attempted to assess the effects of travel and 
physical distancing measures on the first wave of the COVID-19 
pandemic17–22. In addition, mobility data have been recognized to 
effectively reflect the resumed human activities after lifting lock-
down measures23,24, and have also been used as a proxy for measur-
ing the effectiveness of interventions, such as stay-at-home orders, 
to mitigate or contain the transmission of COVID-1925,26. However, 
most studies have primarily used existing publicly available data-
sets27–31 to derive and provide coarse information on population 
mobility to measure changes in inter-city travel flow, check-in 
intensity or trip length under interventions. More refined data with 
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anonymized geolocation information have been under-utilized for 
directly informing social contact rates32,33. The use of only mobility 
data is also unable to help assess the impact of vaccination mea-
sures, which requires deriving information on safe social contacts 
in modelling transmission dynamics.

Because mobility data cannot directly inform physical distanc-
ing and reductions in contact rates, studies examining the effect 
of lockdown policies on transmission have generally assumed that 
when people reduce their mobility, they proportionally reduce their 
contacts23,24. However, in reality, similar levels of social contact have 
been observed at both high and low levels of mobility in various 
studies32,33, and using mobility or social contact data alone may 
not be sufficient for precisely measuring physical distancing. The 
paired relationship between reductions or restorations in mobility 
and social contacts is more suited to serve this purpose. Thus, it is 
crucial to understand the interaction between mobility and social 
contact rates over time under COVID-19 interventions.

Future studies on epidemic spread should be able to consider 
the strong interaction between physical distancing and mobility to 
reduce contact rates with or without vaccination in case of resur-
gences. Ideally, investigation of the reduction in contact rates would 
involve creating a singular index that encompasses the combined 
impact of reduced mobility and physical distancing on contact rates 
so as to directly inform the estimates of contact levels among popu-
lations over time. This index should also be able to account for the 
impact of vaccination on reducing susceptible contact rates with 
minimal adaptations. In this Article, we propose a social contact 
index (SCI) to represent the daily average potential social contact 
(or spatiotemporal co-presence) per person, which was derived 
from an anonymized mobile geolocation dataset. The index asso-
ciates a series of mobility levels (for example, 10% to 100%, with 
increments of 10%) with their corresponding social contact rates. 
On the basis of this association, an empirical relationship was estab-
lished using allometric equations34,35 to compute the contact rates 
under a given level of physical distancing and population density for 
future scenario simulations. As a proxy for daily social contact rates 
per person, this index was incorporated into a modified suscep-
tible–exposed–infectious–recovered (SEIR) model to quantify the 
impact of physical distancing interventions in light of the COVID-
19 outbreak across China. The risks of COVID-19 resurgence  
without vaccination were then assessed under varying mobility, 
physical distancing and population density scenarios. Subsequently, 
the effect of administering vaccines to relax physical distancing 
interventions and reduce unsafe social contacts in preventing a 
resurgence of infections and curtailing the pandemic was assessed.

Results
Deriving a social contact metric in populations. The proposed 
SCI used to measure the level of contacts per person in a city was 
created using the total number of potential contact events (or the 
total social contacts index (TSCI)), which was directly determined 
using a large, near-real-time anonymized mobile device positioning 
dataset from Tencent30 that covers more than 70% of the population 
in mainland China31. In this dataset, the potential contact events are 
detected in the context of the spatiotemporal co-presence of peo-
ple36–38 or when their mobile devices request positioning services 
within a specified space–time bin (that is, 250 m and 10 min, in our 
case) (Extended Data Fig. 1a).

The SCI is an average per person TSCI. It is paired with mobility 
in a non-linear form (Methods), but is also influenced by physical 
distancing (Extended Data Fig. 1b) and population density. Here, 
mobility refers to the number of trips people make outside their 
homes. During the COVID-19 outbreak, people might have been 
ordered to, encouraged to, or volunteered to quarantine and work 
from home to reduce social contacts, thereby leading to a decrease in 
the SCI. However, after the lockdown measures were lifted, mobility 

was gradually restored. Physical distancing measures are applied to 
keep people who are outside their homes away from crowded places 
by closing parts of facilities or limiting the maximum number of 
people gathering in facilities through, for example, staggered entry 
and exit. Generally, high mobility leads to a high SCI, as does a high 
population density. However, strong physical distancing measures 
lead to a low SCI. Vaccination can protect people by greatly enhanc-
ing immunity and thus reduce the SCI of COVID-19 transmission 
between susceptible populations and infectors. The population den-
sity of a city may change owing to its population inflow and outflow, 
which in turn affects the SCI and disease transmission (Methods).

Taking Wuhan as an example, an overview of the overall social 
contact rates, as reflected by the TSCI of the entire city, is provided, 
together with the changes in the TSCI before, during and after the 
lockdown (23 January to 7 April 2020) due to the implementation 
of physical distancing measures of varying intensities (Fig. 1a–c). 
The TSCI was categorized into five types on the basis of the areas 
of interest30 where contact occurred, namely residential commu-
nities, workplaces, schools, shopping or recreation facilities, and 
other facilities. Before the lockdown (normal period) in December 
2019, more than 80% of the contact occurred in the first four types 
of places. Figure 1d shows the changes in the TSCI of Wuhan 
and those of four other major cities in China (Beijing, Shanghai, 
Guangzhou and Shenzhen) against their normal patterns (the aver-
age levels in December 2019). After the implementation of nation-
wide interventions since 23 January 2020, 2 days before the start 
of Chinese New Year (25 January 2020), the TSCI of the five cities 
markedly decreased; the TSCI of Wuhan dropped to only 2% of its 
normal level (that is, 1.016) on 27 January, day 4 after imposing the 
lockdown measures. On 8 April, the lockdown was lifted in Wuhan 
and the TSCI slowly recovered, reaching 50% on 31 May, while the 
TSCI values of other Chinese cities returned close to their respective 
normal levels (Fig. 1d).

