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Abstract' 
The Carnegie Mellon University MURI project 
sponsored by ONR performs multi-disciplinary 
research in integrating vision algorithms with sens- 
ing technology for low-power, low-latency, com- 
pact adaptive vision systems. These are crucial 
features necessary for augmenting the human sen- 
sory system and enabling sensory driven informa- 
tion delivery. The project spans four subareas 
ranging from low to high level of vision: (1) smart 
filters, based on the Acousto-Optic Tunable Filter 
(AOTF) technology; (2) computational sensor 
methodology, which integrates raw sensing and 
computation by means of VLSI technology; (3) 
neural-network based saliency identification tech- 
niques for identifying the most useful information 
for extraction and display; and (4) visual learning 
methods for automatic signal-to-symbol mapping. 

1. Introduction 

Automated vision and sensing research has made 
great strides in the last 30 years. Yet vision systems 
still lack attributes shared by most successful mass- 
market technologies - small size, low cost, low 
power and highly reliable performance. If com- 
puter vision processing had these characteristics, 
the potential applications would be nearly endless. 
Examples include: wearable smart vision systems 
for enhancing solder's situation awareness in the 

battlefield; head-up display vision enhancement 
systems for driving in bad weather and low visibil- 
ity conditions; head-up display field telemedicine 
systems, and others. All these applications share 
common features - the applications are mobile 
and interact with the human sensory system. While 
today these scenarios are mostly futuristic specula- 
tions, some of the technologies they require have 
been partially demonstrated. Our research further 
develops these emerging technologies, and brings 
these visions closer to reality. 

The CMU MURI project performs multi-disciplin- 
ary research spanning all levels of vision and sens- 
ing: dynamically tunable acousto-optic 
multispectral imaging [Brajovic and Kanade, 
19971; VLSI-based computational 
sensors [Brajovic and Kanade, 19971; neural net- 
work saliency detection [Pomerleau, 19971; auto- 
matic visual acquisition of object models [Hebert 
et al., 19971; domain-independent evolution-based 
learning for signal-to-symbol mapping [Glickman 
and Sycara, 19971; and learning coordination 
among multiple signal-to-symbol mapping 
agents [Teller and Veloso, 1997bl. We believe that 
the tight integration of vision algorithms and sens- 
ing technology will result in low-power, low- 
latency, compact, adaptive vision systems crucial 
for effective human sensory augmentation. 

1.1. CMU Approach 

I .  This research has been sponsored in full or in part by Office 
of Naval Research (ONR) under Contract N00014-95-1-0591. 
The views and conclusions contained in this document are 
those of the authors and should not be interpreted as represent- 
ing the official policies. either expressed or implied, of ONR or 
the U.S. Government. 

The separation of sensing and processing, as a nat- 
ural consequence of a conventional vision system 
comprising a camera and computer, results in sev- 
eral deficiencies. The two most critical features 
missing in this sens-and-process paradigm are low 
latency processing and sensory adaptation. 
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Latency, or reaction time, is the time that a system 
takes to react to an event. The primary sources of 
latency in vision systems are the: data transfer bot- 
tleneck caused by the need to transfer an image 
from the camera to the processor, and the computa- 
tional load bottleneck caused by the processor’s 
inability to quickly handle a large amount of visual 
data. The detrimental effects of both bottlenecks 
scale-up with the image size. Often, the system 
“receives” the image data too late to cope with fast 
events or to provide sensory feedback to a human 
user. For example, during the frame time of a con- 
ventional camera, a person’s gaze direction can 
shift by 18 degrees. To ensure that the viewer feels 
comfortable and natural in head-mounted display 
applications, for example, delays must be less than 
10 to 20 msec. 

