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Abstract—Ongoing standardization in Industry 4.0 supports
tool vendor neutral representations of Piping and Instrumenta-
tion diagrams as well as 3D pipe routing. However, a complete
digital plant model requires combining these two representations.
3D pipe routing information is essential for building any accurate
first-principles process simulation model. Piping and instrumen-
tation diagrams are the primary source for control loops. In
order to automatically integrate these information sources to a
unified digital plant model, it is necessary to develop algorithms
for identifying corresponding elements such as tanks and pumps
from piping and instrumentation diagrams and 3D CAD models.
One approach is to raise these two information sources to a
common level of abstraction and to match them at this level
of abstraction. Graph matching is a potential technique for
this purpose. This article focuses on automatic generation of
the graphs as a prerequisite to graph matching. Algorithms for
this purpose are proposed and validated with a case study. The
paper concludes with a discussion of further research needed
to reprocess the generated graphs in order to enable effective
matching.

Index Terms—industry 4.0, process industry, digitisation, au-
tomation, modelling and simulation, digital twins, graph match-
ing, digital plant, plant design.

I. INTRODUCTION

A major goal of Industry 4.0 is to make plant information

available to humans and machines throughout the network of

enterprises involved in designing, commissioning and operat-

ing the plant [1]. This information includes design information

as well as information gathered during the operation of the

plant, so a life cycle wide information management strategy

and supporting tool chains are required [2]. However, plant

design information still often resides in proprietary and tool

specific formats. A few exceptions exist, such as the Proteus

XML schema for P&ID (Piping & Instrumentation Diagram)

diagram exchange, which is supported by several leading

P&ID tool vendors [3], and the PCF (Piping Component

File) format for 3D isometrics, supported by leading tool

vendors such as Hexagon PPM, Autodesk, Alias and PTC

Creo. However, these are solutions for exchanging a specific

type of diagram between tools of different vendors. There is

also a need to integrate the information produced with different

types of tools. The scope of this article is 2D information from

P&IDs and 3D information from CADs, in the Proteus XML

and PCF formats, respectively. Our use cases for integrating

such information is the generation of a digital twin, extending

recent work [4] by combining the control loop information

from the P&ID with the physical layout from the 3D CAD. A

straightforward approach for information integration would be

to match tag names from the 2D and 3D information sources

to identify the parts of these models that correspond to the

same component. However, with industrial design repositories

it cannot be assumed that consistent naming conventions have

been enforced to enable this approach [5]. Thus, the integration

of 2D and 3D plant information is a challenging task, so it

is helpful to break it down to a process consisting of several

steps. Further research on proposing the steps of such a process

is solicited from other research groups. In this paper, the

following process is suggested:

1) Digitize the information to a standard, industrially ac-

cepted Industry 4.0 format. This may involve no effort

if the designs were made in tools that support these

formats. However, industrial plants have lifecycles of

several decades, in which case innovative applications

are required to digitalize the legacy design information.

Such work has been done for P&IDs [6]–[8].

2) Raise the level of abstraction of the 2D and 3D designs,

so that they are at the same level of abstraction.

3) Match the models generated in step 2, to identify the

elements in these models that correspond to the same

plant component, such as a tank or pump.

4) Use the matches to augment applications relying only

on either 2D or 3D information sources. For example,

[9] generate the physical aspect of a digital twin of a

process based solely on the 3D information, so control

software is not generated and a legacy control system

is expected to be integrated as in [10]. [3] generate the

cyber aspect of a digital twin, i.e. a control system, based

on the 2D information. If the instrumentation in the 2D

and 3D sources could be matched, it would be possible

to automatically identify and connect the I/O interface

of the physical and virtual aspects of the digital twin,

eventually aiming at automatic generation of a system

that could be considered a fully-fledged digital twin [11].



In this paper, it is expected that step 1 has been performed.

The research goal of this paper is step 2. Steps 3 and 4

are presented for motivational purposes and they are left for

further research.

II. RELATED WORK

Significant prior work has been done with respect to step

1 of the process proposed in section I. Legacy engineering

documents can be digitized by scanning and storing [12].

