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Abstract

Background: Systems biologic approaches such as Weighted Gene Co-expression Network

Analysis (WGCNA) can effectively integrate gene expression and trait data to identify pathways

and candidate biomarkers. Here we show that the additional inclusion of genetic marker data

allows one to characterize network relationships as causal or reactive in a chronic fatigue syndrome

(CFS) data set.

Results: We combine WGCNA with genetic marker data to identify a disease-related pathway

and its causal drivers, an analysis which we refer to as "Integrated WGCNA" or IWGCNA.

Specifically, we present the following IWGCNA approach: 1) construct a co-expression network,

2) identify trait-related modules within the network, 3) use a trait-related genetic marker to

prioritize genes within the module, 4) apply an integrated gene screening strategy to identify

candidate genes and 5) carry out causality testing to verify and/or prioritize results. By applying this

strategy to a CFS data set consisting of microarray, SNP and clinical trait data, we identify a module

of 299 highly correlated genes that is associated with CFS severity. Our integrated gene screening

strategy results in 20 candidate genes. We show that our approach yields biologically interesting

genes that function in the same pathway and are causal drivers for their parent module. We use a

separate data set to replicate findings and use Ingenuity Pathways Analysis software to functionally

annotate the candidate gene pathways.

Conclusion: We show how WGCNA can be combined with genetic marker data to identify

disease-related pathways and the causal drivers within them. The systems genetics approach

described here can easily be used to generate testable genetic hypotheses in other complex disease

studies.
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Background
Network approaches provide a means to bridge the gap
from individual genes to complex traits. Methods for
inferring gene interactions from expression data have
been an active area of systems biology research [1-6].
Gene set enrichment analysis (GSEA) determines whether
an a priori defined set of genes shows statistically signifi-
cant differences between two biological states [7]. In con-
trast, Weighted Gene Co-expression Network Analysis
(WGCNA) constructs gene sets (modules) from the
observed gene expression data. These modules are then
related to gene ontology information to study their bio-
logical plausibility and to eliminate spurious modules
due to technical artifacts. Although WGCNA shares the
philosophy of GSEA by focusing on gene sets as opposed
to individual genes, it does not make use of a priori
defined gene sets [8]. Instead, modules are constructed
from the expression data by using unsupervised cluster-
ing. Although it is advisable to relate the resulting mod-
ules to gene ontology information for assessing their
biological plausibility, it is not required. WGCNA has
been successfully applied to identify brain cancer genes
[9], to characterize genes related to body weight in mice
[10,11], and to study atherosclerosis [12].

WGCNA alleviates the multiple testing problem inherent
in microarray data analysis. Instead of relating thousands
of genes to the trait, WGCNA relates only a few modules.
Because the modules may correspond to biological path-
ways, focusing the analysis on modules amounts to a bio-
logically motivated data reduction scheme. If genetic
marker data are available, one can use genetic marker-
based causality tests to identify the genetic drivers under-
lying the modules of interest. The concept of conducting
a causality analysis based on genetic marker data has been
explored by several authors [13-22]. We refer to a
weighted gene co-expression network analysis that uses
genetic markers in causality testing as "Marker Integrated
WGCNA" or simply as "IWGCNA".

IWGCNA relies on correlation measures to relate gene
expression profiles, genetic markers and clinical traits.
Using a correlation measure affords a truly unified
approach for relating variables from disparate data sets.
We demonstrate IWGCNA on a chronic fatigue syndrome
(CFS) data set and show that it identifies candidate genes
whose functions are consistent with results from other
CFS studies.

Background on chronic fatigue syndrome

Chronic fatigue syndrome (CFS) is a major public health
problem that affects more than one million people in the
US [23]. CFS is defined as debilitating fatigue of at least six
months duration accompanied by at least four of the fol-
lowing case defining symptoms: post exertional fatigue

lasting longer than 24 hours, unrefreshing sleep, diffculty
concentrating or remembering, headaches unusual in fre-
quency or duration, muscle pain, joint pain, sore throat
and tender lymph nodes [24]. CFS has been associated
with similar debilitating conditions such as fibromyalgia,
connective tissue disease and mitochondrial deficiency
[25,26]. CFS has been shown to affect the endocrine, mus-
cular and immune systems [27-29] and some cases may
be triggered by viruses [30]. While there is no consistent
cause, evidence for immune and hypothalamic-pituitary-
adrenal (HPA) axis abnormalities have been observed at
the symptom, molecular and genetic level of CFS patients
[31].

Several groups have found higher cytotoxic T-cell counts
and impaired T-cell function in CFS patients in compari-
son to controls [32,33]. There has also been compelling
evidence for higher rates of immune cell apoptosis in CFS
patients, specifically neutrophils and peripheral blood
lymphocytes [34,35]. The HPA axis is a feedback system
that mediates glucocorticoid hormones (cortisol) and
serotonin and is closely linked to the immune system. It is
thought that a dysfunctional HPA axis might be linked to
CFS [31,36]. Subclasses of CFS have been associated with
polymorphisms in genes that function in the HPA axis
NR3C1, TPH2 and MAOA [37-39].

While molecular profiles and genetic variants within
genes related to the immune system and the HPA axis
have been shown to be associated with CFS [40-42] there
is a need to gain a systems level understanding of the dis-
ease. Standard gene mapping techniques are not designed
to identify pathways underlying complex traits, which
exhibit genetic heterogeneity involving many small-effect
genes. The quest to determine the genetic etiology of CFS
is further obfuscated by diagnostic errors, phenotypic het-
erogeneity and in some cases environmental effects.

Recent systems genetic strategies that characterize interac-
tions between genotype data and co-expression modules
have successfully been applied to complex diseases
[11,43]. Here we present the IWGCNA approach for inte-
grating a weighted gene co-expression network with SNP
data to identify a disease-related module and to develop a
systems genetic gene-screening strategy that generates test-
able hypotheses. Furthermore, we use the Network Edge
Orienting (NEO) software to show that this screening
strategy selects genes that are causal for the module [18].
Our analysis identifies novel genes associated with CFS
severity that are causal drivers for a severity-related mod-
ule. Gene ontology software indicates that IWGCNA iden-
tifies clinically relevant biological pathways and genes.
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Results
The fundamental tenets of IWGCNA are to find gene
expressions that are 1) significantly related to the clinical
trait, 2) highly connected "hub" genes in a disease related
co-expression module and 3) significantly associated with
a disease-related genetic marker. We apply this approach
to a chronic fatigue syndrome (CFS) data set consisting of
microarray, SNP, and trait data (CFS severity). As our anal-
ysis of this data set consists of several steps working with
different subsets of data, we provide a flow chart overview
in Figure 1 and begin with an outline of IWGCNA. We
then present results from our analysis of the CFS data and
compare them to the results obtained from a standard
analysis approach that ignores the SNP data. Finally, we
show that IWGCNA identifies functionally relevant candi-
date genes that are causal drivers for their trait-related par-
ent module.

Step 1: Construct a co-expression network and modules

We define co-expression networks as undirected,
weighted gene networks. The nodes of such a network cor-
respond to gene expression profiles, and edges between
genes are determined by the pairwise correlations
between gene expressions. Network construction was per-
formed using our freely available customized R software
functions [8-10,44]. The absolute value of the Pearson
correlation coefficient is calculated for all pair-wise com-
parisons of gene-expression values across all microarray
samples. The correlation matrix is then transformed into
a weighted undirected network (i.e., a matrix of connec-
tion strengths) by raising the absolute value of each entry
to a power β. High values of β emphasize high correla-
tions at the expense of low correlations. Unlike
unweighted networks that use a hard threshold to dichot-
omize the correlation matrix, the soft thresholding of
weighted gene co-expression networks preserves the con-
tinuous nature of the gene co-expression information,
leading to highly robust results and allowing for a simple
geometric interpretation of network concepts [8,45,46].