As revealed by the variations in the SCI values shown in Fig. 1, 
physical distancing restrictions of varying intensities were imposed 
over different periods in Wuhan, namely pre-lockdown (for exam-
ple, December 2019)39,40, during lockdown (from 23 January to 7 
April 2020)39,40, shortly after lockdown lifting (SALDL) (from 8 
April to 20 May 2020), and longer after lockdown lifting (LALDL), 
after nucleic acid testing of all citizens (from 20 May to 30 May 
2020)41. Various interventions were implemented together, which 
made it difficult to quantify their effects on the contact rate. To 
solve this problem, we derived four explicit sets of physical dis-
tancing interventions using the mobility dataset, namely ‘no’, ‘mild’, 
‘moderate’ and ‘strong’ (Methods and Supplementary Table 1). 
Each set of these interventions at a certain intensity was found to 
cause similar impacts on the SCI values as those imposed together 
during the same period in Wuhan. This outcome enabled us to 
inform transmission dynamics under explicit sets of physical dis-
tancing measures.

The relationship between mobility and the SCI was modelled as 
an allometric growth curve34,35, but it varied over the three levels of 
population density and the four intensities of physical distancing 
(or the four explicit sets of physical distancing measures) (Fig. 2). 
The SCI values for fitting each curve under a series of randomly 
sampled mobility levels were determined using the mobility dataset 
during the normal period (December 2019) because there was no 
significant population migration or physical distancing interven-
tion. The modelled SCI values were validated against the actual SCI 
values extracted from the original dataset under each mobility level 
(Methods). Thus, a mobility–SCI-coupled metric was formulated 
in the form of these equations to determine the SCI. This metric 
can also be adapted to evaluate the effect of vaccination on the SCI. 
As the people with immunity to SARS-CoV-2 cannot infect or be 
infected by others, their contacts would not affect the transmission 
process. This group of people can therefore be treated similarly to 
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mobility reduction. Consequently, the empirical relationships were 
used in scenario-based simulations to derive the resulting contact 
rates in accordance with mobility restoration (representing the 
levels of reopening economies) and mobility reduction, physical 
distancing and/or vaccination interventions under certain level of 
population density.

Reconstruction of COVID-19 transmissions using a mobility and 
contact-based SEIR model. A classical SEIR model was modified to 
accommodate both intra-city and inter-city mobility and social con-
tacts—forming a mobility and contact-based SEIR (MC-SEIR)—to 
recapitulate the transmission process of COVID-19 in Wuhan from 
2 December 2019 to 31 March 2020. Because the social contact rate 
directly affects the transmission process, to more precisely assess the 
effect of physical distancing measures on transmission, a dynamic 

daily transmission rate derived from SCI was used to replace the 
fixed transmission rate in the conventional SEIR model.

Specifically, the mobility and SCI data were used to estimate the 
instantaneous effective reproduction number (Rt) via a generalized 
linear model. The transmission dynamic was calibrated using a 
Bayesian optimization method42 with the reported case data from 
Wuhan (Methods). The model predicted daily new cases over the 
period from December 2019 to March 2020 with relatively high 
accuracy (R2 = 0.95; Fig. 3). Under a non-linearity assumption, 
the Kendall’s tau correlation between SCI and Rt was examined, 
with a coefficient of 0.59 (95% confidence interval: 0.47 to 0.72; 
P < 0.001, n = 61). If using the mobility data alone, the correlation 
coefficient decreased substantially to 0.41 (95% CI: 0.30 to 0.54; 
P < 0.001; n = 61). This result suggested that SCI was more strongly 
rank-correlated with Rt than mobility.
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Fig. 1 | Change in TSCI in Wuhan and four other major Chinese cities. a, Change of TSCI in Wuhan from December 2019 to May 2020 as a percentage 

of the average pre-lockdown level in December 2019. Categories are indicated in c. b, Enlarged view of a at TSCI values between 0% and 2%. c, The 

proportions of TSCI values that occurred in the indicated categories of locations in December 2019. d, Change of TSCI in Wuhan, Beijing, Shanghai, 

Guangzhou and Shenzhen (r denotes the pre-lockdown TSCI that the city returned to post-lockdown and l denotes the pre-lockdown TSCI that the city 

decreased to during the lockdown). Lines in a denoting the lockdown and lockdown-lifting dates are applicable to Wuhan only. The pink band indicates the 

Chinese new Year holiday period.

NATuRe HumAN BeHAVIOuR | VOL 5 | JUnE 2021 | 695–705 | www.nature.com/nathumbehav 697

http://www.nature.com/nathumbehav


ARTICLES NATURE HUMAN BEHAVIOUR

Effect of physical distancing interventions on future resurgences 
without vaccination. The effectiveness of interventions in prevent-
ing a COVID-19 resurgence was assessed by factoring in mobility, 
physical distancing and population density under a no-vaccination 
scenario. The median duration required to contain a resurgence was 
estimated for each scenario, as shown in Fig. 4. Specifically, physical 
distancing measures were applied under a certain level of mobil-
ity and a selected population density scenario when the new cases 

exceeded ten per day. The measures were lifted after no new cases 
were registered for 14 d. The scenarios and corresponding simula-
tion results are expected to be useful in designing preventive inter-
ventions against COVID-19 for other cities worldwide with similar 
variations in population density (Methods).

Physical distancing is deemed necessary for cities with a low (30% 
of the pre-lockdown population density in Wuhan), medium (50% 
of the pre-lockdown population density in Wuhan) or high (100% 
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of the pre-lockdown population density in Wuhan; 1,282 people 
per km2) population density to curb resurgences of coronavirus 
infections (Fig. 4). Moderate and strong physical distancing mea-
sures could help a city with a low population density to relax inter-
ventions within three months if mobility reduction (for example, 
reduced to 50% pre-lockdown level) was simultaneously applied. 
However, for a city with a high population density, a combination 
of mobility reduction and physical distancing measures would be 
needed to contain the resurgence within nine months. We found 
that the duration of intervention implementation (259 d, interquar-
tile range (IQR): 162–345 d) for a city with high population density 
would almost triple that for a city with a population density of 50% 
or lower (86 d, IQR: 71–104 d) if both moderate physical distancing 
interventions and mobility reduction to 50% of the pre-lockdown 
level were adopted. Thus, to shorten the duration of intervention 
implementation for a city with a high population density, the strong 
physical distancing measures would be suggested.