OCR (Optical Character Recognition) can be used to identify

e.g. tag names in scans and, thus, to link engineering docu-

ments (such as equipment data sheets, work instructions, and

operating manuals) that are related to each other. However,

graphical data cannot be transformed into information, and

links between items on a drawing cannot be transformed into

a digital structural model. Several authors have investigated

the extraction of text annotations from mixed text-graphic

documents. [13] proposed a method for string separation

in images with annotations. [14] introduced a raster-based

method for the identification of string boxes. [15] proposed

a hybrid algorithm for the same task. [16] presented a method

for the recognition of both text and basic parametrical forms in

documents. [17], [18] addressed the recognition of text from

drawings. In [19], authors presented approaches for detection

and segmentation of complex engineering drawings consisting

of textual and graphical elements, aiming at identification

of key elements only. Also, they published a comprehensive

survey on alternative approaches for the digitisation of com-

plex engineering drawings [20]. Other works have focused

on the analysis of symbols (OSR), which is relevant e.g.

in mechanical engineering to interpret and convert design

drawings [21]. The ultimate goal is to generate 2D or 3D

models in a neutral format. [22] presented a system which

is able to interpret a range of engineering documents, such as

logical diagrams, electrical circuits, and P&IDs. This approach

does not support key geometric features such as scaling, rota-

tion, and partial overlap of objects. [23] presented a method

to analyse design drawings, esp. electric wiring diagrams.

[24] proposed the combination of geometric and semantic

information for the reconstruction of 3D CAD models from

engineering drawings. The semantic information used in this

approach is, however, limited to the recognition of symbols

and does not consider semantic properties of the analyzed

structural items. In addition, commercial methods exist which

allow for automatic conversion of CAD designs into object-

oriented models [25], but this requires access to the original

CAD model software and can therefore not be applied to the

typical use case where a plant owner has to rely on PDF

documents. In [6], a method is described which combines OSR

with semantic knowledge. This method allows extracting a

structural model from a given 2D diagram, e.g. a P&I diagram

or a control logic diagram. Furthermore, a method is described

which merges the 2D P&I Diagram and the 2D control logic

diagram into a single structural model. The method has been

applied successfully to interpret engineering documents from

an oil rig in the North Sea [26]. The method is limited as

it relies on a consistent, common naming scheme of the tag

names in both diagrams. In [27], a P&I diagram is analysed

for design faults based on the identified objects and their

connections. A similar approach has been patented recently

by T. Tung [28].

For step 2 of the process proposed in section I, several

authors have identified graph formats as a suitable abstrac-

tion of complex engineering drawings. In [29], it has been

described how to formulate rules which can be applied to

convert structural plant models into more abstract models. For

example, a P&ID which contains tanks, nozzles, pipes and

joints can be converted into a structural model which provides

all possible flow paths between a given set of tanks. [30]

presents an application for the automatic generation of bond

graph models from an IEC 62424 hierarchical representation

of the process plants. Also, [5] convert 3D pulp&paper plant

designs to graphs in order to perform graph matching to

identify similar, and thus reusable designs. [31] has presented

an approach for extracting information from P&ID sheets by

using deep learning networks and low-level image processing

techniques for capturing inlets, outlets and pipelines as a tree-

like data structure. [32] uses graph abstractions to identify

differences between process designs, as captured in 3D CAD

models, and the as-built version of the plant, as captured by

laser scans.

In recent years, many efforts have been made to standardize

process presentation formats. The ISO 15926 standard infor-

mation model with its Proteus XML file format [33], [34]

focuses on the interoperability of P&IDs. A working group of

owner operators, software vendors and research organizations

called DEXPI developed a specification (DEXPI) based on

the ISO 15926 to address practical issues and push for the

adoption of the DEXPI/ISO15926 as an open P&ID storage

format. DEXPI and OPC Foundation have formed a joint

working group for defining a DEXPI OPC UA companion

specification [35] to enable access of P&ID data over OPC

UA communication platforms. Also, In [36], ISO 15926 and

IEC 62424, i.e. two different standards for computer-accessible

structural model descriptions, which have been conceived for

the modeling of process plants, have been compared.

III. CASE STUDY

The case study is a thermo-hydraulic water process (Fig. 1).

