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Abstract

In reinforcement learning an agent uses online feedback from the environment in order to adaptively

select an effective policy. Model free approaches address this task by directly mapping environmen-

tal states to actions, while model based methods attempt to construct a model of the environment,

followed by a selection of optimal actions based on that model. Given the complementary advan-

tages of both approaches, we suggest a novel procedure which augments a model free algorithm

with a partial model. The resulting hybrid algorithm switches between a model based and a model

free mode, depending on the current state and the agent’s knowledge. Our method relies on a novel

definition for a partially known model, and an estimator that incorporates such knowledge in or-

der to reduce uncertainty in stochastic approximation iterations. We prove that such an approach

leads to improved policy evaluation whenever environmental knowledge is available, without com-

promising performance when such knowledge is absent. Numerical simulations demonstrate the

effectiveness of the approach on policy gradient and Q-learning algorithms, and its usefulness in

solving a call admission control problem.

Keywords: reinforcement learning, temporal difference, stochastic approximation, markov deci-

sion processes, hybrid model based model free algorithms

1. Introduction

In Reinforcement Learning (RL) an agent attempts to improve its performance over time at a given

task, based on continual interaction with the (usually unknown) environment, (Bertsekas and Tsit-

siklis, 1996; Sutton and Barto, 1998). This improvement takes place by modifying the action se-

lection policy, based on feedback from the environment and prior knowledge available to the agent.

Formally, RL is often phrased as the problem of finding a mapping, the so called policy, from the

environment’s states to the agent’s actions that maximizes a given functional of a reward function.

Most RL algorithms can be classified into either model based (also termed indirect) or model

free (direct) approaches (Sutton and Barto, 1998; Bertsekas and Tsitsiklis, 1996). In the former

setting, taking its inspiration from the field of Adaptive Control (Kumar, 1985), the agent maintains

an explicit model of the environmental dynamics, typically in the form of a Markov Decision Pro-

cess (MDP), while interacting with it. Based on this model, a planning problem is solved where

techniques from Dynamic Programming (Bertsekas, 2006) are applied in order to find the optimal

policy function. On the other hand, within the model free setting, the agent does not try to build a

model of the MDP, but rather attempts to find the optimal policy by directly mapping environmental
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states to actions. In this sense, no model of the environmental dynamics is required. While it can be

shown that both approaches, under mild conditions, asymptotically reach the same optimal policy

on typical MDP’s, it is known that each approach possesses distinct merits. Model based meth-

ods often make better use of a limited amount of experience and thus achieve a better policy with

fewer environmental interactions. On the other hand, model free methods are simpler, require less

computational resources, and are not affected by biases in the design (or estimation) of the model.

The view taken in this work is that this dichotomy between algorithmic approaches, although

popular, is not necessarily desirable. As an example, consider a scenario where some parts of the

environment are known in advance, but computational resources are limited, restricting the use of

proper model based approaches. In this case, a hybrid approach may allow us to benefit from using

parts of the model in the algorithm, without sacrificing its simplicity, thus striking a balance between

the merits of each approach. Surprisingly, the concept of combining model free and model based

algorithms has received very little attention in the RL literature, and theoretical guarantees to its

advantages are lacking.

In this work we pursue such a hybrid approach applicable to cases where partial model infor-

mation is available in a specific form which we term partially known MDP. We provide a method

for integrating such information into RL algorithms of the Stochastic Approximation (SA) type

(Kushner and Yin, 2003; Borkar, 2008). This class of online model free algorithms includes many

standard RL approaches that have been used effectively in practice (e.g., Tesauro, 1995; Crites and

Barto, 1996). The method we propose reduces uncertainty in the algorithm trajectory, thereby im-

proving its performance. Our theoretical analysis focuses on a particular model free algorithm -

the well known TD(0) policy evaluation algorithm, and we prove that our hybrid method leads to

improved performance, as long as sufficiently accurate partial knowledge is available. The effec-

tiveness and generality of our method is further demonstrated in two numerical simulations. In the

first, we apply it to a policy gradient type algorithm, and investigate its performance in randomly

generated MDPs. In the second, we consider a call admission control problem. As it turns out, our

partially known MDP definition is a natural choice for describing plausible partial knowledge in

such problems, and performance improvement is demonstrated for a Q-learning algorithm.

1.1 A High-Level Sketch of the Method

Online SA algorithms attempt to optimize some parameter of the system, using “noise corrupted”

system measurements as a data stream for an iterative optimization process. These algorithms deal

with noise by making only small changes to the parameters at each step, so that over many iterations

the noise averages out, and the parameters asymptotically follow a mean trajectory. Intuitively, any

prior knowledge about the system should reduce our uncertainty about its behavior and thus enable

some noise reduction. In this work we propose a method that reduces the noise at each step. We

do this by observing that the update at each step can be viewed as a simple estimate of the mean

update. Using the partially known MDP we propose an improved estimator, thereby reducing the

noise variance. A key property of our estimator is that it is unbiased, thus it preserves the algorithm’s

mean trajectory. This assures us that the overall function of the algorithm will remain intact, while

the reduction in noise variance gives reason to expect an improvement in performance.
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1.2 Related Work

One difficulty of RL is coping with the stochasticity inherent to RL algorithms. In this work we de-

fine a partially known MDP, and use this partial knowledge to improve the asymptotic performance

of stochastic approximation type algorithms. Our method is novel, and specifically deals with this

difficulty. We note that a different notion of a partially known MDP was used by Kearns and Singh

(2002) and Brafman and Tennenholtz (2003) to tackle a different difficulty of RL - the ‘exploration

exploitation’ tradeoff. Thus, the partial model which we use only to reduce stochastic fluctuations

may further be used to explore or exploit more efficiently. On the other hand, the advantage of our

approach is that it is general, and may be easily applied to a large class of model free algorithms.

When a full model of state transitions is available, applying our method to Q-learning results in

an algorithm known as Real Time Dynamic Programming (RTDP) (Barto et al., 1995). Thus, the

method presented in this work may be viewed as a bridge between the model free Q-Learning and

the model based RTDP.

In Section 4 we analyze the asymptotic fluctuations in a fixed step TD(0) algorithm with a partial

model. A similar analysis of TD(0) without partial model was given by Dayan and Sejnowski (1994)

for a decreasing step size and without explicit convergence rate results, and by Konda (2002) using a

similar technique to bound the convergence rate. Singh and Dayan (1998) provided update equations

for the MSE of TD(0), which we use as a measure of convergence rate, though their equations were

only solvable by simulation. This work presents explicit values of the asymptotic MSE.

On a slightly different note, an early approach towards a hybrid model based - model free RL

algorithm is the Dyna architecture (Sutton, 1990), in which interactions with the environment are

used both for a direct policy update, using a model free RL algorithm, and for an update of an

environmental model. This model is then used to generate simulated trajectories which are fed to

the same model free algorithm for further policy improvement. In a more recent work by Abbeel

et al. (2006), a hybrid approach is proposed that combines policy search on an inaccurate model,

with policy evaluations in the real environment. Finally, we note that the idea of combining model

based and model free approaches has been proposed in the context of animal and human learning,

suggesting an explanation for behavioral choice experiments (Daw et al., 2005). To the best of our

knowledge, our work presents the first formal proof of the advantage of a hybrid algorithm over a

standard model free algorithm.

1.3 Organization

This paper is organized as follows. In Section 2 we describe our estimator in the context of estimat-

ing the expectation of a random variable. This allows us to derive all its important properties without

the notational burden of the SA setting. In Section 3 we describe the RL environment and introduce

the partially known MDP. We then describe a method that integrates it in model free SA algorithms.

Our main results are in Section 4, in which we analyze how our proposed method influences the

algorithm’s overall performance. Focusing on TD(0), we show that improvement in performance

is achieved. In Section 5 we investigate the effects of inaccuracies in the partial model, and extend

our results to inaccurate partially known MDP’s. In Section 6 we demonstrate through simulation

the applicability of our method to other model free RL algorithms. We conclude and discuss future

work in Section 7.
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2. Estimation of a Random Variable Mean with Partial Knowledge

Our method of using partial knowledge in an SA algorithm is based on constructing a better esti-

mator for the mean update at each step. In this section we describe our estimator in the context

of estimating the mean of a random variable. This allows us to derive all its important properties

without the notational burden of the SA setting. The results we derive will then easily transfer to

the more complicated SA setting.

Let X be a random variable over a finite and discrete set Ω and let P(ω), Pr(X = ω) denote the

probability distribution of X . Since P(ω) contains all the information about X , a natural definition

for partial knowledge in this setting is information regarding some of its attributes. In particular, we

assume that for an a-priori given subset of Ω, the ratios between the probability distribution values

are provided. Denote by K this set for which the ratios of P are known,1

K ,







ω : ω ∈ Ω s.t.
P(ω)

∑
ω′∈K

P(ω′)
is known







. (1)

We refer to K as the partial knowledge set. Suppose we are given one sample of X , denoted by x,

and we wish to estimate (without bias) the expectation µ = E [X ], ∑ω∈Ω ωP(ω). Our estimator can

be any function of x, and of values and probability ratios in the partial knowledge set K.

The Maximum Likelihood (ML) estimator of µ is derived by first using x to generate the ML esti-

mate of the complete probability distribution P̂(ω), and then calculating the expectation ∑ω ωP̂(ω).
For a given known set K, let PK (ω) denote the set of all probability distributions P(ω) that satisfy

the ratios in (1). If the observed sample x is not in K, then the ML estimate for the probability

distribution P̂(ω;x /∈ K) is given by

P̂(ω;x /∈ K) = argmax
P(ω)∈PK(ω)

P(x) = δx,ω, (2)

where δx,ω is Kronecker’s delta. Conversely, if x is in K, the ML estimate P̂(ω;x ∈ K) is

P̂(ω;x ∈ K) = argmax
P(ω)∈PK(ω)

P(x) =
1K

ωP(ω)

∑
ω′∈K

P(ω′)
, (3)

where 1K
ω denotes the indicator function that equals 1 if ω ∈ K and 0 otherwise. Letting K̄

denote the complement of the set K, combining (2) and (3) gives the ML estimate for the probability

distribution P̂(ω)

P̂(ω;x) = 1K

x

1K
ωP(ω)

∑
ω′∈K

P(ω′)
+1K̄

x δx,ω. (4)

By taking an expectation of (4), we derive the ML estimate for µ given the partial knowledge, which

we denote by µ̂K

µ̂K (x) = 1K

x ·
E [X ·1K

X
]

E [1K
X
]

+1K̄

x · x. (5)

1. Note that knowledge of the exact probability distribution values is a special case of this definition.
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Note that (5) uses the partial knowledge in a very intuitive way. It ‘replaces’ samples in the

known set with their weighted average, which by (1) is known. An important property of the esti-

mator µ̂K is that it is unbiased, as expressed in the following Lemma.

Lemma 1 The estimator µ̂K is unbiased, namely E [µ̂K] = µ.

Proof By direct calculation

E [µ̂K] = E [1K

X
] · E [X ·1K

X
]

E [1K
X
]

+E
[

1K̄

X
·X
]

= E
[

X
(

1K

X
+1K̄

X

)]

= E [X ] .

In the following Lemma the Mean Squared Error (MSE) of µ̂K is computed. Let P(K) =∑ω∈K P(ω),
and let PK (ω) denote the probability measure over the known set K, namely

PK (ω), 1K

ωP(ω)/P(K) .

Denote by EK [·] and VarK [·] the expectation and variance under the probability measure PK .

Lemma 2 The MSE of µ̂K is E
[

(µ̂K −µ)2
]

= Var [X ]−P(K) ·VarK [X ] .