The next step is to organize the genes into clusters or mod-

ules. Toward this end we use topological overlap, which is

a robust measure of interconnectedness [47-49]. The (i, j)

entry in the topological overlap matrix reflects a shared

connectivity pattern between genes xi and xj. Average link-

age hierarchical clustering is then used to cluster the genes

into modules using the topological overlap dissimilarity

measure [8,48]. Several centrality measures have been

proposed in the literature [45,50]. Here we focus on cen-

trality (connectivity) measures that are useful within the

WGCNA context. Whole network connectivity k(i) is the

sum of the connection strengths between a particular gene

xi and all other genes in the network

 , where N refers to the set of

network genes. Intramodular connectivity kq(i) is another

measure which is more meaningful for our module-based

analysis. It is computed from the sum of the connection

strengths between a particular gene and all other genes in

the module , where q refers

to a specific module. Another measure of connectivity is

the module eigengene-based connectivity , which

is computed from the absolute value of a gene expression

xi within the q-th module and its first principal compo-

nent or "q-th module eigengene", MEq. Specifically,

 = |Cor(xi, MEq)|, where larger values indicate

greater similarity between a gene xiand the q-th module

eigengene. One can show that the module eigengene-

based connectivity measure is highly correlated with

intramodular connectivity [45], but a theoretical advan-

tage of  is that its definition can be easily extended

to expression profiles outside the module. Another advan-

tage of  is that a simple correlation test p-value can

be used to assess the statistical significance of the relation-

ship between xi and ME.

Step 2: Find clinical trait-related modules

To incorporate external information into the co-expres-
sion network, we first define a measure of gene significance
(GS). Abstractly speaking, the higher the i-th gene's
|GS(i)|, the greater its biological significance. For exam-
ple, GS(i) could encode pathway membership (e.g., 1 if
the gene is a known apoptosis gene and 0 otherwise),
knockout essentiality, or the correlation with an external
microarray sample trait. A gene significance measure
could also be defined by minus log of a p-value. The only
requirement is that a gene significance of 0 indicates that
the gene is not significant with regard to the biological
question of interest.

We define GSseverity(i) as the absolute value of the correla-
tion between the CFS severity phenotype and the i-th gene
expression xi: GSseverity(i) = |Cor(xi, severity)|. A correlation
test can be used to assign a statistical significance level (p-
value) to GSseverity(i). Note that a β power of gene signifi-
cance, |Cor(xi, severity)|β, can be interpreted as the con-
nection strength between severity and the i-th gene
expression in a weighted network. To arrive at a measure
of module significance, we average the GSseverity values of all
genes within a module. Alternatively, one could define a
module significance measure by correlating the trait with
the module eigengene [45]. Subsequent analyses focus on
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a. Flow chart overview of methods and b. subsets of patients analyzed at each stepFigure 1
a. Flow chart overview of methods and b. subsets of patients analyzed at each step. We first constructed a co-
expression network based on 127 CFS samples and then identified a CFS severity-related module using a subset of 87 patients 
with CFS severity scores. We then related the SNPs and connectivities to the module gene expressions in both the males and 
homogenized female samples separately. We selected candidate genes based on 1) association with a SNP that in turn was 
associated with severity, 2) connectivity, and 3) association with severity in both sexes. We then repeated analysis steps 1–5 
on a second data set.
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the module that is most related to the clinical trait of inter-
est.

Step 3: Prioritizing gene expressions with a SNP marker

This step requires a SNP marker that is associated with
both the trait and the trait-related module. To measure the
association between a SNP and the gene expression pro-
files we define a SNP-based gene significance measure
GSSNP(i) = |Cor(xi, SNP)|. In our application we use a cor-
relation test to compute the corresponding p-value for
GSSNP(i). GSSNP is similar to a single point LOD score, as it
measures the extent to which a gene is associated with the
SNP.

Step 4: Using network connectivity and genetic 

information to find candidate genes

While a standard gene screening approach would draft a
final list of candidate genes based solely on the associa-
tion between gene expression and the clinical trait (GSsever-

ity), our integrated screening strategy additionally uses
GSSNP, and kME. This approach allows us to select disease
related genes that are implicated by the genetic marker
and network connectivity information.

Step 5: Network edge orienting analysis to determine 

causal drivers of module

We use the Network Edge Orienting (NEO) software to
produce edge orienting scores which allow us to deter-
mine whether a candidate gene is causal or reactive to its
parent module [18]. Since we use a single genetic marker
as a causal anchor, we use the LEO.NB.SingleMarker score
to evaluate the causal edge xi → ME, where xi is the expres-
sion profile of the i-th candidate gene and ME is the mod-
ule eigengene. Genes with a causal relationship to their
parent module are highly related to many other genes
within the module and are upstream of the module
expressions.

The systems genetic analysis described in steps 1–5 results
in a biologically motivated gene screening strategy. Path-
way analysis and additional data sets can then be used to
support and/or prioritize the resulting candidate genes.

An IWGCNA of chronic fatigue syndrome

In the following sections, we apply the IWGCNA to a
chronic fatigue syndrome (CFS) data set consisting of
phenotype, genotype and expression data from the Cent-
ers for Disease Control [38,40,51]. The CFS patients stud-
ied here were a subset of a 227 patient cohort from
Wichita, KS collected between December 2002 and July
2003 [52]. Details on the CFS severity measure as well as
other diagnostic criteria are included in the Methods sec-
tion.

Defining co-expression network modules and relating them to the 

CFS trait data

Starting with the 8966 most varying genes (where "genes"
refers to "probes") described in the Methods section, we
selected the 30% most connected (2677) for our network
analysis. WGCNA identified five modules of co-expressed
genes. Figure 2(a) shows a cluster tree of the gene net-
work, where the five color-coded modules correspond to
branches of this tree. The color band underneath the tree
depicts the branches (modules), and grey denotes the
genes outside of the modules (background genes). A clas-
sical multi-dimensional scaling plot illustrates the relative
positions of the module genes (Figure 2b). Next, we
related our five modules to the severity trait to identify the
module with the strongest association. Figure 3 shows
that the blue module with 299 genes has the highest mod-
ule significance in (a) all samples (mean GSseverity = 0.234,
corresponding to a p-value of 0.007), (b) males and (c)
females. As a result, we focused on this module in the fol-
lowing analyses.

Modules facilitate a molecular characterization of gender differences

Since CFS is four times more likely to occur in women
than in men [51], it is possible that there are genetic dif-
ferences between men and women regarding CFS severity.
Furthermore, women outnumber men three to one in this
data set, so without considering gender in our analysis,
results could be skewed toward severity related alleles that
are more important in women. To ensure that our analysis
produced gene candidates related to CFS severity in both
sexes, we stratified the analysis by sex.

Before relating the blue module genes to severity and the

SNP data, we investigated whether the network model was

preserved when the data was stratified by sex. We com-

pared the GSseverity values between males and females (Fig-

ure 2c) and found a weak correlation (r = 0.197).