The functionality of the process is not important for the aims

of this article, but interested readers will find more details in

[4], [9], [10], [37].

The process has been modelled in the Intergraph Smart

3D tool (Fig. 2), which is capable of exporting PCF files.

The model includes 10 pipelines, each of which has its

corresponding PCF file. Pipelines may have branches. The

endpoint of a pipeline is either a nozzle of process equipment

or an open endpoint, referencing another open end point in

another PCF file.

A P&ID has been developed in the SmartPlant P&ID and

exported with its ISO 15926 export tool. The exported file

conforms to the Proteus 3.6 XML schema. Fig. 3 presents a



Fig. 1. Case process

Fig. 2. 3D CAD model of the plant in Fig. 1.

visualization of the exported XML file. It is notable that Fig. 3

includes only the main pipelines, while Fig. 2 includes all of

the pipelines. In general, such differences may be encountered

in industrial plants, especially when working with design

documents originating from different phases of the plant life-

cycle.

IV. METHODOLOGY

Directed graphs with node labels are chosen as the abstrac-

tion level for step 2 of the procedure presented in Section I, as

it is anticipated that they can support the matching activity in

step 3. Such graphs have been previously successfully applied

to matching industrial process plant design [5]. Matching

of P&IDs and 3D models has not yet been attempted. The

research goal stated in Section I can thus be elaborated as

follows: to generate directed graphs with relevant node labels

from P&IDs in Proteus DEXPI format and 3D CAD models in

PFC format. Since the goal is to raise the level of abstraction, it

is intended that the graph capture only a part of the information

in the source document. The ideal level of information to

be captured depends on the needs of steps 3 and 4 of the

procedure introduced in Section I, so this is a discussion that

is initiated in this paper and continued in further research.

However, previous research on graph matching has shown

that performance has been improved by graph simplification

methods that have discarded details related to piping [5], so our

starting point in this paper is that more detail is not necessarily

better. The graph is specified as a set of node N and a set of

directed edges E. Each edge is specified by source and target

nodes esource and etarget, which are elements of N .

A. A Generating a graph from a Proteus XML file

Fig. 4 presents a flowchart for generating the graph from

an XML file conforming to the Proteus XML schema. The

procedure extracts the connections between elements of the

physical process or the control system, as opposed to graphical

connections in the diagram. The < Connection > element

of < PipingNetworkSegment > elements specifies con-

nections nozzles of tanks or pumps to each other. In some

cases, a < PipingNetworkSegment > connects to a valve

and in some cases the valve is skipped, in the sense that the

piping network segments have no information to specify that

a valve was along that segment. Whether this occurs depends

on the way in which the engineer uses the P&ID tool. For

the control system, connectivity is specified in terms of the

¡Connect¿ elements of < SignalLine > elements. However,

it was discovered that these connections are between two

elements of type < InstrumentComponent >, which in

our case are valves, heating elements, pump motors or generic

actuators of unspecified type. Thus, this would result in many

small stand-alone graphs not connected to the graph generated

from < PipingNetworkSegments >. For example there is

a < SignalLine > between the temperature sensor TI-T100

to the heating element ES-E100 (see tank B-100 in Fig. 3), but

ES-E100 is not logically connected to the tank; it is just drawn

next to the tank so that a human will understand that it refers



Fig. 3. P&ID of the plant in Fig. 1.

to the heating element in the tank. Thus, although extraction

of < InstrumentComponent > and < SignalLine >

elements was implemented, it was concluded after examining

the results for the case study that it is very questionable

whether these would add value to the generated graph. Thus,

the procedure in Fig. 4 does not examine these elements. It

is understood that further research is needed to determine the

ideal level of detail for graphs generated from Proteus XML.

The flowchart in Fig. 4 attaches 3 kinds of labels to nodes:

nname (a unique id), nlable (a tag for human readable presen-

tation) and nclass (which specifies the type of component and

may be used later for graph matching purposes).