Proof Observe that for any function f (·)

EK

[

( f (X)−µ)2
]

= EK

[

( f (X)−EK f (X)+EK f (X)−µ)2
]

= VarK f (X)+(EK [ f (X)]−µ)2 , (6)

where the cross terms in the second equality vanish.

Next, we have

E [µ̂K (X)−µ]2 = E
[

(

1K

X
+1K̄

X

)

(µ̂K (X)−µ)2
]

= P(K)EK

[

(µ̂K (X)−µ)2
]

+E
[

1K̄

X
(X −µ)2

]

= P(K)(EK [X ]−µ)2 +E
[

1K̄

X
(X −µ)2

]

= P(K)
(

EK

[

(X −µ)2
]

−VarK [X ]
)

+E
[

1K̄

X
(X −µ)2

]

= E
[

(X −µ)2
]

−P(K) ·VarK [X ] ,

where in the fourth equality we used (6) with f (X) = X .

One could disregard the partial knowledge altogether, and choose to use the sample x itself as an

unbiased estimate for µ. Denote this estimator, which will be referred to as the sample estimator, by

µ̂(x) = x. (7)

When no partial information is available, µ̂ seems like the most reasonable choice (actually, it can

be shown that µ̂ is the only unbiased estimator in that case). It is easy to see that the MSE of µ̂ is
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Var [X ], and from Lemma 2 we deduce that when the cardinality of the known set satisfies |K|> 1,

and P(K) > 0, the MSE of µ̂K is smaller than that of µ̂. In parameter estimation parlance, we say

that µ̂K dominates µ̂ (Schervish, 1995).

As will be shown in the next section, the update at each iteration of an SA algorithm can be seen

as the estimation of an expected update direction. This estimation is based on one sample, obtained

through observation of the system dynamics at that step, and the estimator used is just µ̂. When

partial knowledge of these dynamics is available, we propose to use µ̂K instead, and benefit from its

reduced variance.

An appropriate question at this point is whether a better estimator than µ̂K exists. We refer the

interested reader to appendix A, where we show that µ̂K is admissible. For the following discussion

however, the results of Lemmas 1 and 2 suffice.

3. A Stochastic Approximation Algorithm with Partial Model Knowledge

In this section we describe our method of endowing a model free RL algorithm with partial model

knowledge. We start with some general definitions of the RL environment and SA algorithms. Then,

we consider a situation where partial knowledge of the environment model is available. Based on

the estimator developed in the previous section, we propose a general form of SA algorithms that

incorporate such knowledge.

3.1 Preliminaries

We describe the notation used throughout the paper, the RL environment, and the stochastic approx-

imation method.

3.1.1 NOTATION

Throughout the rest of the paper the following notation is used. All vectors are column vectors, and

(·)T
denotes the transpose operator. The product A◦B denotes the element-wise product (Hadamard

product) of A and B. Tr [·] is the trace of a matrix. The cardinality of a set K is denoted by |K|, and its

complement by K̄. Unless noted otherwise, a subscript of a variable denotes time. The i-th element

of a vector A is denoted by [A]i or A(i), depending on the context. The (i, j) element of a matrix B

is denoted by [B]i j.

3.1.2 RL ENVIRONMENT

We consider an agent interacting with an unknown environment, modeled by an MDP in discrete

time with a finite state set X and action set U. Each selected action u∈U at a state x∈X determines

a stochastic transition to the next state y ∈ X with a probability Pu(y|x).
For each state x the agent receives a corresponding deterministic reward r(x), which is bounded

by rmax, and depends only on the current state.2 The agent maintains a policy function, µθ(u|x),
parametrized by a vector θ∈R

L, mapping a state x into a probability distribution over the actions U.

Under policy µθ, the environment and the agent induce a Markovian transition matrix, denoted by

Pµθ
, which we assume to be ergodic.3 This Markovian transition matrix has a stationary distribution

2. Generalizing the results presented here to state-action rewards is straightforward. Generalization to stochastic rewards

is also possible by considering mean rewards.

3. That is, aperiodic, recurrent, and irreducible.
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over the state space X , denoted by πµθ
. Let Πµθ

∈ R
|X |×|X | be a diagonal matrix where its elements

are Πµθ
= diag(πµθ

). Our goal is to optimize θ with respect to some performance criteria. The

tuning of θ is performed online in the following fashion. At time n, the current parameter value

equals θn and the agent is in state xn. It then chooses an action un according to µθn
(u|xn), observes

xn+1, and updates θn+1 according to some protocol.

3.1.3 STOCHASTIC APPROXIMATION

Stochastic approximation methods (Kushner and Yin, 2003; Borkar, 2008) are a class of iterative

stochastic algorithms, to which many model free RL algorithms belong (Bertsekas and Tsitsiklis,

1996). Analysis of SA methods has received considerable attention over the past few decades,

and many analysis techniques are available. In particular, the ODE approach introduced by Ljung

(1977), is a widely used method for investigating the asymptotic behavior of SA iterates. The

algorithms that we deal with in this paper are all cast in the following SA form,4

θn+1 = θn + εnF (θn,xn,un,xn+1) , (8)

where {εn} are positive step sizes. The key idea of the technique is the following. Iterate (8) can

be decomposed into a deterministic function of the current state, action and parameter, denoted by

g(θn,xn,un), and a martingale difference noise term δMn,

θn+1 = θn + εn (g(θn,xn,un)+δMn) , (9)

where g(θn,xn,un) , E [F (θ,xn,un,xn+1)|θn,xn,un], δMn , F (θn,xn,un,xn+1)− g(θn,xn,un), and

the expectation is taken over the next state xn+1.

Suppose that the effect of the martingale difference noise weakens due to repeated averaging,

and further assume that there exists a continuous function ḡ(θ) such that 1
m

m+n−1

∑
i=n

g(θ,xi,ui) →

ḡ(θ) w.p.1as m,n → ∞.5 Consider the following ordinary differential equation (ODE)

dθ/dt = ḡ(θ). (10)

Then, a typical result of the ODE method in the SA setup suggests that the asymptotic limits of

(8) and (10) are identical. Another aspect of SA relates to the rate of convergence of such iterates

(Kushner and Yin, 2003), an issue that will be elaborated on later.

3.1.4 A NOTE ON TYPES OF CONVERGENCE

The type of convergence to the asymptotic limit depends primarily on the step size used. Let θ∗

denote an asymptotically stable fixed point of (10), and assume that it is unique. Then, for a suitably

decreasing step size, convergence w.p. 1 of θn to θ∗ can be established. For a constant step size, θn

can be shown to converge weakly to a random variable centered on θ∗. In the following we use the

term convergence ambiguously, and the precise definition should be inferred from the context. For a

detailed and rigorous discussion of the types of convergence in SA the reader is referred to Kushner

and Yin (2003).

4. This is not the most general SA form, but one that is cast to the RL setup.

5. Note that for stationary policies, the strong law of large numbers for Markov chains may be used to write ḡ explicitly

ḡ(θ) = E [g(θ,x,u)|θ] = ∑x∈X πµθ (x)∑u∈U µθ(u|x)g(θ,x,u).
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3.2 Partial Model Based Algorithm

A key observation obtained from examining Equations (8-9), is that F (θn,xn,un,xn+1) in the SA

algorithm is just the sample estimator (7) of g(θn,xn,un), the mean update at each step. The esti-

mation variance in this case stems from the stochastic transition from xn to xn+1. In the following

we assume that we have, prior to running the algorithm, some information about these transitions

in the form of partial transition probability ratios. Similarly to Section 2, define the known set for

state x and action u as

Kx,u ,











y : y ∈ X s.t.
Pu(y|x)

∑
y′∈Kx,u

Pu(y′|x)
is known











. (11)

We refer to the known sets for all states and actions as the partially known MDP.

It is clear that definition (11) is motivated by the theoretical results presented in Section 2, and

at this point it may well be questioned whether such a definition has any use in practice. We refer

the concerned reader to Section 6, where it is shown that in certain problems definition (11) arises

as the natural representation of partial model knowledge.

Denote by 1K

n+1 an indicator function that equals 1 if {xn+1} belongs to Kxn,un
and 0 otherwise.

Based on the estimator introduced in Section 2, we propose the following update rule for the tunable

parameter, denoted by θK , which we refer to as the Integrated Partial Model (IPM) iteration

θK

n+1 = θK

n + εn

(

1K

n+1FK

n +1K̄

n+1F (θK

n,xn,un,xn+1)
)

, (12)

where, abusing notation, FK
n = FK

n (θK
n,xn,un), and

FK

n ,

∑
y∈Kxn,un

Pun
(y|xn)F (θK

n,xn,un,y)

∑
y∈Kxn,un

Pun
(y|xn)

. (13)

Similarly to (9), iterate (12) can also be decomposed into a mean function gK (θK
n,xn,un) and a

martingale difference noise δMK
n

θK

n+1 = θK

n + εn (g
K (θK

n,xn,un)+δMK

n) ,

and by Lemma 1 we have gK(θ,x,u) = g(θ,x,u). Similarly, defining ḡK (θ) = E [gK (θ,x,u)|θ] we

get that ḡK (θ) = ḡ(θ), and we reach the following important conclusion, which is summarized as a

theorem.

Theorem 3 The IPM iteration defined in (12) leads to the same characteristic ODE dθ/dt = ḡ(θ)
as the regular SA iteration (8).

Since the asymptotic behavior of the SA iterate (8) is governed by its ODE, Theorem 3 assures

us that using the IPM iteration (12) does not change this behavior, and thus the function of the

algorithm remains intact. If (8) can be shown to converge to some limit point, iterate (12) can be

shown to converge to the same limit. Furthermore, from Lemma 2 we have that if the partially

known MDP is not null, then on each iteration the variance of the noise term is reduced. This gives

us reason to expect an improvement in the overall performance of the algorithm.
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3.3 Step Size Considerations

As it turns out, the improvement in performance attained by the IPM iteration is heavily influenced

by the step size used. This can be intuitively explained using the following example. Let {zi} be a

sequence of i.i.d. bounded random variables, with mean µz and variance σ2
z . Consider the following

SA iteration

θn+1 = θn + εn (zn+1 −θn) .

For a decreasing step size of the form εn = 1/(n+ 1), the value of θn is simply the empirical

average, which converges w.p. 1 to µz. As a performance measure, consider the MSE defined by

E‖θn −µz‖2
, which equals σ2

z/n. Integration of partial knowledge based on (12) in this case is

equivalent to averaging variables with the same mean but with a reduced variance, and the MSE still

approaches zero at a rate O(1/n). On the other hand, when the step size is constant, θn converges

in mean to µz, but the MSE converges to a non-zero value which, intuitively, is proportional6 to the

variance σ2
z . Any variance reduction in this case would thus prove valuable.

The use of a constant step size, though clearly undesirable in the preceding example, is quite

common in RL applications, as it allows the iterates to quickly reach a neighborhood of the desired

solution, and can cope with time varying environments. In the following discussion, we shall thus

focus our analysis on algorithms with a constant step size.

4. TD(0) with Partial Model Knowledge

In this section we apply our IPM method of Equation (12) to the well known model free algorithm

Temporal Difference (TD(0); Sutton and Barto, 1998). The simplicity of TD(0) allows us to math-

ematically characterize its performance in terms of convergence rate, and to quantify the impact

of using the IPM method on it. The mathematical results we derive specifically for TD(0) are also

characteristic of more complex algorithms, as will be shown in subsequent sections.

4.1 Definitions

Throughout this section, we assume that the agent’s policy µ is deterministic and fixed, mapping a

specific action to each state, denoted by u(x).