Another aspect presently missing in machine 
vision is top-down sensory adaptation. Complex 
ad-hoc algorithms that try to extract relevant infor- 
mation from inadequate sensor data are inevitably 
unreliable. In fact, time and time again it has been 
observed that using the most appropriate sensing 
modality or setup allows recognition algorithms to 
be far simpler and more reliable. For example, the 
concept of active vision proposes to control the 
geometric parameters of the camera (e.g., pan, tilt, 
etc.) to improve the reliability of the 
perception [Aloimonos, 19921. It has been shown 
that initially ill-posed problems can be solved after 
the top-down adaptation of the camera’s pose has 
acquired new, more appropriate image data. How- 
ever, adjusting geometric parameters is only one 
level at which adaptation can take place. Another 
example of adaptation is multi-spectral imaging, 
which can eliminate confusion by providing sensor 
images appropriate for the task. Acquisition of 
appropriate sensor bands adaptively, however, is 
often difficult since most multi-spectral imaging 
devices have fixed spectral sensitivity, while the 
appropriate wavelengths to process vary as condi- 
tions and the task change. Therefore, a system that 
can adjust its operation at all levels, even down to 
the point of sensing, would be far more adaptive 
than one that tries to cope with the variations at the 
“algorithmic” or “motoric” level alone. 

The two major shortcomings of the sense-and-pro- 
cess approach which are outlined above, along 
with the fact that this approach naturally leads to 
bulkier and less cost-effective systems, suggest that 

an alternative is needed. We are establishing a new 
paradigm in which sensing and vision processing 
are tightly coupled for fast, time-critical, adaptive 
operation. 

The following sections describe basic techniques 
and technologies that the CMU team has worked 
on; we believe these are necessary for the success 
of a low-latency adaptive vision system for human 
sensory augmentation. 

2. Multi-Spectral Imaging Filters 

Contributors: L. J.Denes, M.  Gottlieb, B. Kaminsky, 
P. Metes, Z.K. Kun, M. Capizzi, J .  Hibnec D. 
Purta, A.M. Guzman 

This program task incorporates the spectral (color) 
dimension into the visual reasoning process. A pro- 
grammable optical filter is utilized at the system’s 
front end to reduce the computational load and its 
resulting bottlenecks in future automated vision 
systems. Filtering the incoming scene according to 
its spectral composition can remove a large amount 
of undesirable background clutter prior to higher 
level processing. Figure 1 is a schematic represen- 
tation of the process. Enhanced performance is 
anticipated in a variety of applications, including 
human sensory augmentation systems for driver 
assistance. Because of its ability to extract and 
track objects, this vision system will more closely 
mimic the human observer. 
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Figure 1: Object recognition using color 

discrimination. 

We have assembled a multi-spectral imaging sys- 
tem operating in the visible to near IR range utiliz- 
ing an existing acousto-optic tunable filter (AOTF). 
This configuration has been characterized, yielding 
design optimization information. Critical data 



include spatial and spectral resolution, out-of-band 
rejection, efficiency, field of view, and bandwidth. 
The design goal is efficient operation over nearly 
two octaves of wavelength, and superior image 
quality. Two major issues were successfully 
addressed. The first relates to the method of apply- 
ing the multiple electrical RF control signals to the 
AOTF transducer to fully exploit the multispectral 
capability. Several approaches were analyzed, 
including multiple oscillators, spread spectrum 
techniques, and the use of an arbitrary waveform 
generator. Recent work has confirmed that the arbi- 
trary waveform generator provides all of the flexi- 
bility required with no serious disadvantages. In 
addition, it is readily adaptable to computer con- 
trol. The second issue addressed is how to best 
achieve object identification using color signature 
information. A fundamental issue arises because 
any background object with a broadband color dis- 
tribution, e.g., white, will include the desired sig- 
nature within its spectrum. Thus, these background 
objects may not be discriminated against the target 
object. To address this problem, we developed a 
processing technique using two video frames, in 
which the first frame grab contains a multispectral 
image whose spectral content lies outside the target 
color signature. This frame is inverted and then 
used as a spatial mask over the entire scene. The 
second frame grab includes only the target color 
signature and provides us with a gray scale. By 
using an appropriate threshold, the target image 
alone is displayed against a black background. 
Tests of laboratory scenes give encouragingly good 
res u I t s . 