However, the blue module was associated with CFS sever-

ity in both men and women independently and in the

samples combined. Furthermore, there was a high correla-

tion (r = 0.81; p-value < 10-16) between the (i) values

of the male and female networks (Figure 2e). The impor-

tance of the blue module in both genders and the preser-

vation of the module membership measure (i)

demonstrate the value of using network properties to

screen for genes.

Figure 3(b) shows that the blue module was the only
module that was highly related to severity in males,
whereas in females the blue module was only slightly
more significant than the other modules 3(c). Because the
relationship between gene expression and severity was

kME
blue

kME
blue
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stronger in males, we used the blue module eigengene to
find a more genetically homogeneous female sample.

Using the module eigengene to homogenize the female samples

To eliminate heterogeneous samples from the female data
set, we made use of the fact that the blue module eigen-
gene (MEblue) was significantly correlated with CFS
severity (r = 0.272; p-value = 0.011). Thus, patients whose
severity score is inconsistent with the blue module eigen-
gene expression are unlikely to be related to the associated
disease pathway. We "homogenized" the female data set
by restricting the analysis to samples with either a) mod-
erate to high severity (severity > 1) that also had a high
blue module eigengene value MEblue > mean(MEblue) or
b) less severe samples (severity = 1) with MEblue <

mean(MEblue). Homogenization excluded 11 samples,
resulting in 53 homogenized female (HF) samples. As
expected, homogenization increased the mean module
significance from 0.223 (p-value = 0.074) to 0.472 (p-
value = 1.6 × 10-4). Since homogenization amounts to
sample selection, the resulting p-values are biased and
should be interpreted as descriptive rather than inferential
measures. Homogenization can be used to reduce the
genetic heterogeneity inherent in complex trait studies.

Identifying a relevant SNP marker

The genetic marker data consisted of 36 autosomal SNPs
located near or within a set of eight genes that were con-
sidered biologically relevant for CFS (see Methods section
for details) [38]. We chose to focus on SNP rs10784941

Graphical representations of network propertiesFigure 2
Graphical representations of network properties. (a) Hierarchical clustering of the 2677 most varying and connected 
genes resulted in five modules. (b) A multi-dimensional scaling plot of these genes indicates that the blue module is the most 
distinct. (c) There is little relationship between male and female gene expression correlations with CFS severity, likely due to 
genetic heterogeneity in the female samples. (d) Homogenizing the female samples more than doubled the correlation between 
M and FH gene significance. (e) Connectivities of the module genes are similar between males (M) and females (F) and (f) males 
and homogenized females (FH), with the blue module showing the highest preservation. The fact that intramodular connectiv-
ity is highly preserved forms the foundation of a connectivity and network-based screening strategy.
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located within the TPH2 tryptophan hydroxylase 2 gene
because it had previously been shown to be associated
with chronic fatigue, and it was associated with CFS sever-
ity in our data set [38,39]. Table 1 reports the average
severity correlations for each of the eight genes and its
most correlated SNP. The TPH2 SNP was associated with
severity (p-value = 0.010) and moderately associated with
the blue module gene expressions (p-value = 0.077). The

TPH2 gene functions in serotonin synthesis which is part
of the hypothalamic-pituitary-adrenal (HPA) feedback
system that has been consistently implicated in CFS
[53,54].

Table 2 shows genetic correlations with the severity trait in
five different subgroups of data and in a second data set
(where the second data set is detailed in the Methods sec-

Male and female gene significance bar plots for CFS severityFigure 3
Male and female gene significance bar plots for CFS severity. We found that the blue module gene significance was 
highest in (a) all samples and in (b) males. In females (c) the blue module significance was approximately equal to the average 
significance of the other modules. (d) Homogenizing the female samples increased and emphasized the blue module signifi-
cance.
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tion). Severity was significantly correlated (p-value =
0.011) with the blue module eigengene in all samples and
had moderate correlation in females. The severity associa-
tion with the TPH2 SNP was very significant for all sam-
ples combined (p-value = 0.010), the male samples (p-
value = 0.030), and moderately significant in the female
samples after homogenization (p-value = 0.076). Since
homogenization strengthened the relationship between
severity and the TPH2 SNP in both the female samples
and in the male and homogenized female samples com-
bined, we used the homogenized samples in our gene
screening procedure.

Systems genetic screening criteria

Because the connectivity  can be interpreted as a

measure of membership to the blue module, it can be

used to prioritize pathway defining genes. We selected

candidate genes that met the following criteria in both

males and homogenized female samples: i) GSTPH2 greater

than 0.2 to select genes that were associated with a CFS-

related SNP, ii)  in the top 80% to select genes that

were centrally located within the blue module, and iii)

GSseverity and GSTPH2 signs that were consistent in both

sexes. The purpose of this last criterion was to safeguard

against potentially spurious correlations. We reasoned

kME
blue

kME
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Table 1: Average absolute value of severity associations for the SNPs within eight candidate genes. 

Gene Name Gene Location Average Correlation (SD) Count of SNPs in candidate gene Most Correlated SNP

Name Correlation p-value

POMC 2p24 0.14 (NA) 1 rs12473543 0.135 0.216

NR3C1 5q34 0.07 (0.06) 7 rs258750 0.198 0.069

CRHR2 7p15 0.15 (0.08) 3 hCV15960586 0.225 0.036

TH 11p15 0.07 (0.01) 2 rs4074905 0.080 0.466

TPH2 12q21 0.23 (0.04) 7 rs10784941 0.275 0.010

SLC6A4 17q11.1 0.18 (0.17) 3 rs4325622 0.347 0.001

CRHR1 17q21 0.03 (0.02) 6 rs242940 0.069 0.531

COMT 22q11.1 0.04 (0.02) 7 hCV11804654 0.077 0.479

TPH2 with seven SNPs had the highest average association with CFS severity.

Table 2: Understanding the factors that affect gene significance. 

Data Set No. Samples a.) cor(severity, MEblue)1 b.) cor(severity, SNP)2

Samples with severity scores 87 r = 0.27 (p = 0.011) r = 0.28 (p = 0.010)

Males & HomFemales 76 r = 0.50 (p = 8 × 10-6) r = 0.33 (p = 0.003)

Males with severity scores 23 r = 0.34 (p = 0.113) r = 0.45 (p = 0.030)

Females with severity scores 64 r = 0.26 (p = 0.041) r = 0.17 (p = 0.170)

Homogenized Females 53 r = 0.54 (p = 2 × 10-5) r = 0.25 (p = 0.076)

Second data set (DS)3 33 r = 0.09 (p = 0.638) r = 0.03 (p = 0.846)

Second DS Homogenized3 30 r = 0.38 (p = 0.040) r = 0.15 (p = 0.415)

Data Set No. Samples c.) cor(severity, FOXN1) d.) cor(SNP, FOXN1)

Samples with severity scores 87 r = 0.21 (p = 0.055) r = 0.18 (p = 0.088)

Males & HomFemales 76 r = 0.38 (p = 6 × 10-4) r = 0.23 (p = 0.045)

Males with severity scores 23 r = 0.27 (p = 0.216) r = 0.20 (p = 0.365)

Females with severity scores 64 r = 0.21 (p = 0.101) r = 0.19 (p = 0.137)

Homogenized Females 53 r = 0.44 (p = 0.001) r = 0.24 (p = 0.082)

Second DS3 33 r = 0.28 (p = 0.116) r = 0.18 (p = 0.318)

Second DS Homogenized3 30 r = 0.40 (p = 0.030) r = 0.12 (p = 0.515)

The severity, MEblue, TPH2 SNP, and FOXN1 correlations (r) and p-values (p) for five different subsets of the first primary data set and the 
homogenized samples in the secondary data set. Severity is most significantly related toMEblue, the TPH2 SNP and the candidate FOXN1 gene in the 
combined male and homogenized female sub set. Homogenizing the second data set (which discarded three samples) also improved the MEblue and 
FOXN1 associations with severity.