4.1.1 VALUE FUNCTION ESTIMATION

Letting 0 < γ < 1 denote a discount factor, define the value function for state x under policy µ as the

expected discounted return when starting from state x and executing policy µ

V µ(x), E

[

∞

∑
t=0

γtr(xt)

∣

∣

∣

∣

∣

x0 = x

]

.

Since in this section the policy µ is constant, from now on we omit the superscript µ in V µ (x), and

the subscript µ in Pµ , πµ, and Πµ.

The value function is a vector of size |X |. When the state space is large, Function Approximation

(FA) is often used to find an approximation to the value function in a subspace of size L< |X |. Linear

6. A precise value is given in the next section.
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FA is implemented as follows. Given a set of |X | linearly independent basis vectors φ(x) ∈ R
L, the

goal is to find an approximation to V (x), denoted by V̂ (x,θ) and defined as

V̂ (x,θ) = φ(x)T θ.

Note that the tunable parameter θ in this case is a vector of L linear weights. In vector form we

write V̂ (θ) = Φθ, where Φ ∈ R
|X |×L is a matrix composed of rows of basis vectors.

Define the Temporal Difference (TD) at time n as

dn , r (xn)+ γφ(xn+1)
T θn −φ(xn)

T θn.

For some small step size ε, the fixed step TD(0) algorithm updates θ online in the following manner,

θn+1 = θn + εdnφ(xn) . (14)

This is an SA algorithm as defined in (8), and its associated ODE is (Bertsekas and Tsitsiklis, 1996,

Lemma 6.5)
dθ

dt
= b+Aθ. (15)

where

A , ΦT Π(γP− I)Φ, (16)

b , ΦT Πr.

Equation (15) is linear and has a fixed point θ∗ that satisfies

Aθ∗ =−b.

Furthermore, the eigenvalues of A all have a negative real part (Bertsekas and Tsitsiklis, 1996,

Lemma 6.6b), and therefore θ∗ is a unique and stable fixed point.

4.1.2 INTEGRATED PARTIAL MODEL TD(0)

We now use the method developed in Section 3 to integrate a partial model into the TD(0) algorithm.

Since the policy is deterministic we drop the u subscript in the known set definition. Using (12) and

(13) we define IPM-TD(0)

θK

n+1 = θK

n + εdK

n φ(xn) ,

dK

n , r (xn)+ γ
(

1K

n+1FK

n +1K̄

n+1φ(xn+1)
T θK

n

)

−φ(xn)
T θK

n, (17)

FK

n ,

∑
y∈Kxn

P(y|xn)φ(y)T θK
n

∑
y∈Kxn

P(y|xn)
.

Using Theorem 3 we conclude that the IPM-TD(0) iterates have the same characteristic ODE as

the TD(0) iterates of Equation (14), and therefore converge to the same fixed point θ∗ of (15).

After establishing that the asymptotic trajectory (or, in other words the algorithmic ‘function’)

of the algorithm remains intact, we shall now investigate whether adding the partial knowledge can

be guaranteed to improve performance.
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4.2 Performance Improvement Proof

In this section we prove that the performance of the IPM-TD(0) iteration is superior in terms of

asymptotic MSE to regular TD(0). The formal approach we follow here may be carried out for

other SA algorithms as well, though the expressions involved may become more complicated.

Recall that the asymptotic limit point of both regular TD(0) and IPM-TD(0) is θ∗. A natural

performance measure in this case is the asymptotic MSE defined by

lim
n→∞

E‖θn −θ∗‖2 .

The remainder of this section is devoted to showing that integrating a partial model reduces the

asymptotic MSE, namely

lim
n→∞

E‖θK

n −θ∗‖2 < lim
n→∞

E‖θn −θ∗‖2 ,

whenever the known set K is not null.

By Lemma 2, at each iteration step we are guaranteed (as long as our partial model is not null)

a reduction in the noise variance. This clearly indicates that some improvement in the asymptotic

MSE can be expected, but a precise quantification of this is more complicated. A powerful tool for

this task is the rate of convergence theory for SA (or a ‘limit theorem for fluctuations’, as termed by

Borkar, 2008). In their treatment of rate of convergence, Kushner and Yin (2003, p. 315) discuss

the properties of the sequence

ρn , (θn −θ∗)/
√

ε. (18)

Application of their Theorem 10.1.3 to the TD(0) iteration results in the following theorem.

Theorem 4 The sequence ρn converges in distribution, as ε → 0 and n → ∞ such that nε → ∞,7

to a normally distributed random variable, which is the stationary distribution of the stochastic

differential equation

dU = AUdt +dW. (19)

A is defined in (16), and W is a Wiener process with covariance matrix Σ = Σ0 +Σ1 +ΣT
1 where

Σ0 = lim
n→∞

E
[

(dnφ(xn))(dnφ(xn))
T
∣

∣

∣θn = θ∗
]

, (20)

Σ1 =
∞

∑
j=1

lim
n→∞

E
[

(dnφ(xn))(dn+jφ(xn+j))
T
∣

∣

∣
θn = θn+j = θ∗

]

.

For the IPM iteration (17) we have ΣK

0,Σ
K

1 where dK
n replaces dn in (20).

The proof of Theorem 4 consists of verifying a lengthy set of technical assumptions required for

Theorem 10.1.3 of Kushner and Yin (2003), and is fully described in Appendix E.

The stationary solution to (19) is normally distributed with zero mean and covariance R, which

can be easily computed (Papoulis and Pillai, 2002, §9.2) by observing that (19) describes Gaussian

white noise filtered through a linear system, leading to

R = lim
t→∞

eAt







t∫

0

e−AsΣ
(

e−As
)T

ds







(

eAt
)T

. (21)

7. We retain this assumption on ε and n in the sequel.
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Let {λi}L
i=1 denote the eigenvalues of A, which all have a negative real part (Bertsekas and Tsitsiklis,

1996, Lemma 6.6b), and let Γ be its diagonalizing matrix, that is, ,A = ΓΛΓ−1 where Λ is diagonal.

Also, define a matrix χ ∈ R
L×L such that [χ]i j =−1/(λi +λ j). The limit in (21) can be written as

R = lim
t→∞

Γ







t∫

0

eΛ(t−s)Γ−1Σ
(

Γ−1
)T

eΛ(t−s)ds







ΓT . (22)

Note that the term in the curly brackets in (22) is a matrix, with its (i, j)th component equal to

t∫

0

eλi(t−s)
[

Γ−1Σ
(

Γ−1
)T
]

i, j
eλ j(t−s)ds

=
[

Γ−1Σ
(

Γ−1
)T
]

i, j
(λi +λ j)

−1
(

−1+ e(λi+λ j)t
)

.

Substituting in (22) and taking the limit gives

R = Γ
(

χ◦
(

Γ−1Σ
(

Γ−1
)T
))

ΓT ,

and using (18) and Theorem 4, the limit of the MSE is

E‖θn −θ∗‖2 → εTr
[

Γ
(

χ◦
(

Γ−1Σ
(

Γ−1
)T
))

ΓT
]

. (23)

The difference in MSE between the original iterate (14) and the IPM iterate (17) lies in the

difference between Σ0,Σ
K

0 and Σ1,Σ
K

1. We now derive explicit expressions for these matrices. In

the following, for clarity we adopt the following notation. Let x′ denote the state following x. Let

P(Kx) = ∑x′∈Kx
P(x′|x), and let PKx

(x′) denote the probability measure over the known transitions

from state x, namely

PKx

(

x′
)

,

{

P(x′|x)/P(Kx) i f x′ ∈ Kx

0 i f x′ /∈ Kx
.

Denote by EK [ f (x′)|x], VarK [ f (x′)|x], and CovK [ f (x′)|x] the expectation, variance, and covariance

matrix of some function f of x′ given that the current state is x, under the probability measure PKx
.

Lemma 5 We have Σ0 = ΣK

0 + γ2∑
x
[π]x φ(x)VarK

[

φ(x′)T θ∗∣
∣x
]

φ(x)T .

Proof See Appendix B.

In order to simplify calculations, in the remainder of the analysis we deal with a table based algo-

rithm.

Assumption 6 The algorithm is table based, namely Φ = I.

Under the table based assumption, the temporal difference terms at subsequent times are not corre-

lated, leading to the following result.

Proposition 7 Under assumption 6 we have Σ1 = ΣK

1 = 0.
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Proof For a table based case, θ∗ satisfies Bellman’s equation for a fixed policy (Bertsekas and

Tsitsiklis, 1996)

θ∗ (x) = r (x)+ γE
[

θ∗ (x′
)∣

∣x
]

. (24)

Now, for every j we have

E
[

(dnφ(xn))(dn+jφ(xn+j))
T
∣

∣

∣θn = θn+j = θ∗
]

= E [(r (xn)+ γθ∗ (xn+1)−θ∗ (xn))(r (xn+ j)+ γθ∗ (xn+ j+1)−θ∗ (xn+ j))]

= E
[

E
[

(r (xn)+ γθ∗ (xn+1)−θ∗ (xn))(r (xn+ j)+ γθ∗ (xn+ j+1)−θ∗ (xn+ j))
∣

∣xn, . . . ,xn+ j

]]

= 0,

where the last equation follows from (24). Thus, in the expression for Σ1, every element in the sum

is zero. For ΣK

1 we can use Lemma 1 to obtain the same result.

Generalizing these results to the FA case involves analysis of the correlations in Σ1,Σ
K

1 and is de-

ferred to future work. Nevertheless, we provide numerical simulations with FA that demonstrate

similar behavior to the table based case.

Let ∆Σ denote the diagonal matrix defined by

∆Σ , Σ0 −ΣK

0

= γ2∑
x

[π]x φ(x)P(Kx)VarK

[

φ(x′)T θ∗∣
∣x
]

φ(x)T .

Substituting Φ = I gives a simple expression for the diagonal elements of ∆Σ

[∆Σ]xx = γ2 [π]x P(Kx)VarK

[

θ∗ (x′
)∣

∣x
]

.

Note that ∆Σ has no negative elements. We are interested in the difference in asymptotic MSE,

which, based on (23) is given by

δMSE = E‖θn −θ∗‖2 −E‖θK

n −θ∗‖2
(25)

→ ε ·Tr
[

Γ
(

χ◦
(

Γ−1∆Σ

(

Γ−1
)T
))

ΓT
]

.

If the known set is not null, then δMSE is positive (it can be seen as the asymptotic MSE of an iterate

with the same matrix A, but with ∆Σ instead of Σ0, which by definition is positive), and thus the

algorithm’s performance improves. We summarize this result in the following theorem.

Theorem 8 Consider the table based online TD(0) iterate for θn described by (14) with Φ = I, and

the IPM-TD(0) iterate for θK
n described by (17) with the same requirement on Φ. Assuming that

there is at least one state x ∈ X such that P(Kx)VarK [θ
∗ (x′)|x] > 0, then the asymptotic MSE of

the iterates satisfy lim
n→∞

E‖θK
n −θ∗‖2 = lim

n→∞
E‖θn −θ∗‖2 − δMSE , where δMSE is given in (25), and

δMSE > 0.

Theorem 8 therefore assures us that the reduction in noise variance at each step, guaranteed by

Lemma 2, translates into a reduction in the overall error of the algorithm. Note that the simple

dependence of the MSE on ε allows for a different interpretation of the performance in terms of

convergence rate - for some desired MSE, the partial knowledge allows us to use a larger step size

ε, and thus converge faster. This issue will also be demonstrated in simulation.
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We comment on a decreasing step size. For a step size of the form εn = 1/nα, 0.5 < α ≤ 1, a

similar analysis can be performed with ρn defined as ρn = nα/2 (θn −θ∗). In this case, θn converges

to θ∗ w.p. 1, and the MSE decreases to zero at a rate O
(

n−α/2
)

. Integrating a partial model in

this case will reduce fluctuations in the converging path of the system. The performance gain of

integrating a partial model is therefore more pronounced when the step size is constant.