3. Computational Sensors for Low-Latency 
Adaptive Vision 

Contributors: Vladimir Brajovic and Take0 
Kanade 

The computational sensor paradigm [Kanade and 
Bajcsy, 19931 has the potential to greatly reduce 
latency and provide top-down sensory adaptation 
to the vision system. By integrating sensing and 
processing on a VLSI chip, both transfer and com- 
putational bottlenecks can be alleviated: on-chip 
routing provides high throughput transfer; an on- 
chip processor could implement massively-parallel 
fine-grain computation providing high processing 
capacity which readily scales up with the image 

size. In addition, the tight coupling between pro- 
cessor and sensor allows for efficient top-down 
feedback that can control and adjust the sensor for 
further acquisition based on the preliminary results 
of the processing. 

Our recent work has been concerned with efficient 
implementation of global operations over large 
groups of image data using a computational sensor 
paradigm [Brajovic and Kanade, 19941. Global 
operations are important because: (1) in percep- 
tion, each decision is a kind of global, or overall, 
conclusion necessary for the coherent interaction 
with the environment, and (2) unlike local opera- 
tions (e.g., filtering) which produce large amounts 
of preprocessed image data, global operations pro- 
duce a few quantities for the description of the 
environment which can be quickly transferred a n d  
or processed to produce an appropriate action for a 
machine. The main difficulty with implementing 
global operations comes from the necessity to 
bring together all or most of the data in the input 
data set. We have formulated two mechanisms for 
implementing global operations in computational 
sensors: (1) sensory attention [Brajovic and 
Kanade, 19971, and (2) intensity-to-time process- 
ing paradigm [Brajovic and Kanade, 19961. 

The sensory attention is based on the premise that 
salient features within the retinal image represent 
important global features of the entire image. This 
premise is attractive for two reasons. First, the 
main argument that has been used to explain the 
need for selective visual attention in brains is that, 
as there exist some kind of processing and commu- 
nication limitations in the visual system, the same 
exists in machines. Attention “funnels” only rele- 
vant information and protects the limited commu- 
nication and processing resources from the 
information overload. Indeed, the importance of 
selecting the relevant information from an image is 
now widely acknowledged in machine vision; 
some forms of attention mechanisms (e.g. selecting 
a correctly sized window within the image) are 
often employed in practical applications. Second, it 
has been shown that the visual attention improves 
performance, and is needed for maintaining coher- 
ent behavior while interacting with the environ- 
ment (Le. attention-for-action) [Allport, 19891. 
Location of such attention must be maintained in 
the environmental coordinates, thus maintaining 
coherence under ocular and head 



motion [Milanese, 19931. Unlike eye movement 
@e., overt shifts), the attention shifts (i.e. covert 
shifts) do not require any motor action, but occur 
internally on a fixed retinal image. For this reason, 
attention shifts are faster and play an important role 
in low-latency vision systems. 

We have implemented sensory attention by fabri- 
cating and testing a tracking computational sensor. 
This track sensor optically receives a saliency map 
and continuously selects and tracks the peaks in the 
map. The location and intensity of the selected 
saliency peaks is reported on few output pins with 
low latency. These quantities are also used inter- 
nally in a top-down fashion to aid tracking of the 
attended location. The chip is a 28 x 28 array of 
60p x 60p cells, and is fabricated on a 2.2mm x 
2.2mm die. When tracing bright, well-defined fea- 
tures, the sensor tracks targets moving across the 
retina at about 6900 cells/second. 