Joint effects of vaccination and physical distancing in avoiding 
resurgences. Vaccines against SARS-CoV-2 have become available 
since late 2020, and it is imperative to assess the potential combined 
effects of vaccination and physical distancing, especially as there 
will be a period when only limited supplies of vaccines are available 
or only a limited proportion of people (lower than the theoretical 
herd immunity threshold) are vaccinated. Thus, we designed a set 
of scenarios using physical distancing measures to end the epidemic 
for a city with an increasing proportion of vaccinated population. 
In total, 64.2% of the population (that is, the herd immunity thresh-
old derived from the median of a set of reported R0 values43) would 
be vaccinated within one year. The effectiveness of vaccines (the 
seroprotection rate) was set at 75% (neutral scenario) (Methods). 
According to the simulation results (Table 1), the combination of 
physical distancing and vaccination was predicted to further reduce 
the number of infected cases compared with vaccination alone. The 

reduction effects were predicted to be more significant for cities 
with a high population density, such as Wuhan. Specifically, 97.72%, 
99.99% and 99.99% of the infections were predicted to be avoided 
under mild, moderate and strong physical distancing intensities, 
respectively. Strong and moderate physical distancing together with 
vaccination were predicted to suppress the infections to low levels, 
that is, 213 (95% CI: 122–347) and 1,800 (95% CI: 991–2821) cases 
in one year, respectively, and thus were recommended for adop-
tion. Meanwhile, the total duration of physical distancing to end the 
resurgences decreased gradually from 350 d (95% CI: 338–354 d; 
mild) to 234 d (95% CI: 166–395 d; moderate) and then 43 d (95% 
CI: 33–64 d; strong). The results implied that physical distancing 
with strong intensity and short duration would be a better solution 
for curtailing resurgences in terms of the number of cases number 
and duration of intervention.

Compared with the no-vaccination scenario, vaccination com-
bined with physical distancing was predicted to contain the resur-
gence without relying on mobility reduction, whereas a gradual 
vaccination process alone could not achieve this. Specifically, for 
cities with low population density, physical distancing would not 
be required. For cities with medium population density, vaccination 
could shorten the duration of physical distancing measures required 
to end the resurgence by 36%–78% and limit the number of infected 
cases to 298 (95% CI: 130–438) and 776 (95% CI: 368–1064) under 
moderate and mild physical distancing, respectively. For cities with 
high population density, vaccination enabled strong physical dis-
tancing measures to be replaced by moderate physical distancing. 
Consequently, it is of value to apply joint physical distancing and 
vaccination interventions while approaching herd immunity, espe-
cially in large cities with high population densities, such as Wuhan.

To evaluate uncertainties, the above simulations were replicated 
under pessimistic and optimistic scenarios with the effectiveness 
set at 50% and 100%, respectively. Without loss of generality, the 
population density was set as 100% of the pre-lockdown population  
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density of Wuhan for the optimistic, neutral and pessimistic sce-
narios. The results showed that the uncertainty (IQR of daily new 
cases) would be high when applying limited physical distancing 
measures. In the pessimistic scenario, the peak of daily new infec-
tions was 1.25 to 8.08 times that in the neutral scenario when only 
no or mild physical distancing measures were applied, whereas the 
peak of daily new cases was similar (1.08 and 0.97 times) when mod-
erate or strong physical distancing measures were imposed (Fig. 5). 
This further confirmed that the joint implementation of physical 
distancing and vaccination could reduce uncertainty in ending  
the epidemic.

To test the generalizability of our proposed SCI models under 
varying population densities, we examined six cities in China 
(low density: Zhuzhou and Qiqihar; medium density: Hefei and 
Hangzhou; and high density: Beijing and Chengdu), with each den-
sity set forming a group under one population-density scenario. 
The four sets of physical distancing measures (for example, ‘the 
closure of schools and 20% reduction in contact in all other catego-
ries’ for mild intensity) were directly applied to these cities, but an 
SCI–mobility curve was derived for each city (Methods). According 
to the results (Supplementary Table 4), all of the low-density sce-
narios required no physical distancing measures when vaccination 
was applied. The medium-density cities (Hefei and Hangzhou) had 
less than 1,500 cases in one year, even with mild physical distanc-
ing measures. Thus, we could further infer that the mild, moderate 

and strong physical distancing measures would all be acceptable for 
medium-density cities according to the number of potential cases 
in one year. This result is similar to the result for the 50% popu-
lation density scenario in Wuhan (Supplementary Table 4). In all 
three high-density scenarios, the no and mild physical distancing 
measures did not stop the resurgence or reduce the high number 
of infections. Thus, the moderate and strong physical distancing 
measures would be needed for high-density cities when vaccines 
became available. Strong physical distancing measures should be 
applied first, because this intensity would probably end the need for 
interventions within two months. The results in all six cities were 
similar to those in the corresponding population density scenarios 
in Wuhan. This evidence suggests that our proposed mobility–SCI 
model and the explicit sets of physical distancing measures could be 
used to inform the combined effects of interventions in other cities 
with similar population densities.