1MEblue refers to the blue module eigengene, or first principal component of the blue module.
2SNP refers to the TPH2 SNP rs10784941.
3Here empiric replaces severity in cor(severity, FOXN1).
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that genes which are positively correlated with severity in

one sex but are negatively correlated in the other are less

credible than those with strong correlations in the same

direction among both sexes. iv) We also required a mod-

erate correlation of 0.2 with the severity trait (GSseverity) in

males and a slightly stronger correlation of 0.35 in the

homogenized females (since homogenization increased

the GSseverity measure). Out of the 2677 network genes,

twenty met these four criteria: C3ORF26, CD302,

CRNKL1, DCTN2, FOXN1, LTV1, MED8, NPAL2, PBLD,

PGK1, PPP1R14C, PRDX3, PRKCH, RYK, SNURF,

SUCLA2, TFB2M, TMEM50A, VAMP5 and XM13557.

Annotation and correlation information are provided in

Additional File 1 and Table 3, respectively. We found that

selection of the FOXN1 gene was relatively robust with

respect to the choice of screening criteria as long as associ-

ation with the TPH2 SNP was imposed in both sexes.

When we applied these screening criteria to the 8966 most
varying genes, 89 met these criteria and the gene names
and correlation measures are provided (see Additional
File 2). Note that all of the 20 candidate genes are
included in this list.

Investigating causal relationships

Our next step was to orient relationships between the can-
didate genes and the severity-related module. Toward this
end, we used the trait-related TPH2 SNP as a causal anchor
in the Network Edge Orienting (NEO) software [18]. We

Table 3: Pearson correlations (r) between the expression profiles of the 20 candidate genes from the IWGCNA and MEblue, CFS 

severity, and the TPH2 SNP.

Candidate Genes from IWGCNA: Gene Name and 
Genbank Accession

Pearson correlations with gene expression profiles

MEblue CFS Severity TPH2 SNP

r: All Rank
*

r: All p-
value

r: M r: F r: All p-value r: M r: F

1 FOXN1 (NM_003593) 0.845 195 0.21 0.055 0.27 0.21 0.21 0.018 0.23 0.20

2 PRDX3 (AF118073) 0.848 181 0.26 0.017 0.43 0.21 0.21 0.020 0.32 0.17

3 SUCLA2 (AK001458) 0.844 197 0.20 0.059 0.25 0.18 0.20 0.021 0.36 0.17

4 DCTN2 (NM_006400) 0.909 30 0.18 0.087 0.21 0.16 0.23 0.009 0.41 0.18

5 PGK1 (AB062432) 0.849 176 0.22 0.045 0.37 0.21 0.14 0.108 0.26 0.12

6 SNURF (AF101044) 0.882 77 0.27 0.012 0.51 0.20 0.18 0.037 0.32 0.14

7 PRKCH (BC001000) 0.888 64 0.16 0.143 0.27 0.14 0.15 0.089 0.23 0.13

8 RYK (NM_002958) 0.867 113 0.21 0.048 0.26 0.20 0.12 0.182 0.21 0.09

9 PPP1R14C (AF407165) 0.866 114 0.24 0.025 0.21 0.25 0.21 0.016 0.26 0.19

1
0

VAMP5 (AF077197) 0.863 124 0.33 0.002 0.47 0.29 0.24 0.007 0.35 0.20

1
1

PRO0641 (AF090939) 0.853 159 0.32 0.003 0.43 0.30 0.21 0.016 0.25 0.19

1
2

TMEM50A (AF081282) 0.911 23 0.26 0.014 0.29 0.26 0.17 0.050 0.22 0.16

1
3

CRNKL1 (AF111802) 0.865 117 0.27 0.012 0.41 0.23 0.22 0.013 0.36 0.18

1
4

NPAL2 (AK024017) 0.919 10 0.35 0.001 0.37 0.35 0.21 0.020 0.33 0.16

1
5

TFB2M (AK026314) 0.899 49 0.31 0.004 0.29 0.31 0.21 0.016 0.22 0.19

1
6

PBLD (AK027673) 0.906 38 0.31 0.003 0.28 0.34 0.17 0.049 0.23 0.15

1
7

LTV1 (AK027815) 0.856 145 0.30 0.005 0.39 0.29 0.19 0.029 0.29 0.17

1
8

MED8 (BC010019) 0.869 108 0.29 0.007 0.31 0.28 0.22 0.015 0.35 0.18

1
9

CD302 (BC020646) 0.817 315 0.24 0.028 0.28 0.25 0.18 0.046 0.29 0.16

2
0

(XM13557) 0.887 68 0.32 0.002 0.36 0.29 0.19 0.032 0.38 0.15

Median: 0.866 114 0.27 0.013 0.30 0.25 0.21 0.021 0.29 0.17

The correlations were computed using all 127 samples studied (All), the 98 female samples and the 29 male samples except for the correlation with 
severity which only had 87 non-missing scores (64 female and 23 male). The CFS Severity column is bolded for clarity.

*The rank of each gene in terms of its MEblue correlation out of the 8966 genes used to start the analysis.

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_003593
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF118073
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AK001458
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_006400
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB062432
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF101044
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC001000
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_002958
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF407165
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF077197
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF090939
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF081282
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF111802
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AK024017
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AK026314
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AK027673
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AK027815
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC010019
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC020646
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XM13557
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defined a gene as being causal for the module if the
LEO.NB.SingleMarker score for the causal model was pos-
itive and at least twice as probable as the maximum alter-
native model's score, i.e. we required a minimum
LEO.NB.SingleMarker score of 0.30 ≈ log10(2). While a
threshold of log10(10) = 1 was recommended by [18], we
relaxed it here due to our small sample size (127 patients).

The LEO.NB.SingleMarker scores for the 20 candidate
genes are provided in Additional File 1. There were 66
causal genes out of 299 blue module genes. All but three
of our 20 candidate genes were causal for the blue mod-
ule, with an average causality score rank of 25. A NEO
analysis of the male and homogenized female data subset
(76 samples) indicated that all but two of the 20 candi-
date genes were causal, with an average causality rank of
39 (not shown). These results indicate that our 5-step
strategy identifies a trait-related module and its potential
causal drivers.

Applying our gene screening strategy to a second data set

We applied our gene screening strategy to the 33 patient

samples that were missing severity scores but had a similar

measure of CFS severity called "empiric severity". The

rationale was that replicating the candidate gene findings

in these samples would support the IWGCNA results. We

first checked that the module definitions from the first

data set were preserved in the second data set. Figure 4(a)

shows that the blue module was well preserved and Figure

4(b) shows that the corresponding module membership

measures  were preserved as well. Applying the same

integrated gene screening criteria as described above

resulted in 61 candidate genes, six of which had been

identified in the primary data set: FOXN1, DCTN2,

PPP1R14C, VAMP5, TFB2M and XM13557.