The intensity-to-time processing paradigm is 
based on the notion that stronger signals elicit 
responses before weaker ones, thus allowing a glo- 
bal processor to make decisions based on only a 
few inputs at a time. The key is that some prelimi- 
nary decisions about the retinal image can be made 
as soon as the first responses are received. The 
intensity-to-time processing paradigm is used for 
the VLSI implementation of a sorting computa- 
tional sensor - a sensor that sorts input stimuli by 
their intensity as they are being sensed. The chip 
detects an image focused thereon and computes an 
image of indices. During the computation, the chip 
computes a cumulative histogram - one global 
quantity of the detected image - and reports it 
with low-latency on one of the pins before the 
image is ever read out. The cumulative histogram 
is used internally in a top-down fashion to generate 
indices within each pixel. The image of indices has 
a uniform histogram which has several important 
properties: ( 1) the contrast is maximally enhanced, 
(2) the available dynamic range of readout circuitry 
is equally utilized, i.e., the values read out from the 
chip use available bits most efficiently, and (3) the 
image of indices never saturates, and preserves the 
same range (e.g., from 1 to N) under varying con- 
ditions in the environment. 

The adaptation of the dynamic range of the sorting 
sensor is illustrated in Figure 2 showing sequence 
of 93 images provided by the sorting sensor. By 

observing the wall in the background, we can see 
the effects of adaptive dynamic range: even though 
the physical wall does not change the brightness, it 
appears dimmer in those frames in which bright 
levels are taken by pixels which are physically 
brighter (e.g., subject’s face and arm). When the 
subject turns and fills the filed-of-view with dark 
objects (e.g., hair) the wall appears brighter since it 
is now taking higher indices. Also, note that the 
maximum contrast is maintained in all the images 
since all images of indices have uniform histogram. 

Figure 2: Sequence of images of indices computed 
by the sorting sensors. 

We continue to work on an improved sorting com- 
putational sensor with smaller pixels and a larger 
array. We also continue to work on developing new 
sensors based on the intensity-to-time processing 
paradigm. We have designed, and recently received 
a prototype of, a self-contained eye tracking sensor. 
We plan to test the sensor and apply it in several 
scenarios. In the near term, we will begin interfac- 
ing some of our computational sensors with smart 
AOTF filters. 

4. Visibility Estimation from a Moving 
Vehicle 

Contributor: Dean Pomerleau 

Reduced visibility caused by fog, rain, snow, dark- 
ness and glare is a frequent contributing factor to 
traffic accidents [Najm et ai., 19951. In fact, some 
of the most serious of all highway incidents, some- 
times involving dozens or even hundreds of vehi- 



cles, occur when reduced visibility conditions 
result in a chain reaction of crashes. Technologies 
typically employed to estimate visibility include: 
transmissometers, which measure the transmit- 
tance of the atmosphere over a baseline distance; 
and nephelometers, which measure the scattering 
coefficient caused by suspended particles in an air 
sample [National Weather Service 19961. Unfortu- 
nately, these systems suffer from several draw- 
backs as they are not always estimating visibility 
from the driver’s point of view. The only way to 
automatically estimate the cumulative influence of 
these factors on the driver’s ability to see potential 
obstacles ahead is to employ a sensing system 
which reasonably matches the driver’s perceptual 
characteristics. We developed a system that accom- 
plishes this match by using a CCD video camera 
pointing out the windshield of the vehicle, and pro- 
cessing the same features processed by the human 
driver to estimate visibility. 

Manual visibility estimates are typically made by 
attempting to detect high contrast targets at various 
known distances. The farthest distance at which a 
target can be reliably detected is considered the 
visibility distance. Ideally, an automated visibility 
estimation system should work the same way. 
Unfortunately, it is very difficult to consistently 
find high contrast targets at various known ranges 
from a moving vehicle. Even the features that are 
supposed to be consistent on a roadway, the lane 
markings, vary greatly in their appearance, and are 
in fact frequently missing or obscured. The Rap- 
idly Adapting Lateral Position Handler (RALPH) 
system [Pomerleau and Jochem, 19961 overcomes 
this difficulty when detecting the position and cur- 
vature of the road ahead in camera images by uti- 
lizing whatever features are visible on the roadway. 
These features may include lane markings, road 
shoulder boundaries, tracks left by other vehicles, 
and even subtle pavement discolorations like the 
oil stripe down the lane center when necessary. Our 
visibility estimation system exploits RALPH’S 

ability to find and track arbitrary road features. In 
short, the system estimates visibility by measuring 
the attenuation of contrast between consistent road 
features at various distances ahead of the vehicle. 