Discussion
Our study assessed the effects of physical distancing interventions 
on the resurgence of COVID-19 with increased mobility and social 
contacts following the lifting of lockdown measures under both 
vaccination and no-vaccination scenarios. The effectiveness and 
duration of physical distancing interventions in containing future 
resurgences is highly dependent on the intensity of the measures, 
the population density and the availability of vaccines across space 
and time. Large cities with a high population density, such as Wuhan 
(1,282 people per km2), are more vulnerable to resurgence when 
reopening the economy and society. On the one hand, the naturally 
high social contact rates in these cities would require more effort 
(longer and stronger physical distancing measures and stronger 
mobility reduction measures) than would be necessary for less dense 
cities. On the other hand, containing a resurgence in the absence of 
an effective vaccine is a costly process, especially for cities with high 
population density; the containment would require two months 
even with strong physical distancing measures. Thus, it is impor-
tant to take precautionary measures against future resurgences in 
the upcoming few months before effective vaccines become widely 
available. Socioeconomic activities can be safely restored to normal 
levels if the vaccinated population reach the herd immunity thresh-
old (64.2%) derived from the R0 value (2.79). Before achieving herd 
immunity, however, if cases are imported into regions where out-
breaks have been fully contained, the cities with high population 
density would still require moderate or strong physical distancing 
measures, whereas the cities with low population density could cur-
tail the transmission solely by vaccination.

Effective vaccination with a high coverage of the population 
can greatly ease the reliance on physical distancing interventions 
with respect to implementation intensity and duration. Specifically, 
stay-at-home orders (mobility and contact reductions used in our 
simulation) would no longer be needed, even with a gradual vac-
cination process (reaching 64.2% of the population in one year). 
However, only cities with low population density can fully interrupt 
transmission without implementing any physical distancing mea-
sures. For cities with medium or high population density, physical 
distancing would still be required to lower the infection number. 
Meanwhile, the joint implementation of vaccination and physi-
cal distancing can limit the uncertainty of transmissions caused 
by the ineffectiveness of vaccines or short-term immunity. This 
result suggests that strong physical distancing interventions with 
short durations might be more effective than mild interventions 
with long durations while the long-term effectiveness of vaccines 
is unconfirmed.

Although this study shows that non-pharmaceutical interven-
tions are likely to substantially reduce COVID-19 transmission, it 
is difficult for the public to adhere to travel and physical distancing 
measures for a long period6,44,45, and subsequent waves of resurgence 

Table 1 | Simulated joint effects of vaccination and physical 
distancing measures

Population 
density

Physical 
distancing

Infected 
cases in 
1 year (95% 
CI)

Reduction 
rate of 
casesa (%)

Duration 
under 
physical 
distancing 
(95% CI) (d)

30% 
population 
density of 
Wuhan

no 47 (9–189) − −

Mild 54 (11–196) − 0 (0–0)

Moderate 49 (11–194) − 0 (0–0)

Strong 59 (16–218) − 0 (0–0)

50% 
population 
density of 
Wuhan

no 6,894 
(1,302–
11,565)

− −

Mild 776 
(368–1,064)

88.74 163 (90–242)

Moderate 298 
(130–438)

95.68 55 (35–80)

Strong 205 
(94–347)

97.02 29 (0–45)

100% 
population 
density of 
Wuhan

no 17.72% 
(16.26%–
18.74%)b

− −

Mild 0.40% 
(0.22%–
0.60%)b

97.72 350 
(338–354)

Moderate 1,800 
(991–2,821)

99.99 234 
(166–295)

Strong 213 
(122–347)

99.99 43 (33–64)

aThe reduction rate of cases refers to the percentage of cases that could be reduced if the 

intensity of physical distancing measures listed on the left were applied, compared with a 

no-physical-distancing scenario. The no-physical-distancing scenario and scenarios with a very 

limited number of cases that do not require physical distancing are marked with ‘−’. bThe number  

of cases is presented as the percentage of the potentially exposed population (approximately 

102.25 million in Wuhan) because of the large numbers; further details are provided in Methods.
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may emerge if interventions are relaxed and normal levels and pat-
terns of travel are resumed6,23,24 before achieving herd immunity 
through vaccination. Our research provides a framework and set 
of outputs that can be used across a wide range of settings, and 
includes (1) more precise estimates of COVID-19 outbreaks and the 
efficacy of interventions under both vaccination and no-vaccination 
scenarios; (2) identification of the most effective combinations of 
physical distancing and vaccination interventions and their intensi-
ties for preventing or suppressing resurgences; and (3) supporting 
disease control strategy design through improved understanding of 
interventions and their effects across space and time in regions with 
different population densities.

Our findings should be considered in the context of sev-
eral assumptions and data limitations. First, we did not derive 
individual-level mobility and social contacts to estimate COVID-19 
transmission owing to data availability and privacy issues. If demo-
graphic attributes of individuals are available in the future32,33,46, 
then we could extend the methodology and analyses to detect 
potential social disparities in the vulnerability to COVID-19 and 
assess potential heterogeneities in the efficacy of intervention. 
Second, the mobile phone-derived data in China for parameterizing 
travel and physical distancing interventions in our SCI model might 
not be representative of populations in other regions or countries 
owing to variations in user coverage, population dynamics across 
regions and human behaviour patterns. However, the data used here 
cover over 70% of the population in China31, and thus represent the 
Chinese population reasonably well. Third, the accuracy of our 
model relies on the accuracy of epidemiological parameters derived 
from reported case data, the quality of which might be constrained 
by case definitions, the capacity for diagnosis and surveillance, 
and other factors that vary across countries, regions and time46–48. 
Fourth, other factors and interventions, such as hand washing and 
wearing of face masks, may also contribute to mitigating COVID-19  
spread across space and time46,49,50, but our simulations did not 
specify their contributions to transmission. Fifth, the exemplified 
intervention measures and vaccination settings in our simulation 
scenarios might not be complete, especially given the ongoing and 
rapidly changing challenges of vaccine supply and logistics, as well as 
the potential impact of new virus variants on the vaccine effective-
ness11,51. Although the heterogeneity in human behaviour and inter-
ventions across regions or countries may limit the generalizability 

of our model and findings, this study provides an evidence-based 
assessment of the joint effect of physical distancing and vaccination 
interventions on COVID-19 in other cities worldwide with similar 
levels of population density, settings and human behaviour patterns. 
Additionally, our methods integrate near-real-time mobility and 
social contact data as well as vaccination scenarios, thereby suggest-
ing that our approaches can be adapted to address emergent needs 
given the rapid changes in the COVID-19 transmission dynamics 
post-lockdown.

methods
No statistical methods were used to predetermine the sample size in fitting 
the relationship between contact rates and mobility. However, our sample was 
sufficiently large, as the original data cover more than 70% of the population in 
China (for example, 19,728 spatiotemporal bins in Wuhan were used as samples). 
The individual characteristics (for example, sex and age) and the exact number of 
smartphone users were not available as aggregated data were used. We were also 
aware that users opted in to provide their location information. The aggregated 
data included all available users. In other words, there was no randomization in 
collecting the data of social contact events.