Pathway annotation of candidate genes

Additional File 1 includes pathway annotations for the 16
candidate genes that were eligible for annotation with
Ingenuity® Systems' Pathways Analysis (IPA, http://
www.ingenuity.com) software. Column (a) gives results
for an IPA analysis of the candidate genes, and (b) shows
their corresponding annotations when the 299 blue mod-
ule genes were analyzed (where 212 of the blue module
genes were eligible for pathway annotation in August
2008). Out of the 16 candidate genes, IPA identified a
highly significant pathway (p-value ≈ 10-32) containing 12
of them FOXN1, PRDX3, SUCLA2, TFB2M, MED8,
SNURF, DCTN2, PGK1, PRKCH, RYK, VAMP5 and PBLD,
and this pathway most likely functioned in Cell Cycle,
Cancer, Cell Death, and Hematological Disease (p-value
range = 1.15 × 10-5, 1.03 × 10-1). Column (b) shows that
the 212 blue module analysis suggested functionally rele-

vant pathways for the candidate genes such as i) Endo-
crine System Disorders, Infectious Disease, and
Inflammatory Disease; ii) Connective Tissue Develop-
ment and Function and iii) Viral Function. Pathways i-iii
and hematological disease are consistent with results from
previous CFS research [35,55-58].

We investigated the TPH2 SNP's contribution to our gene
screening strategy by repeating the candidate gene IPA
with TPH2 included. Indeed, IPA positioned TPH2 within
the top hematological disease pathway containing 12 can-
didate genes. This finding supports the notion that SNP-
associated gene expression profiles are likely to interact
with the SNP-containing gene.

To determine known interactions between the candidate
genes within the blue module, we carried out an IPA com-
parison between the candidate gene and blue module
gene networks. Figure 5 shows that the main hematologi-
cal disease pathway in the candidate gene IPA is directly
connected to seven pathways within the blue module net-
work (where the number of common genes are listed
adjacent to the connection edges). This illustrates the
value of IWGCNA: it identifies a candidate gene pathway
that is centrally located within the blue module network,
i.e. it identifies genes influencing multiple biological
pathways.

Functional annotation of candidate genes

The IWGCNA of a CFS data set identifies candidate genes
that interact in biologically relevant immune and connec-
tive tissue pathways. In this section, we show that in addi-
tion to belonging to relevant pathways, our candidate
genes have functions that are consistent with findings
from other CFS studies. Here we focus on FOXN1, PRDX3,
and SUCLA2, but other interesting candidates are
described in Additional File 1. FOXN1 is highly expressed
in thymus epithelia cells. The thymus gland plays a piv-
otal role in the immune system by converting lym-
phocytes to T-cells and releasing functional T-cells to
combat infection. A FOXN1 knockout mouse model has
been shown to have a deficient immune system due to a
lack of functional T-cells [59-61]. Similarly, humans with
mutations in FOXN1 have an immune system deficiency
[62,63]. Under the assumption that a compromised
immune system can cause chronic fatigue, this knockout
mouse suggests a potential role for FOXN1 in chronic
fatigue. Because of its statistical significance and biologi-
cal importance, FOXN1 is a candidate for investigating the
immune system's role in CFS severity.

PRDX3 is a clinically interesting candidate because of its
role in mitochondrial function and apoptosis. Specifi-
cally, it regulates the abundance of H2O2 and other reac-
tive oxygen compounds that mediate apoptosis [64,65].

kME
blue

http://www.ingenuity.com
http://www.ingenuity.com
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Secondary data set resultsFigure 4
Secondary data set results. (a) Average linkage hierarchical clustering of the gene expressions from 33 secondary data set 
samples colored by the original network module definitions shows that the blue module is preserved. (b) Intramodular connec-
tivity is preserved between the secondary and primary data set networks.
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SUCLA2 is another gene involved in mitochondrial func-
tion that could be clinically relevant for chronic fatigue.
Mutations in SUCLA2 have previously been associated
with mitochondrial encephalomyopathy, a disorder
which causes fatigue and muscle weakness [66,67]. These
immune, cell death, and muscular system functions are
consistent with findings from other CFS studies
[27,28,34].

A standard analysis of chronic fatigue syndrome that 

excludes the TPH2 SNP marker and module membership

IWGCNA requires at least one reliable SNP marker that is
associated with the disease. While the relationship
between CFS and the TPH2 SNP has been reported in a
previous study, the relatively unimpressive p-value sug-
gests that additional data are needed to confirm its valid-
ity. Here we present results from a standard analysis of the

Ingenuity Pathway Analysis resultsFigure 5
Ingenuity Pathway Analysis results. An IPA comparison analysis indicates that the 20 candidate gene pathway (light blue) is 
connected with several of the most highly significant blue module pathways (dark blue). Each pathway description was selected 
from the top three most significant IPA pathway annotations, and the other two are listed below the diagram. The ranks corre-
spond to the p-values of the identified networks, where the network with the smallest p-value has rank = 1.

Hematological 
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Rank = 1 (20)
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Tissue,    

Rank = 2

Cell Cycle,    
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Cell Function, 

Rank = 8*
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Rank 1 (20):  Cell Cycle, Cancer, Hematological Disease

Rank 1 (299): Post-Translational Modification, Amino Acid Metabolism, Molecular Transport
Rank 2: Organ Morphology, Cell Morphology, Connective Tissue Development and Function

Rank 4: Post-Translational Modification, Cell Cycle, Gene Expression
Rank 5: Cell Assembly and Organization, Cell Cycle, DNA Replication/Recombination/Repair

Rank 6: Endocrine System Disorders, Infectious Disease, Inflammatory Disease

Rank 7: Gene Expression, Cellular Development, Connective Tissue Development and Function 
Rank 8*: Embryonic Development, Organ Development, Connective Tissue Development and Function

Rank 8*: Cell Fun. and Main., Small Molecule Biochem., Molecular Transport;       *Same p-values
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chronic fatigue data that excludes the SNP and module
membership information.

Starting with the 8966 most varying genes, we computed
the p-values for the Pearson correlation test of the gene
expression profiles with the severity trait. For each p-
value, we computed the corresponding local false discov-
ery rate (q-value) using the qvalue package in R [68]. We
used Ingenuity Pathways Analysis software to study path-
ways and functions of the 346 genes that achieved the
minimum false discovery rate of 0.081. Among the 241
genes that were eligible for Ingenuity network construc-
tion, the top pathways were: 1) Viral Function, Molecular
Transport, RNA Trafficking (p-value ≈ 10-52, focus mole-
cules = 29); 2) Connective Tissue Development and Func-
tion, Cell Signaling, Molecular Transport (p-value ≈ 10-31,
focus molecules = 20); and 3) Cell Morphology, Cellular
Assembly and Organization, Cancer (p-value ≈ 10-29,
focus molecules = 19). As the Viral Function pathway
achieves the highest score and is clinically relevant to CFS,
we consider these 29 genes as top candidates of the stand-
ard analysis. Table 4 gives the gene names and functional
summaries for these genes. The LEO.NB.SingleMarker
scores were excluded as only AF121255 with a score of
0.319 exceeded our causality threshold. We also present
the correlations between these 29 genes and CFS severity,
MEblue, and the TPH2 SNP in Table 5. Figure 6 indicates
that the standard analysis genes tend to have higher corre-
lations with severity than the IWGCNA genes. Also as
expected, these genes tend to have lower correlations with
MEblue and the TPH2 SNP than the IWGCNA genes.