4.3 Numerical Simulations of IPM-TD(0)

We conclude this section with a demonstration of the performance of the IPM-TD(0) algorithm, and

a comparison with the theory established above.8

Our simulations are on a set of abstract randomly constructed MDP’s termed Generalized Aver-

age Reward Non-stationary Environment Test-bench or in short GARNET (Bhatnagar et al., 2007).

GARNET MDP’s comprise a class of randomly constructed finite MDP’s serving as a test-bench for

RL algorithms. A GARNET MDP is characterized in our case by four parameters and is denoted by

GARNET(|X | , |U| ,B,σ). The parameter |X | is the number of states in the MDP, |U| is the number

of actions, B is the branching factor of the MDP, that is, the number of uniformly distributed non-

zero entries in each line of the MDP’s transition matrices, and the reward in each state is normally

distributed with variance σ. For each GARNET MDP we also construct a ‘partially known’ MDP

characterized by a parameter pK , 0 ≤ pK ≤ 1 such that each transition in the original MDP is known

w.p. pK . The value of pK therefore indicates our level of knowledge about the MDP, ranging from

no knowledge at all (pK = 0) up to knowing the complete MDP (pK = 1).

For a GARNET(10,5,10,1) MDP, a random deterministic policy was chosen and its value func-

tion was evaluated using algorithm (17). The error ‖θK
n −θ∗‖2

, averaged over 500 different runs

with the same initial conditions, is plotted in Figure 1 (left) for different values of pK . The asymp-

totic MSE was calculated using (23) and is shown for comparison. In Figure 1 (middle), the step

size for an iteration with partial knowledge was set such that the asymptotic MSE would match that

of the iteration without partial knowledge. As can be seen, this caused the IPM iteration to converge

faster.

For the next simulation a linear FA was used, with basis vectors φ(x) ∈ {0,1}L, where the

number of nonzero values in each φ(x) is l. The nonzero values were chosen uniformly at random,

with any two states having different feature vectors. Figure 1 (right) shows the error ‖θK
n −θ∗‖2

for

a GARNET(30,5,10,1) MDP, where we used linear FA with L = 10 and l = 2. As can be seen, the

behavior observed in the tabular case is characteristic of the FA case as well.

5. Inaccuracy of the Partial Model

Until now, we have assumed that our partial model contained accurate probability ratios. Obviously,

such a strong assumption is not realistic, and in any practical situation our partial knowledge would

contain some degree of error. In this section we consider the effect of inaccuracies in the partial

model on the performance of the IPM-TD(0) method. Specifically, our goal is to show that if the

inaccuracy in the partially known model is small enough, then an improvement in performance over

regular TD(0) can still be guaranteed, and we seek bounds on the error in the algorithm induced by

the inaccuracy in the model. Before we go into mathematical detail we first describe our conceptual

approach.

8. The code for generating the results presented here can be found at the author’s web site.
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Figure 1: TD(0) with a Partial Model. Left : MSE of Table Based IPM-TD(0) on a GAR-

NET(10,5,10,1) MDP with a deterministic random policy, for different values of pK . Step

size is ε = 0.2. Dashed lines show the asymptotic MSE calculated by (23). Middle : MSE

of Table Based IPM-TD(0) on a GARNET(10,5,10,1) MDP with a deterministic random

policy. For pK = 0 (black-solid) a step size ε = 0.15 was used, and the asymptotic MSE

was calculated using (23) (black-dashed). For pK = 0.5 (red-solid) a step size was calcu-

lated (using (23)) such that its asymptotic MSE would equal that of pK = 0. Right : MSE

of linear FA IPM-TD(0) on a GARNET(30,5,10,1) MDP with a deterministic random

policy, for different values of pK . Step size is ε = 0.15. The linear FA parameters are

L = 10 and l = 2. A discount factor of γ = 0.7 was used in all simulations. All results are

averaged over 500 different runs with the same initial conditions. Error bars display the

standard error of the mean; for clarity of presentation the bars are displayed only for the

last iteration.

A key point in the analysis of IPM-TD(0) in Section 4 was that since the estimator µ̂K in (5) is

unbiased, then the ODE of the stochastic approximation does not change, and asymptotically the

algorithm concentrates around its fixed point which is the true value function. This is no longer

valid when the partial model is not accurate, as the inaccuracy induces a bias in µ̂K . Since we use

the estimator at every time step, this bias may accumulate, and the crucial question here is how it

affects the algorithm asymptotically, and whether it can be guaranteed that small model errors do

not cause a large deviation from the true value function.

The improvement in performance of IPM-TD(0) relied on the variance reduction property of µ̂K .

We shall see that if the inaccuracy in the partial model is small enough, then this property can still

be guaranteed.

Thus, our analysis consists of investigating the bias and the variance of IPM-TD(0) with an

inaccurate model. As we have done earlier, we first describe some results in the context of estimating

the mean of a random variable, and later extend the results to the MDP setting.

5.1 Estimation of a Random Variable Mean

Consider the definitions of Section (2), and let
{

P̂(ω)
}

ω∈Ω
denote inaccurate probabilities, obtained

by some means. For some ε > 0 we define an ε−known set Kε by

Kε ,
{

ω : ω ∈ Ω s.t.
∣

∣P̂Kε (ω)−PKε (ω)
∣

∣< ε
}

, (26)
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where the probability measures P̂Kε and PKε are defined by P̂Kε (ω), P̂(ω)/ ∑
ω′∈Kε

P̂(ω′) and PKε (ω),

P(ω)/ ∑
ω′∈Kε

P(ω′), respectively. Also denote by ÊKε [·] and V̂arKε [·] the expectation and variance

under the measure P̂Kε , and by EKε [·] and VarKε [·] the expectation and variance under the measure

PKε .

We motivate the definition of the ε−known set with an example. Let
{

xi
}n

i=1
denote i.i.d. sam-

ples of X . For some set K ⊂ Ω let P̂K (ω) denote the count ratios in K

P̂K (ω) =















n

∑
i=1

1(xi=ω)
n

∑
i=1

1(xi∈K)
for ω ∈ K

0 else

,

where 1 is the indicator function. It can be shown that P̂K (ω) is an unbiased estimate of PK (ω),
and by the law of large numbers we have that for large n, the difference

∣

∣P̂K (ω)−PK (ω)
∣

∣ is small.

Furthermore, for a finite n, Chernoff type bounds can be used to bound this difference with high

probability by some small ε, motivating definition (26).

An estimator for µ that uses the ε−known set is derived by plugging Kε instead of K in (5)

µ̂Kε (x) = 1K
ε

x ÊKε [X ]+1K̄
ε

x x. (27)

Note that since the known set is not accurate, the estimator (27) is no longer unbiased. The following

theorem, which we prove in Appendix C, bounds the bias and variance of µ̂Kε (x).

Theorem 9 The bias of µ̂Kε (x) satisfies

|E [µ̂Kε (X)]−E [X ]| ≤ εP(Kε) ∑
x∈Kε

|x| .

The variance of µ̂Kε (x) satisfies

Var [µ̂Kε (X)] ≤ Var [X ]−P(Kε) ·VarKε [X ] (28)

+εP(Kε)



ε

(

∑
x∈Kε

|x|
)2

+2

(

∑
x∈Kε

|x|
)

|EKε [X ]−E [X ]|



 .

5.2 Error Bound for IPM-TD(0)

We now derive asymptotic error bounds for IPM-TD(0) with a constant stepsize ε̃, when the partial

model is inaccurate. We treat only the table based algorithm

θn+1 (xn) = θn (xn)+ ε̃dK

n , (29)

dK

n , r (xn)+ γ
(

1K
ε

n+1ÊKε
xn
[θn(xn+1)|xn]+1K̄

ε

n+1θn(xn+1)
)

−θn(xn),

where ÊKε
xn
[θn(xn+1)|xn] denotes expectation under the probability measure in the ε−known set Kε

xn

Kε
x ,











y : y ∈ X s.t.

∣

∣

∣

∣

∣

∣

∣

P̂(y|x)
∑

y′∈Kε
x

P̂(y′|x)
− P(y|x)

∑
y′∈Kε

x

P(y′|x)

∣

∣

∣

∣

∣

∣

∣

< ε











. (30)
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The ODE for (29) can be written as

dθ

dt
= Π(r+(γ(P+δP)− I)θ) , (31)

where

δPi j =















(

∑
k∈K

ε
i

P(k| i)
)





P̂( j|i)
∑

k∈Kε
i

P̂( k|i) −
P( j|i)

∑
k∈Kε

i

P( k|i)



 , j ∈ Kε
i ,

0, j /∈ Kε
i .

(32)

Recalling that the true value function satisfies θ∗ = (I − γP)−1
r, the asymptotic limit point of

the ODE (31) is denoted by θ∗+δθ , and satisfies

θ∗+δθ = (I − γ(P+δP))−1
r. (33)

In the next subsection we show how to bound the error term δθ.

5.2.1 A BOUND ON THE BIAS

We would like to bound the term δθ, which is the error in the value function, and can be seen as

the total bias induced by the IPM method with the inaccurate model. Note that (33) describes a

perturbed linear system (Horn and Johnson, 1985, §5). Using tools for dealing with such systems,

we can bound the error as presented in the following theorem.

Theorem 10 Let Kε
max denote the cardinality of the largest ε−known set Kε

x ,

Kε
max = max

x
|Kε

x | , (34)

and let ε satisfy ε < 1−γ
γKε

max
. Then the maximal error in the ODE limit is bounded by

‖δθ‖∞

‖θ∗‖∞

≤ κ

1−κ ·
(

Kε
maxε

1−γ

)

(

Kε
maxε

1− γ

)

, (35)

where κ satisfies

κ ≤ 1+ γ

1− γ
. (36)

Proof For a matrix norm ‖·‖p, if

∥

∥

∥
(I − γP)−1

∥

∥

∥

p
‖γδP‖p < 1 we have (Horn and Johnson, 1985,

5.8.8)
‖δθ‖p

‖θ∗‖p

≤ κ(I − γP)

1−κ(I − γP)
(

‖γδP‖p /‖I − γP‖p

)

‖γδP‖p

‖I − γP‖p

, (37)

where κ is the matrix condition number κ(A) =
∥

∥A−1
∥

∥

p
‖A‖p. We now bound each of the terms on

the right hand side of (37). We use the norm ‖·‖∞ which is induced by the max vector norm, and

can be alternatively defined (Horn and Johnson, 1985, 5.6.5) as the maximum row sum matrix norm

‖δP‖∞ , max
i

∑
j

∣

∣Pi j

∣

∣ . (38)
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From this definition, (32), (34), and (30), it is clear that

‖γδP‖∞ < γKε
maxε. (39)

Theorem 5.6.9 in Horn and Johnson (1985) asserts that for any matrix norm we have

‖A‖ ≥ ρ(A) ,

where ρ(A) is the spectral radius of A

ρ(A), max{|λ| : λ is an eigenvalue of A} .
For the matrix I − γP we have

ρ(I − γP)> 1− γ,

since P is stochastic and thus its largest eigenvalue is 1. Using (39) we therefore have

‖γδP‖∞

‖I − γP‖∞

≤ γKε
maxε

1− γ
.