Ethics declaration. The collection and analysis of COVID-19 case data were 
determined by the National Health Commission of China to investigate and 
control the outbreak. Ethical clearance for collecting and using secondary data 
in this study was granted by the institutional review board of the University of 
Southampton (no. 61865). All data included in models were supplied and analysed 
in an anonymous and aggregated format, without access to personal identifying 
information.

Case incidence data. The daily numbers of COVID-19 cases by date of illness 
onset in Wuhan as of 17 April 2020, as obtained from the national information 
reporting system for notifiable infectious diseases in China, were used to further 
evaluate the performance of the baseline model. There was an abnormal increase in 
the number of cases in Wuhan on 1 February based on the date of illness onset. We 
interpolated the number on 1 February as the mean number of cases reported on 
31 January and 2 February in the epi curve.

Estimation of population migration and associated population density variations. 
Population migration had an important role in our assessment of the population 
in the study area (that is, Wuhan) and subsequently impacted the transmission 
dynamics. Population migration between cities was detected, and the corresponding 
data were acquired from the mobile device dataset from Tencent. For a given day (t), 
the relative values of the population inflow (Ir,t) and outflow (Or,t) were calculated by 
detecting the number of move-in and move-out mobile device users. These values 
were used to estimate the actual inflow (It) and outflow (Ot) together with the relative 
value of the population (Ut) (number of mobile device users after deduplication) and 
the ambient population (Pt) (the average total population in a particular location, 
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for example, a grid cell or a city throughout a period, for example, 1 h or 1 d) on day 
t (that is, daily ambient population). Finally, the Pt was updated on the basis of the 
estimated inflow and outflow on that day, as follows:

It ¼ Ir;t ´
Pt

Ut

; ð1Þ

Ot ¼ Or;t ´

Pt

Ut

ð2Þ

Pt ¼ Pt�1 þ It � Ot ð3Þ

The population density of a city is influenced by population migration, and 
thus varies over time. Population density may directly affect the base contact rate 
between individuals. In our simulations, the Pt of Wuhan at the beginning of the 
study period was obtained from the government statistical data (that is, 11.21 
million (Wuhan’s permanent population on 1 December 2019)52 and updated on 
a daily basis using the migration data. Consequently, the population density also 
changed daily during the study period, but it was assumed to be homogeneous 
within the city.

In addition, the cases that were registered in the city, regardless of whether 
they were from the permanent population or the migrant population, would be 
included in the total number of cases in a simulation scenario. Thus, to better 
evaluate the risk of COVID-19 to the population under this statistical calibre30, 
we used an equivalent population base that we designated ‘potentially exposed 
population’, which was calculated by summing the city’s permanent population 
and its annualized inflow population53. The annualized inflow population refers to 
the weighted sum of daily inflow population over one year. For each daily inflow, 
its weight is the proportion of the number of days between the inflow date and the 
end of the year in a whole year. For example, the weight of the inflow population 
on the first day is 364/365.

Social contact measurement. The numbers of total potential social contact 
events (that is, TSCI) and outside-home trips (mobility) were derived from 
Tencent’s mobile device geolocation dataset (Extended Data Fig. 2). By using the 
government statistical data54 and considering the population coverage of this 
dataset, the time-varying gridded population was then obtained and aggregated to 
estimate the population stock number in any specified space–time bin according 
to the user coverage rate. Each bin was indexed with a spatial coordinate l and a 
temporal coordinate j, and labelled with a land use type k (for example, residential 
community, work, school, shopping or recreation, or others). TSCI denotes the 
overall scale of potential social contact (or contact events) occurring in a city 
within a given time period (for example, 1 d). Each contact event refers to a 
one-time co-presence within a space–time bin (Extended Data Fig. 1). The number 
of such events can be calculated as follows:

TSCIt ¼
X

Gl;j;k Gl;j;k � 1
� 

ð4Þ

Gl;j;k ¼
Ul;j;k

C
ð5Þ

where Gl,j,k denotes the ambient population in bin (l, j, k), Ul,j,k is the number of 
mobile device users in the same bin, and C is the conversion ratio, which  
is constant.

On a per-person level, the SCI on day t can subsequently be calculated 
(Extended Data Fig. 2) as follows:

SCIt ¼
TSCIt

Pt

; ð6Þ

where Pt is the total ambient population of the study area on day t (aggregated from 
all the bins over all data-collection time intervals).

The SCI computed using mobile geolocation data can help us one to 
understand the transmission process with a higher spatiotemporal resolution 
by providing the number of potential social contacts on a per-person basis. To 
explore the non-linear relationship between SCI and mobility, 10% to 100% of 
mobile device users (in increments of 10%) were randomly selected, and their 
corresponding contact events were detected in the form of spatiotemporal 
co-presence (Extended Data Fig. 1). Thus, a series of mobility–SCI pairs was 
created; an empirical relationship was then built on the basis of these pairs to 
estimate SCI values in scenario-based simulations, given an assumed restoration or 
reduction in mobility levels.

