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Diamond’s nitrogen vacancy (NV) center is an optically active defect with long spin

coherence times, showing great potential for both efficient nanoscale magnetometry

and quantum information processing schemes. Recently, both the formation of buried

3D optical waveguides and high quality single NVs in diamond were demonstrated

using the versatile femtosecond laser-writing technique. However, until now, combin-

ing these technologies has been an outstanding challenge. In this work, we fabricate

laser written photonic waveguides in quantum grade diamond which are aligned to

within micron resolution to single laser-written NVs, enabling an integrated platform

providing deterministically positioned waveguide-coupled NVs. This fabrication tech-

nology opens the way towards on-chip optical routing of single photons between NVs

and optically integrated spin-based sensing.
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Diamond’s negatively charged nitrogen-vacancy (NV) color center is a point defect con-

sisting of a nearest-neighbor subsitutional nitrogen atom and a lattice vacancy. These opti-

cally active defects have long room temperature spin coherence times, making them promis-

ing for nanoscale magnetic field sensing1 and for quantum information processing systems2.

An integrated photonics platform in diamond would be beneficial for quantum computing

based on optically entangled NVs interacting via optical waveguides, as well as NV-based

optically detected spin sensing application, due to the integration and stability provided by

monolithic optical waveguides3.

Waveguides and other planar photonic structures in diamond have previously been

demonstrated within membranes produced using ion implantation assisted lift off methods4,

plasma etching5, or with under cutting performed through focused ion beam milling6, angled

reactive ion etching7, or quasi-isotropic etching8. However these techniques are restricted

to 2D geometries, and up to now device lengths of up to ∼100 µm. Recently, the versa-

tile femtosecond laser microfabrication method was used to demonstrate buried 3D optical

waveguides in diamond9,10, a key step towards a diamond photonics platform. However,

for practical implementation of quantum information systems and high spatial resolution

magnetometry devices, deterministic placement of NVs is required. The most widely used

method to place NV centers in diamond relies on ion implantation followed by annealing11,12.

This method offers submicron spatial accuracy and significant progress has been made in

the development of annealing processes to repair unwanted damage to the lattice which can

degrade the NV centers properties, especially for shallow centers13,14. However the increased

energy required for deeper NV creation causes even more damage15, thus techniques which

place NV centers in buried structures with minimal damage are preferable.

In 2013, it was shown that NV centers could be produced in optical grade diamond by

exploiting the electron plasma created by femtosecond laser pulses focused just above the

diamond surface16. This technique however was limited to near-surface placement of NVs

and caused ablative damage of the diamond surface. Recently, Chen et al. demonstrated a

significant improvement, with on-demand and high quality single NVs written in the bulk of

quantum grade diamond (nitrogen concentration of <5 ppb) using femtosecond laser writing

with a spatial light modulator (SLM) to correct for aberrations followed by high temperature

annealing17,18.

In this Letter, we apply femtosecond laser writing to inscribe buried optical waveguides
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and to create single NVs within quantum grade diamond. Crucially, we find that the optical

waveguide remains even after the high temperature sample annealing required to form single

NVs. Since the same laser and positioning system are used to form both the waveguide and

NVs, they may be aligned to within micron resolution. We further demonstrate waveguide

excitation and collection of light from laser-formed single NVs. Such waveguide coupled

NVs could open the door to more sophisticated quantum photonic networks in diamond,

exploiting optically linked single NVs for single photon sources or solid state qubits19–21.

In higher nitrogen content diamond, laser writing of high density NV ensembles within

waveguides could enable robust excitation and collection of the fluorescence signal for spin

based sensing22–24.

Waveguides were written in quantum grade diamond using a regeneratively amplified

Yb:KGW system with 230 fs pulse duration, 515 nm wavelength and 500 kHz repetition rate,

focussed with a 1.25 NA objective25. Figure 1 shows an overhead schematic (a) and optical

microscope image (b) of the waveguide-NV optical device. Because focused femtosecond laser

pulses yield amorphization and graphitization in crystalline diamond, the type II geometry26

was adopted, where two closely spaced laser-written modification lines separated by 13 µm

provide optical confinement. The confinement mechanism has been shown to be reduction

of the refractive index within the modification lines which provides lateral confinement, with

the introduction of stress within the waveguide itself which provides polarization dependent

vertical confinement27. Modification lines spanning the 2mm sample were written with 60 nJ

pulse energy and 0.5mm/s scan speed leading to single mode guiding in the visible. Multiple

test devices were written to calibrate the depth and pulse energy of NV formation, however

here we focus on a single waveguide with NV centers created near the waveguide depth.