We now bound κ(I − γP) = ‖I − γP‖∞

∥

∥

∥(I − γP)−1
∥

∥

∥

∞
. First, by the triangle equality we have

‖I − γP‖∞ ≤ ‖I‖∞ + γ‖P‖∞ = 1+ γ, (40)

since P is a stochastic matrix and by definition (38) we have ‖P‖∞ = 1. Next we have by definition

of the induced norm
∥

∥

∥(I − γP)−1
∥

∥

∥

∞
= max

‖r‖∞=1

∥

∥

∥(I − γP)−1
r

∥

∥

∥

∞
≤ 1

1− γ
, (41)

since (I − γP)−1
r can be seen as the value function associated with a reward vector r, which can

have a maximum value of rmax/(1− γ). From (40) and (41) we have

κ(I − γP)≤ 1+ γ

1− γ
.

All is left is to verify that

∥

∥

∥
(I − γP)−1

∥

∥

∥

∞
‖γδP‖∞ < 1. Using (39) and (41) this is satisfied if

ε <
1− γ

γKε
max

.

The bound in (35) can be simplified when ε is small, as described in the following corollary.

Corollary 11 For small enough ε we have

‖δθ‖∞

‖θ∗‖∞

≤ Kε
maxε(1+ γ)

(1− γ)2
+O

(

ε2
)

.

Proof Substitute (36) in (35), where for small ε we have ε/
(

1− κKε
maxε

1−γ

)

= ε+O
(

ε2
)

.

The bounds in Theorem 10 and Corollary 11 show that the accumulated bias induced by the model

inaccuracies is linear in ε, but also in Kε
max, thus it is preferred to keep the ε−known set for each

state relatively small, as each element in the set contributes to an accumulated error. Note that the

term 1/(1− γ)2
is a consequence of the fact that the estimation bias for each state now accumulates

over a whole trajectory.

1944



INTEGRATING A PARTIAL MODEL INTO MODEL FREE RL

5.2.2 A BOUND ON THE VARIANCE

We shall now bound the variance of IPM-TD(0). We follow directly the analysis of Section 4 for

IPM-TD(0) with an accurate model, and note that the only difference9 is in the calculation for the

term ΣK
ε

0 , which, using (33), becomes

[

ΣK
ε

0

]

xx
= E

[

(dK

n )
2
∣

∣

∣θ = θ∗+δθ,xn = x
]

= γ2Var
[(

1K
ε

n+1ÊKε
xn
[ [θ∗+δθ] (xn+1)|xn]+1K̄

ε

n+1 [θ
∗+δθ] (xn+1)

)∣

∣

∣xn = x
]

.

In the following we focus on bounding the term on the right hand side, and show sufficient condi-

tions under which
[

ΣK
ε

0

]

xx
< [Σ0]xx for every x ∈ |X |. For notational simplicity, we drop the depen-

dence on x, and treat a single random variable taking values in {[θ∗+δθ]i}
|X |
i=1, with the appropriate

probabilities P(x′|x). Thus, we need to bound

γ−2
[

ΣK
ε

0

]

xx
= Var

[

1K
ε

ÊKε [θ∗+δθ]+1K̄
ε

(θ∗+δθ)
]

, (42)

and compare to [Σ0]xx. The following theorem, which is proved in Appendix D, bounds γ−2
[

ΣK
ε

0

]

xx
.

Theorem 12 Let bx , ∑
x∈Kε

x

|[θ∗]x|, and cx ,
∣

∣EKε
x
[θ∗]−E [θ∗]

∣

∣, and assume that max{δθ} ≤ η. Then

the elements of the diagonal matrix ΣK

0 satisfy

γ−2
[

ΣK
ε

0

]

xx
≤ γ−2 [Σ0]xx −P(Kε

x ) ·VarKε
x
[θ∗]+η2 +2ηγ−1

√

[Σ0]xx

+εP(Kε
x )
(

εb2
x (1−P(Kε

x ))+2bxcx

)

. (43)

Using our previous bound on the bias we have the following corollary.

Corollary 13 For small enough ε we have

γ−2
(

[Σ0]xx −
[

ΣK
ε

0

]

xx

)

≥ P(Kε
x ) ·VarKε

x
[θ∗]

−ε
Kε

max (1+ γ)‖θ∗‖∞

(1− γ)2

(

Kε
maxε(1+ γ)‖θ∗‖∞

(1− γ)2
+

2

γ

√

[Σ0]xx

)

−εP(Kε
x )
(

εb2
x (1−P(Kε

x ))+2bxcx

)

.

Proof Apply Corollary 11 to bound η in Theorem 12.

The following corollary translates the previously established bounds to a performance improvement

guarantee.

Corollary 14 For a small enough ε an improvement in the asymptotic MSE of IPM-TD(0) can be

guaranteed.

9. Note that the ΣK
ε

1 term is still zero, for the same reasons described in Section 4 .
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Proof By Corollary 13 ε can be chosen such that for every x we have

[

ΣK
ε

0

]

xx
< [Σ0]xx ,

thus we can follow the development of the performance improvement proof in Section 4 and

conclude that the sequence (θK
n −θ∗)/

√
ε̃ converges in distribution to a Gaussian centered on δθ

and with a covariance R̂, which is smaller than R (as defined in Section 4). Since we can use

Theorem 10 to also bound the bias δθ, we can choose ε small enough such that asymptotically

E‖θK
n −θ∗‖2 < E‖θn −θ∗‖2

.

To conclude, from Theorem 10 and Theorem 12 we see that for small enough ε, we get a small bias

and a reduction in the variance. The specific terms in the bounds can be used to find a suitable ε

that guarantees a performance improvement. If the probabilities P̂ are obtained empirically from

a trajectory of the MDP, then a Chernoff type bound can be used to further bound the number of

observations required for a desired ε. This issue is beyond the scope of this paper.

6. Numerical Experiments

In this section, the performance improvement obtained by the IPM method is demonstrated on two

different model free RL algorithms,10 and two different problems. Our goal is to demonstrate both

the generality of the method, and its usefulness in practical applications. Generality is demonstrated

by application of the method to two very different RL algorithms - policy gradient and Q-learning.

The only common feature to these two algorithms is their representation as a stochastic approxi-

mation. Together with the theory presented in previous sections, these results suggest that the IPM

method can be applied succesfully to a wide variety of RL algorithms. The usefulness of the method

is demonstrated in the solution of a call admission control problem. In this problem, it is shown that

values of the partially known MDP (11) capture meaningful physical quantities of the problem,

thus, (11) may be seen as the natural representation for partial knowledge in such problems. The

performance improvement obtained by the IPM method suggests that it may be used succesfully in

practice.

6.1 IPM Q-Learning for Admission Control

In this section we consider the call admission control problem for a single link, which arises when

a telecommunication provider wants to sell the limited bandwidth of the link to different types of

customers so as to maximize expected long term revenue. In this scenario, the customers differ in

their bandwidth demand, the price they pay for its usage, and the frequency of their requests.

When the link is empty, it is reasonable that every customer request should be accepted, as it

generates some revenue. On the other hand, when the link is almost full, a clever policy might decide

to save the available bandwidth for the more profitable requests, at the expense of rejecting the less

profitable ones. Thus, it is clear that a good policy should take into account both the bandwidth

demand and profit of each request type, and its arrival frequency. When some of these quantities

are not known in advance, a learning policy may be employed. Specifically, in the following we

consider a case where these quantities are known only for some of the request types, which will

naturally lead to the use of a partial model in the learning algorithm. Such a scenario can occur

10. The code for generating the results presented here can be found at the author’s web site.
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when, for example, new customers are added to a system, or when some of the request types have

features that change in time.11

One approach to designing an admission policy is to formulate the problem as an MDP, for

which an optimal policy is well defined, and solve it using RL approaches, as has been done by

Marbach et al. (1998) and Marbach and Tsitsiklis (1998). In the following we present this ap-

proach, and show that in this problem our partially known MDP definition emerges as a very natural

representation for partial model knowledge.

6.1.1 PROBLEM FORMULATION

Consider a service provider with a bandwidth of B units, which supports a finite set {1,2, ...,M}
of different service types. Each service type is characterized by its bandwidth demand b(m), its

call arrival rate α(m), and its average holding time 1/β(m), where we assume that the calls arrive

according to independent Poisson processes, and that the holding times are exponentially and inde-

pendently distributed. Whenever a call of type m arrives, the controller can decide whether to accept

or reject it, and if it is accepted and enough bandwidth is available, an immediate reward c(m) is

recieved. The objective is to find an admission controller (policy) that maximizes the average return.

This problem can be represented by an MDP as follows.

6.1.2 STATE SPACE, CONTROLS, AND REWARD

The configuration of the link is denoted by s = (s(1) , . . . ,s(M)), where s(m)∈ {0,1,2, . . .} denotes

the number of customers of type m currently using the link. Transitions between different configura-

tions are triggered by events which we denote by ω = {ω(1) , . . . ,ω(M)}, where ω(m) = 1 if a new

customer of type m requests service, ω(m) = −1 if a customer of type m departs from the system,

and ω(m) = 0 otherwise. The state x of the system consists of the link configuration together with

the event which triggered a transition,

x = (s,ω) ,

and the complete state space is given by

X =
{

x = (s,ω)|∑s(m)b(m)≤ B, ∑ |ω(m)| ≤ 1 and ω(m)< 0 only if s(m)> 0
}

.

The possible controls are to accept or reject a call, denoted by u ∈ {ua,ur}, respectively, and the

immediate reward is

r (x,u) =

{

c(m) if u = ua, ω(m) = 1, (s+ω,ω) ∈ X ,

0 else.

The goal is to find the optimal policy with respect to the the average reward

η = E[r(x)].

11. We note that a learning policy may be required even when the model is fully known, as finding the optimal policy is

often an intractable problem. This ’fully known’ scenario may be seen as a special case of the following presentation.
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6.1.3 TRANSITION PROBABILITIES

In order to transform the continuous time process into discrete transitions between events, a uni-

formization technique (Gallager, 1995, §6.4) is used. Define z to be the maximal transition rate,

given by

z = max
x∈X

{

M

∑
m=1

(α(m)+ s(m)β(m))

}

. (44)

For a state x = (s,ω), the probability that the next event is an arrival of a call of type m is equal to

α(m)/z. The probability for a departure of a call of type m is β(m)s(m)/z. By normalization, the

probability that in the next event nothing happens is 1−
M

∑
m=1

(α(m)+ s(m)β(m))/z.

6.1.4 PARTIALLY KNOWN MDP

For this problem, a natural definition for partial model knowledge is through the arrival and depar-

ture rates α,β, namely

MK , {m : m ∈ 1, . . . ,M s.t. α(m) ,β(m) are known} .

As an example where such partial knowledge arises in practice, consider a case where new jobs

(with unknown rates) are added to an existing system (with previously known rates). Note that

generally, the values in MK do not suffice for calculating z in (44), hence the transition probabilities

of the MDP are not known. Nevertheless, the key point here is that in the ratios between transition

probabilities, the z terms cancel out, therefore the partial MDP definition (11) can be satisfied. In

particular, letting i ∈ MK , we have

P(arrival of type i)

∑
j∈MK

P(arrival of type j)
=

α(i)

∑
j∈MK

α( j)
,

and similar expressions hold for probabilities of departures.

6.1.5 IPM Q-LEARNING

The model free RL algorithm we use for this problem is a variant of the popular Q-Learning al-

gorithm for average return.12 For each state-action pair, a Q value is maintained, and updated

according to

Qn+1 (xn,un) = Qn (xn,un)+ εn

(

r (xn,un)+max
u′

Qn

(

xn+1,u
′)−Qn (xn,un)−

1

|X | |U|∑x,u
Qn (x,u)

)

.

(45)

The greedy deterministic policy u(x) w.r.t. the Q values at time n is

u(x) = argmax
u′

Qn

(

x,u′
)

.