Recall that an Ingenuity Pathways Analysis (IPA) of the 20

IWGCNA candidate genes and the TPH2 gene produced a

top IPA network that included the TPH2 gene. For com-

parison we repeated this analysis using the 29 standard

analysis genes and TPH2. Neither of the two resulting IPA

networks contained the TPH2 gene, which is consistent

with the low correlations observed between the TPH2 SNP

and these genes. While both the standard analysis and

IWGCNA identified viral function and connective tissue

genes, there was no overlap between the top 20 IWGCNA

and the top 29 standard analysis candidate genes. This

result is not surprising since different methods were used

to reduce the 8966 gene set to about 0.3% of its original

size (20–29 genes). To provide a more comprehensive

comparison, we applied the IWGCNA screening criteria to

the 8966 gene set which resulted in 89 genes, including

the top 20 IWGCNA genes (see Additional File 2). Four of

the standard analysis genes were on this 89-gene list:

PDPK1, ZMYND11, DMBT1 and EIF2C2 (Tables 4 and 5).

Furthermore, nine of the standard analysis genes could be

considered as part of the blue module since their module

membership values were higher than the minimum 

= 0.722 of the 299 module genes.

Discussion
We present a systems genetic screening method for identi-
fying candidate complex disease genes when gene expres-
sion, genetic marker and clinical outcome data are
available. We demonstrate IWGCNA in a set of patients
who had been diagnosed with some fatigue symptoms
according to the 1994 CFS case definition criteria. The
IWGCNA identifies a CFS severity-related module consist-
ing of 299 genes and a subset of 20 candidate genes within
this module that hold particular promise for future CFS
studies. In addition to belonging to a severity-related
module the 20 IWGCNA candidate genes also a) had a
high association with the TPH2 locus, b) high intramodu-
lar connectivity, and c) were related to CFS severity in
both sexes. Genetic marker based causality analysis indi-
cated that 17 of the 20 candidate genes were causal for
their parent module (out of 66 total causal genes for the
blue module). Furthermore, we found that the blue mod-
ule and intramodular gene connectivities were highly pre-
served in a second set of samples that had a similar
empiric diagnosis of CFS severity. Applying IWGCNA in
this data set replicated six of our 20 candidate genes. Path-
way annotation with IPA software showed that our candi-
date gene results agreed with previously published
findings that CFS affects the endocrine, immune and con-
nective tissue systems [35,55-57,69].

A standard gene-screening strategy based on the local false
discovery rate (q-value) and IPA software suggested 29
genes that functioned in a viral pathway. Relative to the
standard analysis candidates, the 20 IWGCNA genes had
a moderate association with severity, and stronger associ-
ations with the TPH2 SNP and MEblue. IPA results
showed that using a SNP marker to screen for candidate
gene expressions can identify genes that are known to
interact with the SNP-containing gene.

Although the candidate gene findings from the IWGCNA
and standard analysis are compelling, our purpose here is
to illustrate a novel systems genetic gene-screening
method. While it is reassuring that IPA software suggested
viral and connective tissue function for both the IWGCNA
and standard analysis candidates, there was no overlap
between the corresponding top 20 and top 29 candidate
gene lists. A more comprehensive comparison revealed
that four genes (PDPK1, ZMYND11, DMBT1 and EIF2C2)
were implicated by both analyses. Furthermore, although
the reported p-values and causality scores are useful for
exploring relative gene significance, the actual values did
not reach genome-wide significance. Although this is to
be expected for a complex disease study of modest magni-
tude (here the number of samples varied between 87 and

kME
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Table 4: Candidate gene names and Entrez Gene descriptions from the standard analysis.

Gene Name and Genbank Accession Gene name. Entrez Gene and/or GeneRIFs description. Chromosome Location

1 DGCR8 (AF165527) DiGeorge syndrome critical region gene 8. 22q11.2

2 PPARD (BC002715) Peroxisome proliferator-activated receptor delta. May be involved in the development of several 
chronic diseases, including diabetes, obesity, atherosclerosis, and cancer. 6p21.2-p21.1

3 IHPK2 (BC004469) Inositol hexaphosphate kinase 2. May affect the growth suppressive and apoptotic activities of 
interferon-beta in some ovarian cancers. 3p21.31

4 CCDC92 (AB015292) Coiled-coil domain containing 92. 12q24.31

5 NR5A2 (AB019246) Nuclear receptor subfamily 5, group A, member 2. May be involved in regulation of Hepatitis B virus. 
1q32.1

6 PDPK1 (BC006339) 3-phosphoinositide dependent protein kinase-1. 16p13.3

7 NXF1 (AF112880) Nuclear RNA export factor 1. Exports viral mRNA's and herpes simplex virus type 1. 11q12-q13

8 COL13A1 (NM_080804) Collagen, type XIII, alpha 1. May function in connective tissues. 10q22

9 AXIN2 (AF078165) Regulates stability of beta-catenin in the Wnt signaling pathway. Mutations associated with colorectal 
cancer. 17q23-q24

10 SCAP (AK075528) SREBF chaperone. Involved in regulating sterol biosynthesis. 3p21.31

11 DFFA (AF087573) DNA fragmentation factor, 45 kDa, alpha polypeptide. Triggers DNA fragmentation during apoptosis. 
1p36.3-p36.2

12 TCF4 (M74719)* Transcription factor 7-like 2 (T-cell specific, HMG-box). Implicated in blood glucose homeostasis. 
10q25.3

13 WNT16 (NM_016087) Wingless-type MMTV integration site family, member 16. Implicated in oncogenesis and in several 
developmental processes. 7q31

14 ZNF687 (BC032463) Zinc finger protein 687. 1q21.2

15 FGF1 (BC032697) Fibroblast growth factor 1 (acidic). Embryonic development, cell growth, morphogenesis, tissue repair, 
tumor growth and invasion. 5q31

16 ANKRD6 (BC001078)* Ankyrin repeat domain 6. 6q14.2-q16.1

17 EPHX1 (M36374) Epoxide hydrolase 1, microsomal (xenobiotic). Activation and detoxification of exogenous chemicals 
such as polycyclic aromatic hydrocarbons. 1q42.1

18 FAIM (AK001444) Fas apoptotic inhibitory molecule. 3q22.3

19 ZMYND11 (NM_006624) Zinc finger, domain containing 11. Binds adenovirus E1A protein. 10p14

20 ADFP (NM_001122) Adipose differentiation-related protein. 9p22.1

21 BAT5 (BC031839) HLA-B associated transcript 5. Possibly involved in immunity. 6p21.3

22 CEBPA (NM_004364) CCAAT/enhancer binding protein, alpha. Body weight homeostasis. 19q13.1

23 HNRNPA1 (NM_002136) Heterogeneous nuclear ribonucleoprotein A1. May be part of the regulatory mechanisms of the life 
cycle of HTLV-1 human retrovirus in T cells. 12q13.1

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF165527
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC002715
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC004469
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB015292
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB019246
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC006339
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF112880
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_080804
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF078165
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AK075528
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF087573
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M74719
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_016087
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC032463
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC032697
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC001078
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M36374
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AK001444
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_006624
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001122
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC031839
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_004364
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_002136
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127), it emphasizes a conservative interpretation of these
results. Finally, the patient sample may not be representa-
tive of the typical CFS patient population, as these
patients were physically able to attend clinic (although to
our knowledge this problem is inherent in many CFS
studies). We should also point out that the candidate
genes relate to CFS severity among patients with some
fatigue symptoms, so these genes may not distinguish CFS
patients from healthy controls. In order to make a clinical
contribution to CFS etiology, our candidate gene findings
require validation in additional studies. The purpose of
this article is to illustrate a systems genetic gene screening
strategy that yields testable hypotheses for future investi-
gations. IWGCNA is a step towards the development and
application of systems genetic approaches to complex dis-
ease gene mapping.