The mode field diameter (MFD) for the nearly circular TM mode was 9.5 µm at 635 nm

wavelength (Fig. 1(c)) and the insertion loss was 5.4 dB. Accounting for the coupling loss

and the Fresnel loss due to the refractive index mismatch, we infer a propagation loss of

4.2 dB/cm. These particular optical waveguides are linear, therefore the achievable bend

loss has not been measured, however Courvoisier et al. showed a 3 dB bend loss for 25 mm

bend radius using a similar laser writing method10. Future studies will seek to form curved

waveguide structures such as directional couplers, and to characterize and optimize their

bend loss.

Using the same femtosecond laser setup, single-pulse exposures were inscribed within
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FIG. 1. Device overview and waveguide output mode. (a) Overhead schematic of the central 80 µm

of the waveguide-NV device. (b) Overhead optical microscope image of the full 2mm waveguide,

with zoom-in of the central 80 µm. (c) End view optical microscope image of type II waveguide

facet with overlaid 635 nm mode profile.

the optical waveguide to induce vacancies in the diamond lattice. Five identical single-

pulse exposures (28 nJ) separated by 20 µm were written in each device in order to study

reproducibility in forming single NV centers within the waveguiding region. Markers visible

in our imaging system were inscribed outside of the waveguide to locate the single pulse

exposures, which are not visible to wide-field illuminated optical microscopy. The diamond

sample was subsequently annealed at 1000 ◦C for 3 hours in a nitrogen atmosphere in order

to form NV centers and anneal out other detrimental vacancy complexes12–14. Crucially

for the NV-waveguide device targeted in this work, we found that the mode profile and

insertion loss of the annealed waveguides in diamond were unaltered. For more details on

device fabrication and annealing see Supplementary Material25.

Initial overhead photoluminescence (PL) characterization of the laser-written NV centers

and their interaction with the waveguide was performed using a homebuilt confocal micro-

scope (as shown in Fig. 2(a), and described in detail in Supplementary Material25). The

setup allows for 532 nm laser excitation from overhead, focused through the microscope ob-

jective or through a butt-coupled single mode fiber coupled to the waveguide, while emitted

light which is separated from the excitation using a dichroic beam splitter and interference

filters can be detected and analyzed using single photon counting detectors, a spectrometer
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FIG. 2. Overhead confocal characterization. (a) Schematic of experimental setup. (b) PL intensity

map showing NV2 within waveguide. (c) PL spectrum showing NV ZPL at 637 nm and PSB at

longer wavelengths. (d) NV intensity autocorrelation revealing single photon emission.

or a back-illuminated EMCCD from overhead or from the other end of the waveguide. An

overhead PL confocal scan of the NV2 trial region (positioned as shown in Fig. 2(b)) shows a

bright spot corresponding to an NV center between the two bright laser modified lines. Two

of the five static exposures in this study (NV2 and NV4) displayed such bright spots after

annealing. The single NV formation probability at 28 nJ pulse energy including additional
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trials in other waveguides was 31± 9% which is consistent with previous work17.

The alignment of the NV centers close to the center of the optical waveguide is important

in order for them to be well coupled. We estimate that both NV2 and NV4 are ∼1 µm

shallower than the center of laser-modified lines based on the confocal signal and hence the

optical mode. We selected NV2 for waveguide coupling experiments as its lateral position

(shifted by 0.7± 0.3 µm from the center of the waveguide, shown in Fig. 2(b)) is better

centered compared to NV4 (shifted by 0.9± 0.3 µm). The ∼1 µm shift of the NV2 and NV4

is larger than the maximum shifts of ∼600 nm reported previously17, which we attribute to

the larger focal volume provided by our femtosecond beam delivery setup. All measurements

reported below refer to NV2.

Figure 2(c) shows the PL spectrum recorded from the NV with the 650 nm long-pass filter

removed, where the characteristic zero phonon line (ZPL) at 637 nm and the broadband

phonon side band (PSB) are clearly visible. An intensity autocorrelation measurement

g(2)(τ) of this is shown in Fig. 2(d), with g(2)(0) well below 0.5, characteristic of single

photon emission.

In order to demonstrate the ability to guide 532 nm excitation light through the waveguide

to the NV center, the output from the excitation laser was coupled to the laser-written

waveguide by butt-coupling a bare single mode fiber (460HP, Thorlabs) to the input facet of

the diamond waveguide as shown in Fig. 2(a). Index matching oil was used to improve the

transmission and coupling stability. A fraction of the light within the waveguide undergoes

Raman scattering, with the first order Raman scattered light shifted to 572 nm. Some of this

scattered light is emitted out of the waveguide, and can be detected through the confocal

microscope’s collection arm with the 650 nm long-pass filter removed in order to image the

guiding properties of the waveguide. Figure 3(a) shows an overhead collection scan of the

waveguide, revealing the Raman scattering due to the waveguided excitation light. The

waveguide alignment was optimized by monitoring the output intensity at the output facet

of the waveguide using a 0.42 NA objective (50× Plan Apo SL Infinity Corrected, Mitutoyo)

coupled to a CCD.