B. Generating a graph from a PCF file

Fig. 5 presents a procedure for generating a directed graph

from a PCF file. The ‘New Component?’ element of the MAIN

ALGORITHM examines components of type PIPE, WELD

and VALVE. The PCF also defines TEE-STUB elements,

but the branches in the pipelines can be captured in the

graph without examining these elements. Each component

has two END-POINT lines in the PCF file, which specify

3D coordinates. Each such coordinate will result in a node

in the graph. The two END-POINTs are used to define an

edge between the nodes that they define. The edge is labelled

with the type of component; the types relevant for our case

study are ‘Pipe’, ‘Weld’ and ‘Valve’. Thus, these nodes do not

correspond to nodes in the graph generated from the P&ID.

ALGORITHM2 in Fig. 5 extracts end connections from the

PCF and generates nodes for them as well. The end connection

of a pipeline is either a nozzle of process equipment or an

open endpoint, referencing another open endpoint in another

PCF file. In the case of a nozzle of process equipment, the

created node will have a direct correspondence to a node

generated from the P&ID. The label of this node generated by

ALGORITHM2 is a string that combines tag and component

type information, thus merging information similar to nlable

and nclass generated by the algorithm Fig. 4.

START
Read Proteus XML file to Java document model

Eq = set of <Equipment> elements

Eq = ∅
Remove eq ∈ Eq from Eq; Create node n ∈ N

nname = “ID” attribute of eq

nlabel = “TagName” attribute of eq

nclass = “ComponentClass” attribute of eq

NzEq = set of <Nozzle> elements of Eq

NzEq = ∅
Remove nz ∈ NzEq from NzEq

Create node n ∈ N; nname = “ID” attribute of nz

PI = set of <ProcessInstrument> elements

F

F

T

T

PI = ∅
Remove pi ∈ PI from PI; Create node n ∈ N

nname = “ID” attribute of pi

nlabel = “TagName” attribute of pi

nclass = “ComponentClass” attribute of pi

F

PNS = set of <PipingNetworkSegment> elements

PNS = ∅
Remove pns ∈ PNS from PNS; Create edge e ∈ E

Retrieve element <Connection> of pns,

and get its “FromID” and “ToID” attributes

esource  = n ∈ N : nname = ”FromID”
etarget  = n ∈ N : nname = ”TOID”

F

STOP
T

T

Fig. 4. Flowchart for generating a directed graph from an XML file
conforming to Proteus XML schema.



MAIN ALGORITHM

Read next line of PCF file

End of

file?

Create edge e and add to E

elabel = component type

Set firstEndPoint = true

Execute ALGORITHM1

New

component?

ALGORITHM1

END-POINT

on this line?

Parse XYZ coordinates and create 

node n.

firstEndPoint

∃ n’ ∈ N:

n = n’
Add n to N

Create reference n’
Assign n’ = n

Retrieve n’

T

F

esource = n’
Set firstEndPoint = false

etarget = n’

F

T

T

F

RETURN

Read next line of PCF file

DONE

T

F

T

F

Create edge e and add to E

Execute ALGORITHM2

New end

connection?

T

Read next line of PCF file

ALGORITHM2

CO-ORDS

on this line?

Parse XYZ coordinates.

Create node n

esource = n

∃ n’ ∈ N:

n = n’
etarget = n’

T F

F

T

RETURN

MALFORMED

PCF

Read next line of PCF file

CONNECTION-

REFERENCE on this

line?

Parse connection name

(next word on this line)

nlabel = connection name

F

T

F

Fig. 5. Flowchart for generating a directed graph from a PCF file.

V. RESULT

A. Graph abstraction of the 2D model

The algorithm in Fig. 4 was implemented in Java and

applied to a Proteus XML file corresponding to the P&ID in

Fig. 3. Fig. 6 shows an excerpt of the generated graph, which

was drawn manually from the list of nodes and edges exported

by the algorithm. Fig. 7 shows the corresponding part of the

P&ID. It is notable that in this case, the graph generation

skips the inline instruments, the flow meter and the valve, for

reasons explained in IV-A.

Vessel

Pump

Nozzle

E3

B-200

Tee

N25 N26E6

P-100
N24

Fig. 6. Excerpt of generated graph.

Fig. 7. Excerpt of P&ID corresponding to the graph in Fig. 6.