Conclusion
Integrating gene co-expression networks with allelic asso-
ciation studies holds great promise for elucidating the
genetic basis of complex diseases. We describe an intuitive
and simple five-step incarnation of such an approach
(IWGCNA) and apply it to a chronic fatigue syndrome
data set. Our complete R statistical software code is avail-
able at http://www.genetics.ucla.edu/labs/horvath/Coex
pressionNetwork/CFS.

Methods
We analyzed the phenotype, genotype and expression
data from a four year longitudinal study conducted by the
Centers for Disease Control (CDC) [38,40,51,52]. Of the
164 patients described in Reeves et al. [52], we focused on
the 127 that were diagnosed with some fatigue according
to the Intake diagnosis defined below (i.e., we removed
the controls).

CFS phenotypes: severity and empiric

The phenotype data included several variables that meas-
ured different aspects of chronic fatigue syndrome.

"Intake diagnosis" was a 5-level classification of CFS
based on the 1994 case definition criteria [24]. In addi-
tion to intake diagnosis, the data set included scores from
established diagnostic procedures used to evaluate quality
of life in people suffering from cancer and other illnesses:
1) Medical Outcomes Survey Short Form (SF-36), 2) Mul-
tidimensional Fatigue Inventory (MFI), and 3) CDC
Symptom Inventory Case Definition scales [52,70]. The
SF-36 scale assesses eight characteristics: physical func-
tion, role physical, bodily pain, general health, vitality,
social function, role emotional, and mental health. The
MFI scale assesses five characteristics: general fatigue,
physical fatigue, mental fatigue, reduced motivation, and
reduced activity. The CDC symptom inventory scale
assesses symptoms accompanying chronic fatigue. Each of
these 14 characteristics is derived from several scores
designed to evaluate the particular characteristic. Reeves et
al. (2005) clustered these scores from 118 patients and
identified three clusters of CFS severity: high, moderate
and low.

The analyses in this manuscript mostly focus on the CFS
severity trait in a subset of patients who had some fatigue
symptoms according to the intake diagnosis. We also ana-
lyzed a second set of patients who did not have severity
scores but did have a similar measure of severity based on
some of the scores used to define CFS severity "empiric
severity". The empiric severity diagnosis was highly corre-
lated with CFS severity (r = 0.782, p-value = 2.2 × 10-16).

Primary and secondary data set subjects

The full data set consisted of 127 samples classified as ill
according to the intake diagnosis. The majority were
female (98), and about 95% were Caucasian. None of
these CFS patients had an additional medical or pyscho-
logical condition that can be considered exclusionary
[52,71].

24 DMBT1 (NM_004406) Deleted in malignant brain tumors 1. May play a role in the interaction of tumor cells and 
the immune system. 10q25.3-q26.1

25 RNASEN (AF116910) Ribonuclease type III, nuclear. Participates in diverse RNA maturation and decay pathways. 5p13.3

26 EDAR (AF130988) Ectodysplasin A receptor. Mutations in this gene result in hypohidrotic ectodermal dysplasia. 2q11-q13

27 F3 (AF540377) Coagulation factor III (thromboplastin, tissue factor). Enables cells to initiate the blood coagulation 
cascades. 1p22-p21

28 HSPG2 (AL445795) Heparan sulfate proteoglycan 2. 1p36.1-p34

29 EIF2C2 (AF121255) Eukaryotic translation initiation factor 2C, 2. Encodes a member of the Argonaute family 
of proteins which play a role in RNA interference. 8q24

*Members of the blue module.

Table 4: Candidate gene names and Entrez Gene descriptions from the standard analysis. (Continued)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_004406
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF116910
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF130988
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF540377
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AL445795
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF121255
http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/CFS
http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/CFS
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Table 5: Pearson correlations (r) between the expression profiles of the 29 candidate genes from the standard analysis and MEblue, 

severity, and the TPH2 SNP. 

Candidate Genes from Standard Gene Name and 
Genbank Accession

Pearson correlations with gene expression profiles

MEblue CFS Severity TPH2 SNP

r: All Rank1 r: All p-
value

r: M r: F r: All p-value r: M r: F

1 DGCR8 (AF165527) 0.81 329 0.37 <0.001 0.35 0.39 0.13 0.14 0.12 0.12

2 PPARD (BC002715) 0.54 2305 0.37 0.001 0.49 0.34 0.10 0.25 0.18 0.08

3 IHPK2 (BC004469) 0.48 2842 0.36 0.001 0.36 0.36 0.15 0.09 0.02 0.16

4 CCDC92 (AB015292) 0.43 3434 0.35 0.001 0.33 0.38 0.07 0.42 -
0.07

0.10

5 NR5A2 (AB019246) 0.47 2945 0.35 0.001 0.37 0.32 0.10 0.27 0.18 0.07

6 PDPK1 (BC006339) 0.67 1218 0.35 0.001 0.47 0.31 0.16 0.08 0.24 0.12

7 NXF1 (AF112880) 0.63 1517 0.34 0.001 0.17 0.36 0.15 0.10 -
0.03

0.15

8 COL13A1 (NM_080804) 0.51 2590 0.34 0.001 0.25 0.34 0.05 0.60 -
0.10

0.06

9 AXIN2 (AF078165) 0.80 414 0.33 0.002 0.39 0.32 0.13 0.15 0.16 0.10

10 SCAP (AK075528) 0.64 1458 0.33 0.002 0.44 0.36 0.17 0.06 0.38 0.12

11 DFFA (AF087573) 0.71 948 0.33 0.002 0.25 0.35 0.11 0.21 0.07 0.10

12 TCF4 (M74719) 0.76 637 0.33 0.002 0.38 0.31 0.14 0.13 0.15 0.11

13 WNT16 (NM_016087) 0.71 910 0.33 0.002 0.38 0.32 0.08 0.36 0.13 0.05

14 ZNF687 (BC032463) 0.83 243 0.33 0.002 0.53 0.30 0.10 0.28 0.29 0.04

15 FGF1 (BC032697) 0.65 1378 0.32 0.003 0.26 0.31 0.02 0.83 -
0.03

0.00

16 ANKRD6 (BC001078) 0.83 241 0.31 0.003 0.36 0.28 0.14 0.12 0.23 0.09

17 EPHX1 (M36374) 0.64 1442 0.31 0.003 0.24 0.33 0.11 0.22 -
0.01

0.12

18 FAIM (AK001444) 0.86 132 0.31 0.004 0.34 0.30 0.07 0.43 0.11 0.04

19 ZMYND11 (NM_006624) 0.67 1223 0.31 0.004 0.47 0.26 0.13 0.15 0.32 0.07

20 ADFP (NM_001122) 0.69 1057 0.31 0.004 0.27 0.32 0.11 0.20 0.12 0.10

21 BAT5 (BC031839) 0.73 802 0.31 0.004 0.27 0.31 0.10 0.24 0.08 0.09

22 CEBPA (NM_004364) 0.70 980 0.31 0.004 0.16 0.32 0.08 0.38 -
0.16

0.10

23 HNRNPA1 (NM_002136) 0.46 3048 0.30 0.004 0.23 0.34 0.11 0.23 -
0.12

0.15

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF165527
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC002715
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC004469
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB015292
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB019246
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC006339
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF112880
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_080804
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF078165
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AK075528
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF087573
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M74719
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_016087
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC032463
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC032697
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC001078
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M36374
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AK001444
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_006624
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001122
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC031839
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_004364
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_002136


BMC Systems Biology 2008, 2:95 http://www.biomedcentral.com/1752-0509/2/95

Page 17 of 21

(page number not for citation purposes)

We divided the full data set into two subsets according to
a) patients with CFS severity scores available (87 total: 64
females and 23 males) and b) patients without severity
scores who had empiric severity scores (39 total: 33
females and 6 males). The data set with severity measures
was the main data set analyzed in this manuscript and we
refer to it as the primary or first data set. The primary data
set had the following CFS severity distribution: high (24),
moderate (48), and low (15). We refer to the remaining
data samples as the secondary or second data set and we
use it to support our primary data findings. Since the
majority of the second data set samples were female, we
avoided sex confounding by analyzing only the female
subjects in this data set. The resulting secondary data set
consisted of empiric severity, gene expression and SNP
data for 33 female samples.