Update (45) is an SA, and was shown to converge (Abounadi et al., 2001) under suitable step sizes

εn to a fixed point Q∗, such that the greedy policy w.r.t. Q∗ is optimal. Applying the IPM method in

12. This is also known as relative value iteration.
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Call Type m 1 2 3 4

α(m) 1.8 1.4 1.6 1.4

β(m) 0.4 0.7 0.5 0.4

b(m) 1 1 1 1

c(m) 1.4 1 1.6 1

Table 1: Call Types

this case simply amounts to replacing max
u′

Qn (xn+1,u
′) in (45) with

1K

n+1 ·
∑

y∈Kxn,un

Pun
(y|xn)max

u′
Qn (y,u

′)

∑
y∈Kxn,un

Pun
(y|xn)

+1K̄

n+1 ·max
u′

Qn

(

xn+1,u
′) . (46)

We now report on the results of using IPM Q-learning for optimizing a call admission control policy.

6.1.6 RESULTS

In our experiments, we consider a link with a bandwidth of 7 units, and 4 call types. The parameters

for each call are summarized in Table 1, and the size of the state space in this configuration is

|X | = 2490. IPM Q-Learning was run with initial values Q0 (x,u) = r (x,u) and a step size εn =
γ0/(γ1 + vn (xn,un)) , where vn (x,u) denotes the number of visits to the state action pair (x,u) up to

time n. The values of γ0,γ1 were manually tuned for optimal performance, and set to γ0 = γ1 = 40.
The action selection policy while learning was ε−greedy, with ε = 0.1. The partial model for each

experiment is represented by a single parameter k, such that the arrival and departure rates of all

calls of type m ≤ k are known. Figure 2 shows the average reward η as a function of iteration. As

can be seen, incorporation of partial model knowledge by the IPM method resulted in a significant

performance improvement.

6.2 IPM Policy Gradient

In this experiment simulations were performed on randomly generated MDP’s, as described in

Section 4.3. In the experiments, the agent maintains a stochastic policy function parametrized by

θ ∈ R
L·|U|, and given by

µθ(u|x) = eθT ξ(x,u)/∑
u′

eθT ξ(x,u′),

where the state-action feature vectors ξ(x,u) ∈ {0,1}L·|U| are constructed from the state features

φ(x) defined in Section 4.3 as follows

ξ(x,u), (0, ...(L× (u−1)zeros),φ(x),0, ...(L× (|U|−u)zeros))T .

The agent’s goal is to find the parameter θ which maximizes the average reward η = E[r(x)]. Policy

Gradient algorithms achieve this goal by estimating the gradient w.r.t. θ of the average reward, ∇θη,

and performing a stochastic gradient ascent on the parameters to reach a local maximum. One such

algorithm was proposed by Marbach and Tsitsiklis (1998). At time n we update the parameter vector

θ and a scalar λ which is an estimate of η,
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Figure 2: IPM Q-Learning for Admission control. Implementation of IPM Q-Learning, (45) and

(46), for the call admission control problem of Table 1. Average reward of the greedy

policy is plotted vs. iteration number for different values of k. Results are averaged over

100 different runs with the same initial conditions. Error bars display the standard error

of the mean; for clarity of presentation the bars are displayed only for the last iteration.

θn+1 = θn + ε(r (xn)−λn)zn, (47)

λn+1 = λn + ε′ (r (xn)−λn) , (48)

where ε and ε′ are step sizes, and ε′ < ε. We then simulate a transition to the next state, and update

the vector z by

zn+1 = zn +Lxn,un
(θn) ,

where Lxn,un
(θn) is the likelihood ratio Lx,u (θ) = ∇θ logµθ(u|x). Every time a predefined recurrent

state of the MDP is visited, zn+1 is reset to zero.

Denote by 1K
n an indicator function that equals 1 if xn belongs to Kxn−1,un−1

and 0 otherwise.

Incorporating partial knowledge into the algorithm using (12) simply amounts to replacing r (xn) in

(47-48) with

1K

n ·
∑

y∈Kxn−1,un−1

Pun−1
(y|xn−1)r (y)

∑
y∈Kxn−1,un−1

Pun−1
(y|xn−1)

+1K̄

n · r (xn) .

We simulated the policy gradient algorithm on a GARNET(30,5,10,1) MDP. The state features

were constructed as described in Section 4.3 with L = 10, l = 2. Figure 3 shows the average reward

η as a function of iteration. These results indicate that the variance reduction in each iteration

(guaranteed by Lemma 2) resulted, on average, in a better estimation of the gradient ∇θη, and

therefore a better policy at each step.

7. Discussion and Future Work

Generally, when devising a solution to a difficult problem, one should incorporate into it all reliably

available information. Model free RL algorithms typically operate without explicit knowledge of
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Figure 3: Policy Gradient with a Partial Model. Implementation of the algorithm described in

Section 6.2 on a GARNET(30,5,10,1) MDP, with step size parameters ε = 0.03 and

ε′ = 0.003. The linear FA parameters are L = 10 and l = 2. Average reward is plotted

vs. iteration number for different values of pK . Results are averaged over 500 different

runs with the same initial conditions. Error bars display the standard error of the mean;

for clarity of presentation the bars are displayed only for the last iteration.

the underlying environment, and therefore, when such knowledge is available, using these algo-

rithms ‘out of the box’ is clearly suboptimal. In this work we have presented a general method

of integrating partial environmental knowledge into a large class of model free algorithms. Our

method improves the asymptotic behavior of the algorithm, and at each iteration reduces the esti-

mation variance due to the uncertainty in the environment. We have proved mathematically (for

TD(0)) and demonstrated in simulation (for Policy Gradient and Q-learning) an improvement in the

algorithm’s overall performance.

From a more conceptual point of view, we have shown that two distinct approaches to RL,

the model free and the model based approaches, can be combined in such a way that gains from

their respective merits. From this perspective, this work is just a first step towards a theoretical

understanding of the combination of different RL approaches.

A few issues are in need of further investigation.

In this work we have not addressed the question of how the partially known model can be

acquired. A number of possibilities come to mind. In a transfer learning or tutor learning settings,

the partial model can come from an expert who has exact knowledge of a model that is partially

similar. In a multi-agent setting with communication, information about different parts of the model

can be gathered independently by each of the agents, and combined to create a partial model of the

environment.

An interesting possibility is to simultaneously gather information while adapting the policy

using some model free algorithm. Using the SA algorithm (8), at the time of the n’th update of θ, we

have already encountered a state-action trajectory of size n. Can we use this trajectory to construct

an estimated partial MDP model, use it as in algorithm (12), and guarantee an improvement in

the algorithm’s performance? This should be done with caution, since using the same trajectory

for updating the parameter and the estimated model may cause overfitting. To see this consider

the following example. Let {xi} be a sequence of normally distributed i.i.d. random variables with
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mean m, and assume that our goal is to estimate m. A natural approach is to use the empirical mean

given by θn =
1
n ∑n

i=1xi, which can also be calculated recursively using the following SA iterate

θn+1 = θn +
1

n+1
(xn+1 −θn) , (49)

θ0 = 0.

One may hope, that by the time of the n’th update of θ we could use the n− 1 values of xi already

observed to build a partial model for xn, and similarly to (12), use it to manipulate (49) in such a

way that guarantees a performance improvement (in the estimation of m). However, it is known

that for a normal distribution, the empirical mean is also the minimum variance unbiased estimator

for m (Schervish, 1995). Our manipulation of (49) would therefore either add bias or increase the

variance. Though this issue deserves careful analysis, we note that when a constant step size is

used, the major influences on the current value of the parameter are the most recent measurements,

thus older samples can be safely used to construct a partial model, mitigating the severity of this

problem.

Finally, we note that the IPM method adds to the algorithm a computational cost of O(Kmax)
evaluations of F (θn,xn,un,xn+1) at each iteration. In our experiments, this cost proved to be neg-

ligible in comparison to the computational cost of the simulator. However, if the computation of

F (θn,xn,un,xn+1) is demanding, one may face a tradeoff between the performance of the resulting

policy and the computational cost of obtaining it.
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Appendix A. Admissibility of µ̂K

In this section, based on the definitions of Section 2, we address the following issue. Can a better

estimator than µ̂K (x) be found?

Since the MSE of any estimator, within a non-Bayesian setting, depends on the unknown µ,

comparison of different estimators is a difficult task. A popular comparison framework is that

of admissible estimators (Schervish, 1995). For a given known set K, an estimator is said to be

admissible if there is no other estimator that achieves a smaller MSE for every distribution in PK (ω).
Clearly, admissibility is a desirable property for an estimator, since an inadmissible estimator is

guaranteed to be sub-optimal. The next theorem states that µ̂K is admissible.

Theorem 15 The estimator µ̂K of (5) is admissible.

Proof Let P̃(ω) ∈ PK (ω) be defined as

P̃(ω) =
1K

ωP(ω)

∑
ω′∈K

P(ω′)
.

For X ∼ P̃(ω) it is clear that µ̂K (x) = E [X ] for all x, therefore E [µ̂K (X)−µ]2 = 0, and no other

estimator achieves a smaller MSE in this case.
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Appendix B. Proof of Lemma 5

Proof By the ergodicity of the Markov chain the joint probability for subsequent states is

lim
n→∞

P(xn,xn+1) = P(xn+1|xn) [π]xn
.

Now, observe that

E
[

(dnφ(xn))(dnφ(xn))
T
∣

∣

∣θn = θ∗,xn

]

= Cov [dnφ(xn)|θn = θ∗,xn]+E [ (dnφ(xn))|θn = θ∗,xn]E [ (dnφ(xn))|θn = θ∗,xn]
T

= γ2φ(xn)Cov
[

φ(xn+1)
T θ∗∣
∣xn

]

φ(xn)
T

+E [dnφ(xn)|θn = θ∗,xn]E [dnφ(xn)|θn = θ∗,xn]
T ,

where the second equality follows from

Cov [dnφ(xn)|θn,xn] = Cov
[

dnφ(xn)− r (xn)+φ(xn)
T θn

∣

∣θn,xn

]

,

since adding constants does not change the covariance. Using Lemma 1 and Lemma 2 we derive an

expression for the IPM iteration

E
[

(dK

n φ(xn))(d
K

n φ(xn))
T
∣

∣

∣θn = θ∗,xn

]

= γ2φ(xn)
(

Cov
[

φ(xn+1)
T θ∗∣
∣xn

]

−P(Kx)CovK

[

φ(xn+1)
T θ∗∣
∣xn

])

φ(xn)
T

+E [dK

n φ(xn)|θn = θ∗,xn]E [dK

n φ(xn)|θn = θ∗,xn]
T

= E
[

(dnφ(xn))(dnφ(xn))
T
∣

∣

∣
θn = θ∗,xn

]

− γ2φ(xn)P(Kx)CovK

[(

φ(xn+1)
T θ∗)∣

∣xn

]

φ(xn)
T .

We therefore have that

Σ0 = lim
n→∞

E
[

(dnφ(xn))(dnφ(xn))
T
∣

∣

∣θn = θ∗
]

= lim
n→∞

E
[

E
[

(dnφ(xn))(dnφ(xn))
T
∣

∣

∣θn = θ∗,xn

]]

= ∑
x

[π]x E
[

(dnφ(xn))(dnφ(xn))
T
∣

∣

∣
θn = θ∗,xn

]

= ΣK

0 + γ2∑
x

[π]x φ(x)P(Kx)CovK

[

φ(x′)T θ∗∣
∣x
]

φ(x)T

= ΣK

0 + γ2∑
x

[π]x φ(x)P(Kx)VarK

[

φ(x′)T θ∗∣
∣x
]

φ(x)T .