The visibility estimation algorithm performs well 
under a wide variety of conditions. The rank order- 
ing of six conditions tested corresponds reasonably 
well to one’s intuitive notion of how difficult it is to 

see in these situations. Live vehicle tests in fog still 
need to be conducted (fog is rare in Pennsylvania, 
particularly during the winter when these experi- 
ments were conducted). However, the results from 
the simulated fog experiments and the live daytime 
tests in rainy conditions suggest that the algorithm 
should perform well, and report significantly 
reduced visibility under foggy conditions. 

While all the work reported here has been done 
with a standard black and white CCD camera, we 
are investigating the potential for using alternative 
sensors for improved performance. For example, a 
high-dynamic range camera, such as a VLSI sort- 
ing computational sensor, would respond more like 
the human eye in extreme lighting conditions, and 
could therefore provide better visibility estimates. 
Another possibility would be to combine this visi- 
bility estimation technique with smart AOTFs for 
multispectral imaging. By testing the visibility at 
different wavelengths, it may be possible to select 
the best wavelength(s) for operation under the cur- 
rent conditions. 

5. Multi-Agent Learning for Signal 
Classification in Vision 

Contributors: Astro Teller and Manuela Veloso 

A wide variety of machine learning mechanisms 
create multiple models that must be reconciled, 
chosen among, or in some cases, orchestrated In 
its most general form, this orchestration problem 
can be seen as part of the multi-agent learning 
problem. 

There are many cases in which a task to be 
approached with machine learning techniques can 
be, or must be, solved in more that one “piece.” 
Learning a team of robotic soccer players is a good 
example of a task that could conceivably be done 
as a single agent, but lends itself very naturally 
toward learning sub-solutions and then (or in addi- 
tion) learning to ensure the mutual suitability of 
these sub-solutions. This insurance of mutual suit- 
ability is the orchestration problem. 

Evolutionary computation is a natural machine 
learning environment in which to find many, 
behaviorally distinct models. We focus on PADO, a 
evolutionary computation framework designed 



specifically for signal classification (e.g., [Teller 
and Veloso, 1997b1). As a process of divide and 
conquer, PAD0 evolves multiple pools of sub- 
solutions and then orchestrates one or more learned 
models from each pool. 

The question we investigate is: “What opportuni- 
ties are there for learning in the orchestration pro- 
cess and how much improvement can this learning 
provide?’ While answering this question, our 
research demonstrated several things [Teller and 
Veloso, 1997bl. First, specific experiments on dis- 
tinct signals demonstrated the feasibility of 
PADO’s divide and conquer strategy; the failure of 
the evolved orchestration procedure suggested 
PADO’s preferability to unconstrained learning. 
Second, the experiments provided a specific justifi- 
cation for maintaining a population; orchestration 
puts the options a population provides to good use. 
And finally, this work introduced specific tech- 
niques for orchestration learning and, through their 
successful application, demonstrated that orches- 
tration is an important issue and that learned 
orchestration can provide dramatic generalization 
improvements. 

6. Adaptive Acquisition of Search Control 
Knowledge in the Evolution of Face 
Recognition Neural Networks 

Contributors: Matthew Glickman and Katia Sycara 

Search algorithms for signal-to-symbol matching 
patterned after biological evolution are attractive 
for use in domains such as vision that have com- 
plex search spaces for a number of reasons. These 
include: (1) Their application does not explicitly 
require deep insight into the domain; (2) They are 
relatively straightforward to paralyze; and (3) their 
natural analog has resulted in entities of extraordi- 
nary complexity and robustness. However, the 
search performance in any particular domain is 
highly dependent on the interaction between the 
chosen representation of the space and the specific 
search operators employed. For evolutionary algo- 
rithms in particular, this interaction is a poorly 
understood process, leaving practitioners with few 
guidelines as to how to make the right choices to 
yield good performance. 

mance of search in a particular domain is to seek to 
incorporate pre-existing knowledge of the domain 
into the operators and representation. However, 
this approach is problematic for evolutionary 
search because of the aforementioned opacity of 
the interaction between the operators and the repre- 
sentation. This difficulty, popularly known as “the 
representation problem,” is only compounded in 
more complex domains, presenting a formidable 
obstacle to the application of artificial evolution in 
precisely those domains in which they may be of 
the greatest utility. 