Gene Expression Microarray Data

Peripheral blood mononuclear cells were assayed with
approximately 20,000 probes from glass-slide arrays by
MWG Biotech. ArrayVision software read the slides and
normalized the data by subtracting background intensity
from the spot intensity values. When background inten-
sity exceeded spot intensity, ArrayVision set the probe
intensity values to zero.

We excluded two outlier arrays based on their high mean
gene expression levels and then using the remaining 162
arrays we filtered for genes whose mean expression was in
the upper 50% and whose variance was in the upper 66%.
These filtering criteria resulted in 8966 genes. Our remain-
ing analyses focused on the 127 samples that had been

classified as having fatigue symptoms according to the
intake diagnosis. Additional gene filtering is described in
the Results section.

Genetic Marker Data

We considered 36 autosomal SNPs that the CDC had
selected from eight candidate CFS genes, TPH2 (SNPs
selected from locus 12q21), POMC (2p24), NR3C1
(5q34), CRHR2 (7p15), TH (11p15), SLC6A4 (17q11.1),
CRHR1 (17q21), COMT (22q11.1) [38]. We additively
coded the SNPs as 0, 1, or 2, for genotypes AA, AB, and BB,
respectively. While this additive coding method may be
sub-optimal for dominant or recessively acting loci, it has
been shown to be effective for many genetic models.

Causality analysis with the Network Edge Orienting 

software

We used a trait-related SNP marker as a causal anchor for
the Network Edge Orienting (NEO) software to character-
ize whether each candidate gene expression was causal or
reactive to the module eigengene (ME) [18]. We calcu-
lated the LEO.NB.SingleMarker (LEO) score, which is a rel-
ative fitting index that compares the model fitting p-value
of the causal model for a gene xi causing ME to that of the
next best competing model. For the edge orientation xi →
ME, the LEO.NB.SingleMarker score is given by

24 DMBT1 (NM_004406) 0.59 1874 0.30 0.005 0.50 0.24 0.08 0.37 0.20 0.03

25 RNASEN (AF116910) 0.75 680 0.30 0.005 0.29 0.31 0.10 0.26 0.09 0.08

26 EDAR (AF130988) 0.82 288 0.30 0.005 0.20 0.33 0.09 0.32 -
0.02

0.09

27 F3 (AF540377) 0.67 1181 0.30 0.005 0.28 0.30 0.10 0.26 0.18 0.06

28 HSPG2 (AL445795) 0.30 4880 0.30 0.005 0.09 0.33 -
0.03

0.71 -
0.25

-
0.02

29 EIF2C2 (AF121255) 0.60 1760 0.30 0.005 0.29 0.27 0.18 0.04 0.27 0.13

Median2: 0.67 1218 0.32 0.003 0.33 0.32 0.10 0.24 0.13 0.09

The correlations were computed using the 127 samples studied (All), the 98 female samples and the 29 male samples except for the correlation 
with severity which only had 87 non-missing scores (64 female and 23 male). Four of the candidate genes indicated in bold satisfied our IWGCNA 
screening criteria (excluding blue module membership). The CFS Severity column is bolded forclarity.

1The rank of each gene in terms of its MEblue correlation out of the 8966 genes used to start the analysis.
2The median was computed using the absolute value.

Table 5: Pearson correlations (r) between the expression profiles of the 29 candidate genes from the standard analysis and MEblue, 

severity, and the TPH2 SNP.  (Continued)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_004406
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF116910
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF130988
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF540377
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AL445795
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF121255
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where the competing models have the following interpre-
tations model 2 implies that ME causes xi, model 3
implies that the SNP directly affects both xi and ME so that
given the SNP they are independent of each other (con-
founded model), model 4 implies that the SNP and ME
both affect xi and model 5 implies that the SNP and xi both
affect ME. Although NEO performs well in simulation
studies and several real data applications [18], we note
that it has several limitations. The first limitation is that it
requires the availability of genetic markers that are signif-
icantly associated with at least one trait per edge. Spurious
associations between the markers and traits will result in
meaningless edge orienting scores. The second limitation
is that the structural equation model (SEM)-based edge
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Boxplot comparisons of correlation distributions for the 20 candidate genes from the IWGCNA and the 29 candidate genes from the standard analysisFigure 6
Boxplot comparisons of correlation distributions for the 20 candidate genes from the IWGCNA and the 29 
candidate genes from the standard analysis. The correlations with severity are higher among the standard analysis candi-
date genes, but the MEblue and TPH2 SNP correlations are higher for the IWGCNA candidates.
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orienting scores assume linear relationships between
traits and SNP markers. This is mathematically convenient
and allows the NEO approach to work in the domain of
linear graphical models since it is based on correlations
and SEMs. The third limitation is that causal inference and
structural equation modeling assume that relevant traits
and causal anchors have been included in the causal
model. Under-specified causal models, i.e. models that
omit important variables, may mislead the user to detect
spurious causal relationships.

Pathway Annotation Software

Ingenuity Pathways Analysis (IPA) software allowed us to
compare co-expression interactions with interaction
information that was manually curated from the literature
and to annotate these interactions with the closest match-
ing biological functions. The user-input or "focus" gene
list was compared to the "Global Molecular Network"
(GMN) database consisting of thousands of genes and
interactions. The focus genes were sorted based on highest
to lowest connectivities within the GMN, and then net-
works of approximately 35 genes were grown starting with
the most connected focus gene. IPA creates networks
based on the principle that highly connected gene net-
works are most biologically meaningful. It assigns a p-
value for a network of size n and an input focus gene list
of size f by calculating the probability of finding f or more
focus genes in a randomly selected set of n genes from the
GMN. Since these p-values are generally small, the -
log10(p-value) "p-score" is reported. Similarly, a Fisher
exact test p-value is calculated for the functional analysis.
In this case the four categories include genes associated/
not associated with the annotation and focus/non-focus
genes. The IPA p-values were not corrected for multiple
testing, and the authors recommend them as rough guides
for approximating molecular function http://www.inge
nuity.com. The IPA interaction database is manually
curated by scientists and updated quarterly. The results
presented here were obtained in August 2008.

Data and software availability
The complete chronic fatigue syndrome gene expression,
genotype and clinical data, and R statistical software code
for the IWGCNA presented here can be found at
http:www.genetics.ucla.edu/labs/horvath/
CoexpressionNet work/CFS.
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