Appendix C. Proof of Theorem 9

Proof First, observe that

∣

∣ÊKε [X ]−EKε [X ]
∣

∣=

∣

∣

∣

∣

∣

∑
x∈Kε

x
(

P̂Kε (x)−PKε (x)
)

∣

∣

∣

∣

∣

≤ ε ∑
x∈Kε

|x| . (50)
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Using (50) a simple bound on the bias of µ̂Kε is derived

|E [µ̂Kε (X)]−E [X ]| =

∣

∣

∣

∣

∣

∑
x∈Kε

P(x)
(

ÊKε [X ]− x
)

∣

∣

∣

∣

∣

= P(Kε)
∣

∣ÊKε [X ]−EKε [X ]
∣

∣≤ εP(Kε) ∑
x∈Kε

|x| .

We now derive a bound on the MSE of µ̂Kε .

E
[

(µ̂Kε (X)−E [X ])2
]

= ∑
x∈Kε

P(x)
(

ÊKε [X ]−E [X ]
)2

+ ∑
x∈K̄

ε

P(x)(x−E [X ])2

= P(Kε)
(

ÊKε [X ]−EKε [X ]+EKε [X ]−E [X ]
)2

+ ∑
x∈K̄

ε

P(x)(x−E [X ])2

≤ Var [X ]−P(Kε) ·VarKε [X ]

+P(Kε)





(

ε ∑
x∈Kε

|x|
)2

+2ε

(

∑
x∈Kε

|x|
)

|EKε [X ]−E [X ]|





where in the inequality in the third line we used (50) and Lemma 2. We see that we have an

improvement in MSE terms if

(

ε ∑
x∈Kε

|x|
)2

+ 2ε

(

∑
x∈Kε

|x|
)

|EKε [X ]−E [X ]| < VarKε [X ], which is

always satisfied as ε → 0. Similarly, for the variance we have

E
[

(µ̂Kε (X)−E [µ̂Kε (X)])2
]

= E
[

(µ̂Kε (X)−E [X ])2
]

− (E [µ̂Kε (X)]−E [X ])2

≤ Var [X ]−P(Kε) ·VarKε [X ]

+P(Kε)





(

ε ∑
x∈Kε

|x|
)2

+2ε

(

∑
x∈Kε

|x|
)

|EKε [X ]−E [X ]|



 .

Appendix D. Proof of Theorem 12

Note that without the δθ terms in (42), the bound on the variance for a random variable (28) could

be used to compare [ΣK

0]xx
with [Σ0]xx. For small δθ, the difference in the variance should be small,

as is proved in the following Lemma, which we first motivate with a simple example.

Let X ∈{1,2} and X ′ ∈{1+η,2+η} be two random variables satisfying P(X =1)=P(X ′=1+η)
and P(X = 2) = P(X ′ = 2+η). We expect that for small η, the difference between Var [X ] and

Var [X ′] should also be small.

Lemma 16 Let X ∼ P(·) be a random variable over a finite set {Ωi}N
i=1, where Ωi ∈ R. Let X ′ ∼

P(·) be a random variable over a finite set {Ω′
i}

N
i=1, such that |Ωi −Ω′

i| < η, i = 1, . . . ,N. The

variance of X ′ satisfies

Var
[

X ′]≤ Var [X ]+η2 +2η
√

Var [X ].
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Proof First we have

Var
[

X ′]= E
[

(

X ′−E
[

X ′])2
]

≤ E
[

(

X ′−E [X ]
)2
]

,

since

E
[

(

X ′−E [X ]
)2
]

= Var
[

X ′]+
(

E
[(

X ′−E [X ]
)])2

.

Next we have

E
[

(

X ′−E [X ]
)2
]

= ∑
x′

P
(

x′
)(

x′−E [X ]
)2
,

but since |Ωi −Ω′
i|< η, ∀i then by the triangle equality we have |x′−E [X ]| ≤ |x−E [X ]|+η, so we

have

E
[

(

X ′−E [X ]
)2
]

≤ ∑
x

P(x)(|x−E [X ]|+η)2

= Var [X ]+η2 +2η∑
x

P(x) |x−E [X ]|

≤ Var [X ]+η2 +2η
√

Var [X ],

where in the last inequality we used Cauchy–Schwartz under the expectation inner product:

〈|x−E [X ]| ,1〉2 ≤ 〈|x−E [X ]| , |x−E [X ]|〉 〈1,1〉= Var [X ] .

We now combine the result of Lemma 16 and the bound on the variance developed for the random

variable (28) to prove Theorem 12.

Proof (of Theorem 12) First, we use Lemma 16 to bound (42)

Var
[

1K
ε

ÊKε [θ∗+δθ]+1K̄
ε

(θ∗+δθ)
]

≤ Var
[

1K
ε

ÊKε [θ∗]+1K̄
ε

(θ∗)
]

+η2 +
2η

γ

√

Var [θ∗],

and substitute [Σ0]xx = γ2Var [θ∗]. We now use (28) to bound Var
[

1K
ε
ÊKε [θ∗]+1K̄

ε
(θ∗)

]

, which re-

sults in (43).

Appendix E. Proof of Theorem 4

As stated before, Theorem 4 is a consequence of Theorem 10.1.3 in Kushner and Yin (2003), for

which a long set of assumptions is required. For the sake of clarity, this section is organized as fol-

lows. We first present a constrained version of the IPM-TD(0) algorithm and show that it converges

weakly to a unique point. We then present some definitions needed for Theorem 10.1.3 in Kushner

and Yin (2003), followed by an explicit statement of the theorem, without the required assumptions.

Finally, we present the assumptions one by one, and prove that they are indeed fulfilled.
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E.1 Constrained Algorithm

An important issue in the analysis of an SA algorithm (8) is the boundedness of the iterates. For

many convergence results, a required condition is that the sequence θn be bounded almost surely.

This condition is not trivial, and there are several approaches to satisfying it. One simple approach

is to truncate the iterate θn when it leaves some prespecified constraint set denoted by H (Kushner

and Yin, 2003). This will be done by introducing a ‘correction’ term Zn

θn+1 = θn + εF (θn,xn,un,xn+1)+ εZn, (51)

where εZn is the vector of shortest Euclidean length needed to take θn + εF (θn,xn,un,xn+1) back

to the constraint set H if it is not in H. Respectively, the correction term needs to be added to the

associated ODE
dθ

dt
= ḡ(θ)+ zt , (52)

where zt maintains θ in H. Recall the unconstrained ODE for TD(0) (15), and its fixed point θ∗.

Since in TD(0) θ∗ is bounded by the maximal value of the MDP rmax/(1− γ), we can choose H to

be large enough such that θ∗ ∈ H. The following Lemma guarantees that in this case, the additional

zt term in (52) does not change the ODE’s unique fixed point.

Lemma 17 Assuming θ∗ ∈ H, the constrained ODE for IPM-TD(0) with linear function approxi-

mation dθ/dt = b+Aθ+ zt , with b,A,zt defined in Section 4.1, has a unique and asymptotically

stable fixed point θ∗, which satisfies Aθ∗ =−b.

Proof Consider as a Lyapunov function the Euclidean distance to θ∗, V (θ) = (θ−θ∗)T (θ−θ∗).
For the unconstrained ODE (10), we have13 V̇ (θ) = θT

(

A+AT
)

θ, and since A is negative def-

inite we have V̇ (θ) < 0, and V (θ) is a valid Lyapunov function. Let V̇H (θ) correspond to the

constrained ODE. Since θ∗ is in H, by the geometric definition of the correction terms, we have

V̇H (θ)≤ V̇ (θ)< 0, therefore V is also valid for the constrained ODE (52).

We now state a convergence theorem that relates between the limit point of the ODE (52) and the

asymptotic behavior of algorithm (51). The assumptions needed for this theorem are satisfied by

default, by the definition of our RL environment and algorithm, and are thus omitted.

Let θ(t) denote the piece-wise constant continuous time interpolation θn, where θ(t) = θn on

the time interval [nε,nε+ ε) for t ≥ 0 and θ(t) = θ0 for t < 0. Similarly define Z (t) as the piece-wise

constant continuous time interpolation of Zn.

Theorem 18 (Theorem 8.2.2 in Kushner and Yin, 2003) Consider algorithm (51). For any non

decreasing sequence of integers qε, for each sub-sequence of {θ(εqε + ·) ,Z (εqε + ·)} ,ε > 0, there

exist a further sub-sequence and a process (θ(·) ,Z (·)) such that

(θ(εqε + ·) ,Z (εqε + ·))⇒ (θ(·) ,Z (·))

as ε → 0 through the convergent sub-sequence, where

θ(t) = θ(0)+

t∫

0

ḡ(θ(s))ds+Z (t) . (53)

Let εqε → ∞ as ε → 0. Then, for almost all ω, the path θ(ω, ·) lies in a limit set of (53).

13. See derivation in the proof of 20.3.3.
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E.2 Definitions

The following technical definitions are required for the convergence result.

Let DL (−∞,∞) (and DL [0,∞), respectively) denote the L−fold product space of real valued

functions on the interval (−∞,∞) (resp. on [0,∞)) that are right continuous and have left-hand

limits, with the Skorohod topology used.14

Let {qε} be a sequence of non-negative integers. In order to investigate the asymptotic behavior

we will examine θ(εqε + ·), where εqε → ∞. We also demand ε(qε − pε) → ∞ where pε are non

decreasing and non-negative integers used in assumption 20.3.

Define the normalized error process

Un = (θqε+n −θ∗)/
√

ε,

and let Uε (·) denote its piecewise constant right continuous interpolation, with interpolation inter-

vals ε, on [0,∞). Define W ε (·) on (−∞,∞) by

W ε (t) =



















√
ε

qε+t/ε−1

∑
i=qε

F (θ∗,xi,ui,xi+1) , t ≥ 0

−√
ε

qε+t/ε−1

∑
i=qε

F (θ∗,xi,ui,xi+1) , t < 0

(54)

E.3 A Theorem on Fluctuations in SA

Theorem 19 (10.1.3 in Kushner and Yin, 2003) Consider algorithm (51) and let assumption 20

hold. Then the sequence {Uε (·) ,W ε (·)} converges weakly in DL [0,∞)×DL (−∞,∞) to a limit

denoted by {U (·) ,W (·)}, and

dU = AUdt +dW,

where the matrix A is defined in 20.8, W (·) is a Wiener process with covariance matrix Σ

described in 20.5, and U (·) is stationary.

Theorem 4 is a direct consequence of Theorem 19, with n = ω(1/ε) satisfying the requirement on

qε.

E.4 Assumptions for Theorem 19

The set of assumptions 20 which we describe in the following is designed to fit a wide variety of

algorithms, and are thus quite complicated. The IPM-TD(0) algorithm with which we are concerned

is a very simple case of this theorem, as it is linear, bounded, and stationary, and the Markovian state

transitions are ergodic, and defined over a finite state space.15 Moreover, many of the assumptions

that follow are used in order to reduce a more complicated algorithm to these simpler settings, and

to show that the residual that remains is small in some sense. Thus, many complicated terms in the

assumptions just vanish, and some assumptions are true by default.

14. See Kushner and Yin (2003, p. 228, 238) for more details on DL.

15. In Borkar (2008) a simpler result regarding fluctuations with a fixed step size is given, albeit for a martingale differ-

ence noise scenario. The Markovian state dependent noise in our case requires the more complicated approach of

Kushner and Yin (2003).
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Assumption 20 The following holds16

1.
{

F (θn,xn,un,xn+1) I{|θn−θ∗|≤ρ}
}

is uniformly integrable for small ρ > 0.