Quantifying the relationship between mobility and social contacts. To quantify 
the association between mobility and the SCI, we used an allometric curve34,35,  
as follows:

SCIt ¼ α ´ h ´Pt=Að Þβ ð7Þ

where A is the size of the study area and Pt/A is the population density. h denotes 
a ratio for quantifying the mobility level of the entire population (that is, Pt), 
which can also reflect the level of mobility reduction or restoration. For instance, 
a stay-at-home order followed by approximately 50% of the population can be 
simulated by setting h at 0.5. Thus, the mobility is calculated as h × Pt and the 
mobility per unit area is calculated as h × Pt/A. α and β together define a power  
law equation representing the influence of physical distancing measures. Higher 
values of α and β indicate weaker physical distancing, thereby implying more  
social contact under a given population density and mobility level. In addition, 
an inflow of population can cause an increase in Pt and an increase in population 
density and SCIt.

To fit this model, the social contact data of Wuhan for one week during the 
pre-lockdown period (1 December 1 to 7 December) were extracted and  
used to generate a set of mobility–SCI observations. The social contacts were 
categorized into five types according to the places where they occurred, namely  
the residential community (Cr), work (Cw), school (Csch), shopping or recreation 
(Cs) and others (Co).

TSCI ¼ Cr þ Cw þ Csch þ Cs þ Co ð8Þ

The values of each of these types of contact under a given mobility level (from 
1% to 100%) were also recorded and denoted as Ck,i, where k ∈ {r,w,sch,s,o} and 
i ∈ {1%,2%,3%,...,100%}. The mobility level was obtained by randomly sampling the 
overall mobile device users (represented by i) and calculating the contact events 
belonging to the given category k. The contact value (SCIt,i) with respect to a given 
mobility level i and a physical distancing intervention was then derived (Extended 
Data Fig. 2), where pk,i, denoting a ratio between 0 and 1, was used to quantify the 
contacts of a given category k under the mobility level i on day t, as follows:

SCIt;i ¼
X

pk;i ´Ck;i;t

 

=Pt ð9Þ

A set of SCIt,i and i values were generated under a given physical distancing 
intervention specified by α and β and a population density (Pt/A). These 
observations were used to quantify the relationship between a specified mobility 
level and an SCI value for a given population density. Therefore, the α and β values 
for a given physical distancing intervention could be obtained as follows:

SCIt;i ¼ α ´ i ´ h ´Pt=Að Þβ ð10Þ

The above process was conducted four times to determine the parameters α 
and β under varying intensities of physical distancing interventions, namely no, 
mild, moderate and strong. Using the mobility data of Wuhan from December 
2019 to May 2020, we were able to derive the social contact rates at different 
locations and infer their opening and closure during the periods in which physical 
distancing interventions of varying intensities were implemented. As shown in 
Supplementary Table 1, the four intensities were consistent with those imposed 
in the following periods: pre-lockdown, LALDL, SALDL and lockdown. Each 
set of measures was as follows. No physical distancing refers to the normal 
status pre-lockdown; mild physical distancing measures include the closure of 
schools and a 20% reduction in contact in all other categories; moderate physical 
distancing measures include the closure of schools, an 80% reduction in contact in 
shopping or recreation, and a 50% reduction in contact in all other categories; and 
strong physical distancing include only 50% of the pre-lockdown-level contact in 
residential communities and the closure of all other non-essential facilities.

The above considerations indicate that the four intensities of physical 
distancing can be implemented explicitly because each intensity is linked to a set 
of control measures (for example, closure of schools and 20% closure of other 
services), which can then inform the changes in the SCI. These changes then 
indicate the potential variations in disease transmission.

To validate the proposed mobility–SCI relationships under the four intensities 
of physical distancing or the four sets of explicit physical distancing measures (Fig. 
2), the relationships were examined against the observed mobility–SCI values in 
Wuhan over the corresponding periods of pre-lockdown, LALDL, SALDL and 
lockdown under the same population density (low, medium or high). The low 
population density was set to approximately 30% of the population of Wuhan, 
medium population density was set to 50% of the population, and high population 
density was set to 100% of the population. Under each physical distancing intensity, 
the modelled mobility–SCI relationships for the three population densities 
followed the same allometric function34,35. Thus, only four relationships required 
validation (Extended Data Fig. 3).

The results indicated that the modelled SCI values under each mobility 
level (10% to 100% with increments of 10%; that is, for each relationship), 
were significantly correlated with the observed SCI values (Pearson correlation 
coefficients ranging from 0.95 to 0.97 for all of the relationships, each with 
P < 0.001; mean absolute error ranging from 0.03 to 1.42; n = 10). Therefore, the 

NATuRe HumAN BeHAVIOuR | VOL 5 | JUnE 2021 | 695–705 | www.nature.com/nathumbehav702

http://www.nature.com/nathumbehav


ARTICLESNATURE HUMAN BEHAVIOUR

proposed mobility–SCI metric was considered useful for measuring the actual 
intensities of physical distancing that existed over the aforementioned periods for 
different population densities. Accordingly, this metric was used to quantify the 
intensities of physical distancing in our simulations.

SEIR computation. For the purpose of this computation, the population (N) was 
subdivided into five groups, namely susceptible (S), exposed (E), infectious (I), 
recovered/removed (R) and vaccinated (V). During each time step, five sub-steps 
were performed sequentially, as follows:

N ¼ Sþ E þ I þ Rþ V ð11Þ

dS

dt
¼ S� EI

SI

N
þ ξRRþ ξVV ð12Þ

dE

dt
¼ EI

SI

N
� Ec ð13Þ

dI

dt
¼ Ec � rtI ð14Þ

dR

dt
¼ rtI � ξRR ð15Þ

dV

dt
¼ Ve;t � ξVV ð16Þ

First, the disease transmission coefficient EI was calculated based on a 
transmission process following a Poisson (λ = Rs) distribution55. The theoretical 
number of newly exposed people EI × I was then multiplied by the percentage of 
susceptible people (S/N) in the city. Here, the SCI-adjusted transmission rate (Rs) 
was obtained from the basic reproduction rate (R0) (2.2, 95% CI: 1.4–3.9), divided 
by the average number of days (tg) (5.8, 95% CI: 4.3–7.5) between the onset and 
first medical visit and isolation, and weighted using the level of social contact (Sc) 
determined using the mobility data. Sc was computed using a generalized linear 
model consisting of the parameters β0, β1 and β2. The observed SCI values were 
derived from the TSCI divided by the total ambient population of the city when 
fitting the models. In the simulation processes, the SCI values were derived using 
our proposed physical distancing and mobility reduction measures. We assumed 
that the mean incubation period for exposed people was 4 d (IQR: 2–7 d)11. A set 
of onset dates (that is, current time point plus a stochastic incubation period) was 
stochastically generated and recorded together with the onset dates of the previous 
exposed population, as follows:

Rs ¼ Sc ´R0=tg ð17Þ

Sc ¼ β0 ´ SCI
β1 þ β2 ð18Þ

Second, the exposed people were considered infectious if their onset dates 
(specified in the previous sub-step) were equal to the current time step (that is, day 
t). The number of such people is denoted by Ec. Typically, a direct estimation based 
on the total number of existing exposed people and the conversion rate (σ) derived 
from the delay in symptom onset distribution was applied. For instance, 20% of the 
exposed population on day t − 1 would be converted to the infected population if 
σ is equal to 0.2. However, such an approach can cause a premature conversion of 
the exposed population to the infectious population; for example, the abrupt peak 
in mass social contact before the Chinese New Year holidays might have resulted 
in an immediate increase in the exposed population but a delayed increase in the 
infectious population. In contrast, a zero-delay peak of new infectious people 
would appear on the next day if only the number of people exposed in the current 
time step were considered instead of their potential onset days.

Third, the infected people were later removed or recovered at an average rate 
of rt (recovery/removal rate) where t ∈ {1,2,3,4,5}, which represents the five periods 
identified in Wuhan39,40. A dynamic rt was applied in light of the significant changes 
in the diagnosis and isolation strategies implemented during December 2019 to 
March 2020. rt was modelled as an optimizable parameter and was determined 
using a Bayesian optimization method42. Everyone in the recovered/removed group 
lost immunity at a rate of ξR every day during the period.

Fourth, when fitting against the real situation in Wuhan, the initial model 
did not include the vaccination group and vaccination process (the vaccinated 
population was 0). However, they were included in the SEIR model in simulating 
the combined effects of vaccination and physical distancing. On day t, part of the 
vaccinated population (Ve,t) was immunized, and everyone in the vaccinated group 
lost immunity at a rate of ξV every day.

Finally, the exported and imported population were processed to update the 
total population in the city using the migration data. The exported population 
followed the same fractions of the susceptible, exposed, infectious and recovered/
removed population in the current time step in the city, while the imported 
population was considered to join the susceptible population. This indicated a 
limitation that the exposed and infectious populations could only be input at the 
start time step of simulations.

Optimization of parameters for SEIR modelling. We developed the MC-SEIR 
model by modifying the classical SEIR model with mobility and social contact 
data to reconstruct the transmission dynamics of COVID-19 in Wuhan between 
December 2019 and March 2020. The model was calibrated within a Bayesian 
optimization framework by using a tree-structured Parzen estimator42, in which 
the relationship between social contact and transmission rate as specified by the 
generalized linear model, the removal rate rt, and the initial cases were optimizable. 
These parameters were estimated by minimizing the squared error between the 
model-estimated daily new cases and the actual case report data. To deal with the 
uncertainty in the stochastic SEIR model, each parameter set was evaluated 150 
times. The mean squared errors were finally used as the object function values by 
the tree-structured Parzen estimator.

We also tested the non-linear correlation between the SCI (4 days ahead) and 
Rt by using the case report data of Wuhan for the period of 1 December 2019 to 
31 March 2020. A four-day (median value of the incubation period) time lag was 
applied to examine the lagged correlation between Rt and SCI.

Simulation for containing resurgences through physical distancing without 
vaccination. The resurgence of COVID-19 is highly possible, and there is a 
high risk of resurgence in the near future. Therefore, it is imperative to devise 
appropriate physical distancing interventions that can help to effectively contain 
potential resurgences. We simulated resurgence under different intervention 
strategies and levels of mobility and evaluated the effectiveness of the strategies 
using the median duration required to contain the resurgence. A physical 
distancing intervention was commenced under a certain level of mobility when 
the number of daily new cases exceeded a threshold (that is, ten people in the 
simulation). Thus, the SCI could be controlled under the proposed intervention, 
along with the level of mobility, to decelerate the transmission process. The SCI 
value was acquired from the SCI curve defined earlier with respect to the level of 
mobility, intensity of physical distancing and population density.

Ideally, the number of new cases would decrease owing to significant 
reductions in the TSCI and SCI. The interventions were lifted when there were 
no new cases for 14 consecutive days. Otherwise, the measures were continuously 
implemented for one year (the remainder of the total simulation period). In other 
words, an estimated duration of more than 300 d indicated that the conducted 
interventions could not contain the resurgence effectively.

Simulation of the joint effects of vaccination and physical distancing. To 
understand the joint effects of vaccination and physical distancing in the cities 
with varying population densities, a set of scenarios differentiated by vaccination, 
physical distancing and population density were designed. During the simulation 
period (that is, 365 d), the same number of people would be vaccinated every day 
(approximately 0.18% of the total population). By the end of the simulation period, 
64.2% of the population would be vaccinated. The proportion of the vaccinated 
population (1 − 1/R0) was derived from R0 (2.79), that is, the median R0 value as 
reported in a set of previous studies43 (Supplementary Table 2).