Fig. 8 shows the complete generated graph, which was

drawn manually from the list of nodes and edges outputted

by the algorithm. Referring to the node labels created by the

algorithm in Fig. 4, nname is a very long and hardly human

readable id, which has been replaced in our implementation

by a unique short human readable id such as E3, N16, or I5.

nlable is a tag for human readable presentation and may not

always be present in the XML file; in Fig. 8 it has been used

in addition to the id (in case of tanks and pumps) and instead

of the id in case of sensors. nclass provides the information

on component types in the legend.

Legend

Vessel

Basin

Vertical 

drum

Pump

E4

P-200

Nozzle

N43 N45 E2

B-300N1

N2

E3

B-200

Sensor

Control

valve

LS-L201

I0

Instrument

connector

(nozzle)

N8

I20

Tee

N25

N22

LI-L200

N26

E6

P-100

N24

N38
E1

B-100
N37

N33 N35TI-T100 LS-L101

N39

LI-L100

N4 I1

E0

B400

N5

N28

I12

N31

LS-L300

N41

TI-T300
N16

N15

I5

I4

N13

N10

LI-L400

N17

N18PI-P301 N20 PI-P300

N46

LS-L301

Fig. 8. Complete graph generated from P&ID.

B. Graph abstraction of the 3D model

Fig. 9 shows the graph generated from the PCF of the

simplest of the 10 pipelines in Fig. 2. The graph was drawn



manually from the list of nodes and edges outputted by the

algorithm in Fig. 5. Color coding is used to show the corre-

sponding process components on the photo of the pipeline.

Node0

Node1

Node4

Node5

Node8

Node9

B100_Preheater/

Out_M100$15

M100/

In_Preheater$15

Pipe0Elbow2

Weld1

Weld3

Pipe4

Weld5
Endpoint7

EndPoint8

Fig. 9. Graph for the pipeline from tank 100 to pump 100

Fig. 10 repeats the experiment on a more complex pipeline

with branches and valves, and Fig. 11 uses color coding to

mark the corresponding elements on a photo of the pipeline.

It is notable that the edge directions do not correspond to

flow directions, which may be a major issue for matching

approaches based on directed graphs. Three possible solutions

are proposed for further research:

1) It would be possible to examine the FLOW attributes

of the PCF. However, these are optional attributes and

it cannot be assumed that modelers define them, so this

approach is not recommended.

2) The START-CO-ORDS attribute of the pipeline can be

used. This can be used to identify the end connection

node on the pipeline from which the flow originates. The

solution depends on assuming that in 1 PCF file there

are branches but no loops and that flows in all branches

are away from the node at START-CO-ORDS. START-

CO-ORDS is an optional attribute, but this assumption

could be enforced by a semi-automatic solution that asks

the users to specify the start node for each pipeline. If

there is a usable interface which allows the user to select

from options in a drop-down menu, the manual workload

would be minimal. In this case, the edge directions can

be fixed to correspond to flow directions by treating the

graph generated from the PCF file as a tree with the

node at START-CO-ORDS as the root node. The graph

could then be processed with a tree traversal algorithm,

so that edge directions are fixed to always point away

from the root.

Node39

Node40

Node5

Node36

Node0

Node1B200_Feedwater/

Out_M200$15

Pipe20

Elbow18

Weld19

Pipe0

Weld2

EndPoint46

Node42
Weld21

Node44
Elbow22

Node54

Node59

Node46

Node50

Node47

Node58

Node67

Weld24

Pipe23

Valve25

Pipe27

Weld30

Elbow29

Weld34

Node31

Node62

Node79

Node78

Node70

Node74

Node71

Node83

Node82

Pipe33

Pipe31
Node64

Pipe32

Weld36

Elbow35

Node75
Weld38

Pipe37

Weld40

Elbow39

Weld43

Pipe41

M200/

In_Feedwater$15

EndPoint46

Node7

Node11

Node6

Node89

Node13

Pipeline 2

(other PCF file)

EndPoint47

Pipe44

B400_Makeup/

Out_M200$15

EndPoint47

Pipe3

Weld5

Elbow6

Node18

Node19

Node14

Node15

Node22

Node23

Node27

Weld8

Pipe7

Weld10

Elbow9

Weld12

Pipe11

Valve13

Pipe15

Fig. 10. Graph generated from the PCF of the pipeline from tank 200 to
pump 200.