Therefore, rather than seeking to find how pre- 
existing domain knowledge can be best exploited 
by evolution, our research is directed toward the 
automatic acquisition of such knowledge in opera- 
tional form. The experiments reported herein dem- 
onstrate that information about a particular domain 
generated over the course of evolutionary search 
can be extracted, analyzed, and then employed to 
improve search in future runs. 

The space explored is the weight space of fixed- 
topology, feed-forward artificial neural networks 
( A N N s )  for face recognition. Over the course of 
adaptation, weight vectors, along with their self- 
adapted, variable mutation rate, were collected. 
These data were then used to train another ANN to 
predict the appropriate mutation rate for a given 
weight vector for the face-recognition domain in 
general. Finally the mutation rate-prediction net- 
works were used to drive evolution on another face 
recognition task, resulting in networks with 
improved generalization performance. 

Our preliminary results indicate that this approach 
is reliably feasible. Due to the fact that (1) the spe- 
cific weight-vector/mutation-rate pairs chosen for 
training were selected via a simple, Darwinian 
selection process, and (2) that the target mutation 
rates contained in these data had also been adapted 
via this same selection process, the results reported 
here indicate that simple Darwinian selection is 
sufficient to generate a training signal from which 
domainlsearch-control knowledge may be 
extracted. This result indicates a promising direc- 
tion for the successful application of artificial evo- 
lution in complex domains such as image 
understanding. 

One popular approach to improving the perfor- 



7. Visual Learning for Landmark 
Recognition 

Contributors: Martial Hebert, Katsushi Ikeuchi, 
Yukata Takeuchi, Patrick Gros 

Recognizing landmarks is a critical task for inter- 
action of a machine with the environment. Land- 
marks are used for building maps of unknown 
environments. In this context, the traditional recog- 
nition techniques based on strong geometric mod- 
els cannot be used. Rather, models of landmarks 
must be built from observations obtained using 
image-based techniques. This section describes 
building image-based landmark descriptions from 
sequences of images, and then recognizing the 
landmarks. This approach also addresses the more 
general problem of identifying groups of images 
with common attributes in sequences of images. 
We show that, with the appropriate domain con- 
straints and image descriptions, this can be done 
using efficient algorithms. 

Recognizing landmarks in sequences of images is a 
challenging problem for a number of reasons. The 
appearance of any given landmark varies substan- 
tially from one observation to the next. In addition, 
to variation due to different aspects, illumination 
change, external clutter, and changing geometry of 
the imaging devices are other factors affecting the 
variability of the observed landmarks. Finally, it is 
typically difficult to use accurate 3D information in 
landmark recognition applications. For those rea- 
sons, it is not possible to use many of the object 
recognition techniques based on strong geometric 
mpdels. 

The alternative is to use image-based techniques in 
which landmarks are represented by collecting 
images which are supposed to capture the “typical” 
appearance of the object. The information most rel- 
evant to recognition is extracted from the collection 
of raw images and used as the model for recogni- 
tion. This process is often referred to as “visual 
learning.” 

Progress has been made recently in developing 
such approaches. For example, in object 
modeling [Gross et al.], 2D or 3D model of objects 
are built for recognition applications. An object 
model is built by extracting features from a collec- 

tion of observations. The most significant features 
are extracted for the entire set and are used in the 
model representation. Extensions to generic object 
recognition were presented recently [Carlsson, 
19961. 

Other recent approaches use the images directly to 
extract a small set of characteristic object images 
which are compared with observed views at recog- 
nition time. For example, the eigen-images tech- 
niques are based on this idea. 