Waveguide coupled excitation of the NV center is demonstrated in Fig. 3(b) and (c),

with collection of the NV center’s emitted light through the overhead confocal microscope.

An overhead confocal collection scan of a small area around NV2 with waveguide excitation

shows fluorescence from the expected NV position (Fig. 3(b)). Verification is achieved by
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FIG. 3. Waveguide excitation and collection of Raman and NV fluorescence. (Titles E: Excitation

mode, C: Collection mode) (a) Waveguide excited overhead scan of Raman scattered light. (b)

Waveguide excited overhead PL scan of NV2. (c) Waveguide excited overhead PL EMCCD image

of NV2. (d) Overhead excited EMCCD intensity image of the of the guided NV emission at the

output facet of the optical waveguide.

imaging the NV fluorescence with an EMCCD, which again shows emission located at the

NV position (Fig. 3(c)). The relatively modest detected photon count rate of ∼10 counts/s,

above the background in Fig. 3(b) is expected given that the mode size of the waveguide

(∼5.8 µm FWHM) is much larger than the focused spot from free space excitation 0.8 NA

lens, (∼0.6 µm) resulting in a ∼0.01 theoretically estimated reduction in power density at

the NV center (as compared to a 0.005 experimental estimate), in addition to coupling or

waveguide losses before it reaches the NV center. Comparable count rates to the confocal

microscope collection rate would be expected for similar power densities. An increase in

the effective power density could be achieved by tailoring the refractive index profile of the

written waveguide to achieve a smaller MFD, or more powerful excitation.
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Further evidence of waveguide-NV coupling is shown in Fig. 3(d) where the NV center is

excited from above through the confocal microscope’s objective, while emission is collected

through the optical waveguide. The waveguide output facet is imaged onto the EMCCD

through a 0.42 NA objective and using flip mirror 2 (as shown in Fig. 2(a)). The signal

was filtered using a 650 nm long-pass filter, and corrected for any remaining background

by subtracting the recorded signal when exciting the waveguide near the NV center. The

signal to background ratio (excluding dark counts) is 0.7. The intensity distribution of the

NV emission at the waveguide output (Fig. 3(d)) shows a similar size and shape as the

output mode when coupling a 635 nm wavelength laser diode to the waveguide (Fig. 1(c)).

A theoretical estimate of the absolute coupling efficiency to the waveguide mode relative to

the total emission yields 9× 10−4. Thus the relative collection efficiency of the waveguide

compared to the microscope is ∼0.03 (compared to an experimental estimate of 0.012).

An increase in this coupling efficiency would be expected for smaller MFD waveguides (see

Supplementary Material25).

In summary, we have demonstrated a millimeter length-scale integrated quantum pho-

tonic chip in diamond, fabricated entirely with femtosecond laser writing. The optical

waveguides and static exposures to produce vacancies were fabricated in a single processing

step, to within micron alignment. We verified through confocal microscopy that single NVs

could be formed in quantum grade diamond at depths shallower than 30 µm without a SLM

compensating for spherical aberration17.

Importantly, we showed that optical waveguides can be used to excite and collect light

from single NVs. The relatively weak NV coupling to these ∼10 µm diameter waveguides do

not allow for high photon collection efficiency required for quantum applications. However it

should be possible to improve the collection efficiency substantially through optimization of

the geometry of the type II waveguide to reduce the mode size, as well as through the incor-

poration of Bragg grating waveguides28 to reduce the group velocity or ultimately engineer

an optical cavity within the waveguide. The femtosecond laser writing technique provides

a simple, rapid prototyping route to millimeter length-scale arbitrary 3D photonic struc-

tures and deterministically placed NV centers, without the need for multistage clean-room

procedures. Such structures could open the door for exciting new possibilities in quantum

information processing. Waveguide coupled NV centers are also immediately relevant to

spin based sensing applications such as magnetometry, electrometry or thermometry. Here
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the formation of high density NV ensembles within the waveguide should enable high sen-

sitivities even in the regime of low photon collection efficiency22–24. The integration and

stability provided by monolithic optical waveguides significantly simplifies broadband sens-

ing applications where nanoscale resolution provided by scanning probe or laser scanning

confocal microscopy is not required. The further integration of these waveguides with mi-

crofluidic channels, which could be made through the etching of graphitic tracks written

with femtosecond laser pulses or ion beam implantation open up the possibility of lab on

chip applications29.

I. SUPPLEMENTARY MATERIAL

See supplementary material for the supporting content. This includes details on device

fabrication, NV characterization, NV creation statistics, low temperature NV spectra, and

theoretical and experimental estimates of waveguide NV coupling efficiency.
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