3) The ingoing and outgoing flows at pumps are specified

in the end connection information of the PCF. In case of

pipelines without pumps, in which the flow is caused by

gravity, the elevations of the endpoints can be used to

infer the flow direction. This could be used to overcome

the need for manual input in solution 2 in case START-

CO-ORDS has not been used.

VI. DISCUSSION

Fig. 12 matches the PCF generated graph in Fig. 9 to

the Proteus generated graph in Fig. 8. Color-coding is used

to show the matching elements. The blue color makes it

clear how the graphs are at a different level of abstraction.

Graph simplification methods such as presented in [5] could

readily be applied to eliminate this difference; however, the

raw outputs are presented in Fig. 12, since the ideal graph

simplification approach is a matter of further research.

Fig. 13 matches the PCF generated graph Fig. 10 to the

Proteus generated graph in Fig. 8. It is notable that some

parts of the PCF generated graph could not be matched, as

they correspond to pipelines not included in the simplified



Fig. 11. Marking the color coded nodes and edges in Fig. 10 with colored
ellipses on the relevant process components on the photo of the pipeline.

Node0

Node1

Node4

Node5
Node8

Node9 B100_Preheater/

Out_M100$15

M100/

In_Preheater$15
Pipe0

Elbow2

Weld1

Weld3Pipe4

Weld5

Endpoint7
EndPoint8

E4

P-200
N43 N45 E2

B-300N1

N2

E3

B-200
LS-L201

I0

N8

I20

N25

N22LI-L200

N26

E6

P-100

N24

N38
E1

B-100
N37

N33 N35TI-T100 LS-L101

N39

LI-L100

N4 I1

E0

B400

N5

N28

I12

N31

LS-L300

N41

TI-T300
N16

N15

I5

I4

N13

N10

LI-L400

N17

N18PI-P301 N20 PI-P300

N46

LS-L301

Fig. 12. Matching the graph in Fig. 9 to the graph in Fig. 8.

P&ID. As discussed in Section III, such a scenario is likely

to occur in industrial practice over the plant lifecycle and

solutions developed in further work should be robust against

these scenarios.
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Fig. 13. Matching the graph in Fig. 10 to the graph in Fig. 8.

The color-coding in Fig. 12 and Fig. 13 was added manually.

The automation of this matching work belongs to step 3 of the

procedure introduced in Section I and is expected to be done

in further work by graph matching techniques similar to [5]. It

is notable that the graphs generated by the algorithms in Fig. 4

and Fig. 5 are a straightforward abstraction of the information

in the source formats. Thus, they may not be ideal inputs for

graph matching methods in further work. In particular, nodes

in the graph generated from a P&ID correspond to process

components and have a label nclass, which specifies the type

of component. However, the PFC file specifies components

such as pipe segments, welds and valves with result in edges.

In other words, nodes in the P&ID graph may correspond to

edges in the PCF graph (such as the indigo coded elements in

Fig. 13).

VII. CONCLUSION

To summarize the discussion, a preprocessing phase may

be needed before graph matching to address the identified

disparities between the graphs generated from the 2D and

3D sources. In particular, piping simplifications algorithms

as in [5] could be applied to the graphs generated from the

3D CAD to arrive at the same level of details as in the

P&ID graphs. Additional novel preprocessing algorithms are

required to address disparities such as valves being represented

as nodes in the 2D graph and as edges in the 3D graph.

Finally, the findings suggest that level of tool support and

industry standardization for capturing flow directions may

be insufficient for the development of robust and general

solutions for generating directed graphs from 3D CAD models.

In this case, one viable option is to work with undirected



graphs, since according to previous research the direction

information is only used to variants of the graph matching

algorithm, such as the ‘anchor similarity measure’ in [5]. After

these preprocessing steps, it is reasonable to expect the graph

matching will give good results, since the graphs to be matched

have similar structure and level of detail. The matching will

provide the basis for integrating the 2D and 3D information

to a single digital plant model.
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