Those approaches are typically used for building 
models of a single object observed in isolation. In 
the case of landmark recognition for navigation, 
there is no practical way to isolate the object in 
order to build models. Worse, it is often not known 
in advance which of the objects observed in the 
environment would constitute good landmarks. 
Visual learning must therefore be able to identify 
groups of images corresponding to “interesting” 
landmarks and to construct models amenable to 
recognition out of raw sequences of images. 

A similar problem, although in a completely differ- 
ent context, is encountered in image indexing, 
where the main problem is to store and organize 
images to facilitate their retrieval [Lamiroy and 
Gros, 19961 [Schmid and Mohr, 19961. The 
emphasis in this case is on the kind of features used 
and the types of requests that can be made by the 
user. For image retrieval, actual systems (QBIC, 
JACOB, Virage ...) are closer to smart browsing 
than to image recognition. Using criteria such as 
color, shape, regions, etc., the systems search for 
images most similar to a given image. The user can 
then interact with the system to define which of 
these images seems the most interesting, and a new 
set of closer images is displayed. 

Our system tries to combine those two categories 
of systems. In a training stage, the system is given 
a set of images in sequence. The aim of the training 
is to organize these images into groups based on 
similarity of feature distributions between images. 
The size of the groups obtained may be defined by 
the user, or by the system itself. In the latter case, 
the system tries to find the most relevant groups, 
taking the global distribution of the images into 
account. In a second step, the system is given new 
images, which it tries to classify as either one of 
the learned groups, or belonging to the category of 



unrecognized images. Figure 4 shows indentifying 
landmarks from a moving vehicle. 
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Figure 3: Overhead view of the path followed 
while collecting the images.(distances are 
indicated in meters.) Four landmarks are 
correctly identified, corresponding to groups 2, 
5 ,  6, and 7 of the training sequence. Example 
images from the test sequence are shown for 

The basic representation is based on distributions 
of different feature characteristics. All these differ- 
ent kinds of histograms are computed for the whole 
image and for a set of sub-images. Tests similar to 
Chi-square tests are used to compare these histo- 
grams and define a distance between images. This 
distance is then used to cluster the images in what 
are called groups. An agglomerative grouping 
algorithm is used at this stage. At each step of the 
algorithm, the clusters made are evaluated by an 
entropy-like function, whose maximum gives the 
optimal solution in a sense specified later. Each 
group is then characterized by a set of feature his- 
tograms. When new images are given to the sys- 
tem, it evaluates a distance between these images 
and the groups. The system determines to which 

group this image is the closest, and a set of thresh- 
olds is used to decide if the image belongs to this 
group. 

The main goal of the work presented here was to 
explore the use of tools and methods in the field of 
image retrieval when applied to the problem of 
landmark recognition. It is clear that the global 
architecture of the system is close to that of object 
recognition systems [Gross et al.]: a training stage 
in which 3D shape, 2D aspects, or groups, are char- 
acterized is followed by a recognition stage in 
which this information is used to recognize the 
models, objects or groups in new images. The dif- 
ference comes from the wide diversity of the 
images and from the groups which are not reduced 
to a single aspect of an object. The two challenging 
tasks which we concentrate on describing in the 
remainder of the paper are to define these groups 
more precisely as sets of images, and to automati- 
cally learn a characterization for each group: what 
remains invariant, what varies, and in which pro- 
portions. 

8. Conclusion 

CMU MURI performs cross -disciplinary research 
which will result in high performance vision sys- 
tems adequate for “natural” human sensory aug- 
mentation and sensor driven information delivery. 
We are demonstrating progress in all levels of 
vision: from image formation and computational 
sensing to high level adaptive context-independent 
learning strategies. We believe that the tight inte- 
gration of these techniques will provide opportu- 
nity for more efficient bottom-up and top-down 
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Figure 4: A vision system with tight integration of 
image formation, sensing and processing for 
adaptive low-latency applications. 

control in vision processes which will result in 
low-power, low-latency, compact, reliable and 



adaptive vision systems (see Figure 4) crucial for 
effective human sensory augmentation. 
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