The vaccinated population was assumed to inject two doses, and gradually 
obtained immunity to SARS-CoV-2. Specifically, six types of COVID-19 
vaccines56–61 that had finished phase II trials (Supplementary Table 3) were 
reviewed. The probability of inducing an immune response (probability of 
seroconversion) was recorded on different observation days (for example, 75%; 
day 14). These records were later grouped by date and used to calculate the 
quantiles (that is, 25%, 50% and 75%) of seroconversion on each date (for example, 
14, 28 or 42 d since the first shot) (Extended Data Fig. 4). In our simulations, 
the median value of seroconversion was used. Under pessimistic, neutral, and 
optimistic scenarios, 50%, 75% and 100% of the population that had experienced 
seroconversion would acquire immunity, respectively. The population with 
immunity could not infect or be infected by other people.

The long-term immunity loss was also considered. The population can obtain 
immunity by either recovery from infection or vaccination, but the achieved 
immunity will fade at different speeds. For the recovered group, we assumed that 
their immunity would follow a similar decreasing curve to the one for severe acute 
respiratory syndrome (SARS), which is also caused by a coronavirus, because 
there was no available systematic review or report on the immunity-fading rate of 
COVID-19 recovered patients.

Specifically, we assumed that 6.12% of the recovered population would lose 
their immunity to COVID-19 in the first year after their recovery62. For the 
vaccinated group, we assumed that their immunity would fade at a faster rate. 
Thus, a unique fading curve was adopted to simulate the fading of immunity in 
the vaccinated population. However, there were also no data on the long-term 
effects of vaccines for COVID-19 or for other coronaviruses (for example, SARS 
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and Middle East respiratory syndrome coronavirus). Therefore, the fading trend of 
influenza vaccination was used instead. We assumed that 53.05% (95% CI: 45.79%–
60.29%)63 of the vaccinated population would lose their immunity in the first year.

Simultaneously, physical distancing measures (with mild, moderate or strong 
intensity) would commence when daily new cases exceeded a threshold (that is, 
10), which would later be lifted if there were 14 consecutive days with no new 
cases. It was considered that vaccination and mobility reduction could achieve 
a similar effect, that is, exposure reduction in population that may potentially 
cause infection. However, compared with vaccination measures, travel restrictions 
have serious adverse socioeconomic effects. Moreover, travel restrictions may be 
difficult to enforce in some countries. Therefore, the physical distance measures 
that we adopted excluded mobility reduction in this scenario; that is, the mobility 
was 100% in the simulations.

The scenarios were simulated under 3 population densities (that is, 30% 
(low), 50% (medium) and 100% (high) of the population density of Wuhan) and 
4 physical distancing intensities. Each of the 12 scenarios was run 200 times to 
evaluate the uncertainty. In the simulations, contacts caused by people belonging 
to the vaccinated and removed or recovered groups were removed from the TSCI 
because these people could not infect or be infected by other people. Finally, the 
cumulative infected population and duration of physical distancing measures were 
reported with 95% CIs in Table 1.

Application of the joint vaccination and physical distancing interventions to 
other cities. To examine the extensibility of our proposed SCI models grouped 
by population density, we replicated the simulations of the combined effects of 
vaccination and physical distancing measures in six other cities, namely Zhuzhou 
and Qiqihar (low density), Hefei and Hangzhou (medium density), and Beijing 
and Chengdu (high density), and compared them with Wuhan’s population density 
scenarios. For each city, the mobility–SCI relationships were first extracted under 
no, mild, moderate and strong physical distancing intensities. In this process, the set 
of measures under a physical distancing intensity in Wuhan remained unchanged to 
examine if the measures could be feasibly applied to a city with a similar population 
density. The extracted SCI curves were later used to derive the SCI value of a given 
city under various physical distancing and vaccination scenarios. The simulations, 
which were the same as those for Wuhan, were then replicated with all of the 
conditions unchanged; the major differences in cities were in their different SCI–
mobility curves. Finally, the estimated number of cases (in a one-year period) and 
duration of physical distancing were reported as indicators for the assessment.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Datasets of clinical and laboratory data of COVID-19 are available at https://
github.com/gubb673/MC-SEIR. Population dynamics data obtained from Tencent 
for this study are not publicly available due to stringent licensing agreements, 
but information on the process of requesting access to the data that supports the 
findings of this study is available from the corresponding author.

Code availability
Code for the model simulations is available at https://github.com/gubb673/
MC-SEIR.
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Extended Data Fig. 1 | mobility-derived social contacts in the form of spatiotemporal co-presence. a, The colored arrowed lines within a space-time cube 

represent the daily travel routes of citizens. The straight arrowed lines denote persons staying home. The polylines represent trips across several places. 

The colored ellipses represent residential zones. A person may encounter another person within a specified space-time bin, leading to spatiotemporal 

co-presence (or contact event). The number of outside-home trips (mobility) and total social contacts are thus derived and displayed below the left 

space-time cube. b, The total social contacts in cubes (a), (c), (d), and (f) increase with increasing movement of people (represented by more polylines 

or a polyline with more line segments) and greater relaxation of physical distancing measures, from ‘strong,’ to ‘moderate,’ ‘mild,’ and ‘no.’ Cubes (a) and 

(b) show different mobility levels but similar levels of social contact. The physical distances between people in (b) are generally larger than those in (a), 

although they are under the same level of ‘strong distancing.’ Cubes (a) and (e) show similar levels of mobility but different levels of social contact and 

physical distancing. The change patterns of mobility and social contact in the six space-time cubes reveal that the intensity of physical distancing cannot 

be solely determined by social contact or mobility levels but by the relationship between the two factors.
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Extended Data Fig. 2 | SCI calculation. Calculation of the social contact index (SCI) and its link with the models and simulations in this study.
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Extended Data Fig. 3 | Comparison of modelled and empirical social index values. Comparisons of modelled and observed social index values under 

varying physical distancing intensities over different periods.
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Extended Data Fig. 4 | effectiveness of vaccines. The seroconversion rates (y-axis) of different vaccine trials are reported and grouped by the number of 

days (x-axis) after the first dose.
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