Proof F (θn,xn,un,xn+1) is uniformly integrable since on every sample path θn is bounded

(by the constraint), r (xn) is bounded by rmax and φ(xn) is also bounded by definition. Since

this is true for every sample path, F (θn,xn,un,xn+1) I{|θn−θ∗|≤ρ} is uniformly integrable for all

ρ.

2. There is a sequence of non-negative and non decreasing integers Nε such that θ(εNε + ·)
converges weakly to the process with constant value θ∗ strictly inside the constraint set.

Proof By the weak convergence Theorem 18, choosing Nε such that εNε →∞, and by Lemma

17, we have that IPM-TD(0) converges weakly to the process with constant value θ∗ strictly

inside the constraint set.

3. There are non decreasing and non-negative integers pε (that can be taken to be greater than

Nε) such that
{

(θpε+n −θ∗)/
√

ε;ε > 0,n ≥ 0
}

is tight.

Proof For the proof of this assumption we use Theorem 10.5.2 in Kushner and Yin (2003),

which we now state.

Theorem 21 (10.5.2 in Kushner and Yin, 2003) Assume the constrained algorithm 51 with

constraint set H, where θ∗ is in the interior of H. Assume that 20.2 and 20.3.1-20.3.7 hold in

H. Then there are pε < ∞ such that
{

(θpε+n −θ∗)/
√

ε; ε > 0, n ≥ 0
}

is tight.

3.1 θ∗ is a globally asymptotically stable (in the sense of Lyapunov) point of the ODE dθ/dt =
ḡ(θ)+ zt .

Proof This is satisfied by Lemma 17.

3.2 The non-negative and continuously differentiable function V (·) is a Lyapunov function for

the ODE. The second order partial derivatives are bounded and |∇θV (θ)|2 ≤ K1 (V (θ)+1),
where K1 is an arbitrary positive number.

Proof Choose V to be of the form V (θ) = (θ−θ∗)T (θ−θ∗). As was in the proof of Lemma

17, V is a valid Lyapunov function. The second order partial derivatives are zero, and

∇θV (θ) = 2(θ−θ∗)

16. We exclude assumptions which are true by definition of our RL settings.
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|∇θV (θ)|2 = 4 |θ−θ∗|2 = 4V (θ) .

3.3 There is a λ > 0 such that V T
θ (θ) ḡ(θ)≤−λV (θ)

Proof Recalling from (15) and (16) that ḡ(θ) = b+Aθ, we have

1

2

(

(∇θV (θ))T
ḡ(θ)+

(

(∇θV (θ))T
ḡ(θ)

)T
)

= (θ−θ∗)T (b+Aθ)+(b+Aθ)T (θ−θ∗)

= (θ−θ∗)T
b+bT (θ−θ∗)

+(θ−θ∗)T
Aθ+θT AT (θ−θ∗)

= (θ−θ∗)T
b+bT (θ−θ∗)

+(θ−θ∗)T
(

A+AT
)

(θ−θ∗)

+(θ−θ∗)T
Aθ∗+θ∗T AT (θ−θ∗)

= (θ−θ∗)T (b+Aθ∗)+(b+Aθ∗)T (θ−θ∗)

+(θ−θ∗)T
(

A+AT
)

(θ−θ∗)

= (θ−θ∗)T
(

A+AT
)

(θ−θ∗) .

Let λ′ denote the largest eigenvalue of A+AT . We have that (θ−θ∗)T
(

A+AT
)

(θ−θ∗) ≤
λ′ (θ−θ∗)T (θ−θ∗), and

(∇θV (θ))T
ḡ(θ) = (θ−θ∗)T

(

A+AT
)

(θ−θ∗)≤ λ′V (θ) .

3.4 For each K > 0, sup
n

E |F (θn,xn,un,xn+1)|2 I{|θn−θ∗|≤K} ≤ K1E [V (θn)+1], where K1 does not

depend on K.

Proof

Satisfying this requirement is immediate, since F (θn,xn,un,xn+1) is bounded on every sample

path. This follows from the fact that on every sample path θn is bounded (by the constraint),

r (xn) is bounded by rmax and φ(xn) is also bounded by definition.

3.5 The sum Γn (θ) = ε
∞

∑
i=n

(1− ε)i−n
En [g(θ,xi,ui)− ḡ(θ)], where En denotes expectation condi-

tioned on the history up to time n, is well defined in that the sum of the norms of the summands

is integrable for each θ, and E |Γn (θn)|2 = O
(

ε2
)

.

Proof From Lemma 6.7 in Bertsekas and Tsitsiklis (1996) (which relies on the exponential

mixing time of Markov chains) we have that |En [g(θ,xi,ui)− ḡ(θ)]| ≤ cρi−n |θ| for some
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c > 0 and ρ < 1. This gives

∣

∣

∣

∣

∣

∞

∑
i=n

(1− ε)i−n
En [g(θ,xi,ui)− ḡ(θ)]

∣

∣

∣

∣

∣

≤
∞

∑
i=n

|En [g(θ,xi,ui)− ḡ(θ)]|

≤
∞

∑
i=n

cρi−n |θ|

=
c |θ|
1−ρ

,

and

E |Γn (θn)|2 ≤ ε2E

∣

∣

∣

∣

c |θn|
1−ρ

∣

∣

∣

∣

2

=
ε2c

1−ρ
|θ∗|2

= O
(

ε2
)

.

3.6 E |Γn+1 (θn+1)−Γn+1 (θn)|2 = O
(

ε2
)

.

Proof

We have

Γn+1 (θn+1)−Γn+1 (θn)

= ε
∞

∑
i=n+1

(1− ε)i−n−1
En+1 [g(θn+1,xi,ui)− ḡ(θn+1)]

−ε
∞

∑
i=n+1

(1− ε)i−n−1
En+1 [g(θn,xi,ui)− ḡ(θn)]

= ε
∞

∑
i=n+1

(1− ε)i−n−1
En+1 [g(θn+1,xi,ui)−g(θn,xi,ui)− (ḡ(θn+1)− ḡ(θn))] .

Using the triangle inequality

|Γn+1(θn+1)−Γn+1(θn)| ≤

ε
∞

∑
i=n+1

(1− ε)i−n−1 |En+1[g(θn+1,xi,ui)−g(θn,xi,ui)−(ḡ(θn+1)−ḡ(θn))]|

By the linearity of g, ḡ, and since θn is bounded, we have that|g(θn+1,xi,ui)−g(θn,xi,ui)|<
kε for some k, and |ḡ(θn+1)− ḡ(θn)|< k̄ε for some k̄. We therefore have :

|En+1 [g(θn+1,xi,ui)−g(θn,xi,ui)]| ≤ En+1 [|g(θn+1,xi,ui)−g(θn,xi,ui)|]< kε,
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and similarly

|En+1 [ḡ(θn+1)− ḡ(θn)]|< k̄ε.

Now

|Γn+1 (θn+1)−Γn+1 (θn)| ≤ ε2
(

k+ k̄
)

∞

∑
i=n+1

(1− ε)i−n−1

= ε
(

k+ k̄
)

,

and

|Γn+1 (θn+1)−Γn+1 (θn)|2 ≤ ε2
∣

∣k+ k̄
∣

∣

2

= O
(

ε2
)

.

3.7 Let θH denote the projection of θ onto H. Then for all θ, V
(

θH
)

≤V (θ).

Proof This assumption was shown to hold in the proof of Lemma 17.

4. For a small ρ > 0, and any sequence ε → ∞ and n → ∞ such that θn → θ∗ in probability,

E
[

|δMn −δMn (θ
∗)|2 I{|θn−θ∗|≤ρ}

]

→ 0.

Proof Recall that we have

δMn = E [dK

n φ(xn)|xn,un]−dK

n φ(xn)

= γ∑
y

Pun
(y|xn)φ(y)T θnφ(xn)

−γ






1K

n+1

∑
y∈Kxn,un

Pun
(y|xn)φ(y)T

∑
y∈Kxn,un

Pun
(y|xn)

+1K̄

n+1φ(xn+1)
T






θnφ(xn)

= γ





∑
y

Pun
(y|xn)φ(y)T −1K

n+1

∑
y∈Kxn,un

Pun
(y|xn)φ(y)T

∑
y∈Kxn,un

Pun
(y|xn)

−1K̄

n+1φ(xn+1)
T






θnφ(xn) .

The difference δMn −δMn (θ
∗) can therefore be written as

δMn −δMn (θ
∗) = a(xn)

T (θn −θ∗)b(xn) ,

where a and b are vector valued functions of xn. By the Cauchy–Schwarz inequality, for every

xn

|δMn −δMn (θ
∗)| ≤ |a(xn)| |θn −θ∗| |b(xn)| ,
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and since the state space is finite, a and b are bounded, therefore there exists some constant k

such that for every xn

|a(xn)| |b(xn)| ≤ k,

and we have that

E
[

|δMn −δMn (θ
∗)|2 I{|θn−θ∗|≤ρ}

]

≤ k2 |θn −θ∗|2 → 0.

5. The sequence of processes W (·) defined on (−∞,∞) by (54) converges weakly in DL (−∞,∞)
to a Wiener process W (·), with covariance matrix Σ.

Proof

For the proof of this assumption we use Theorem 10.6.2 in Kushner and Yin (2003),which we

now state.

Theorem 22 (10.6.2 in Kushner and Yin, 2003) Assume 20.5.1-20.5.4. Then {W (·)} defined

in (54) converges weakly to a Wiener process with covariance matrix Σ = Σ0 +Σ1 +ΣT
1 .

5.1 The following equations hold:

lim
N→∞

sup
n

E

∣

∣

∣

∣

∣

∞

∑
j=n+N

E
(

F (θ∗,x j,u j,x j+1)
∣

∣xn,un

)

∣

∣

∣

∣

∣

= 0,

lim
N→∞

sup
n

E

∣

∣

∣

∣

∣

∞

∑
i=n+N

E(F (θ∗,xn,un,xn+1)F (θ∗,xi,ui,xi+1)|xn,un)
T

∣

∣

∣

∣

∣

= 0.

Proof

Since the transition probabilities at step j converge to the steady state transition probabilities

(a property of ergodic Markov chains) exponentially fast in j, and since at the steady state

E(F (θ∗,x,u,x′))≡ ḡ(θ∗) = 0, we have that for some ρ < 1 and some vector c

∣

∣E
(

F (θ∗,x j,u j,x j+1)
∣

∣xn,un

)∣

∣< cρ j−n,

therefore for every n

lim
N→∞

∣

∣

∣

∣

∣

∞

∑
j=n+N

E
(

F (θ∗,x j,u j,x j+1)
∣

∣xn,un

)

∣

∣

∣

∣

∣

≤ lim
N→∞

c
∞

∑
j=N

ρ j

= lim
N→∞

cρN

1−ρ

= 0.
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The same goes for the covariance, since there exists some ρ′ < 1 and some matrix c′ such that

E(F (θ∗,xn,un,xn+1)F (θ∗,xi,ui,xi+1)|xn,un)
T < c′ρ′i−n.

5.2 The sets
{

|F (θ∗,xn,un,xn+1)|2
}

and

{

∣

∣

∣

∣

∞

∑
j=i

E
(

F (θ∗,x j,u j,x j+1)
∣

∣xi,ui

)

∣

∣

∣

∣

2
}

are uniformly in-

tegrable.

Proof As was shown before, F (θ∗,xn,un,xn+1) is bounded, and therefore
{

|F (θ∗,xn,un,xn+1)|2
}

is uniformly integrable. Also, as was shown in the proof of A5.1, for every i
∣

∣

∣

∣

∣

∞

∑
j=i

E
(

F (θ∗,x j,u j,x j+1)
∣

∣xi,ui

)

∣

∣

∣

∣

∣

≤ c

1−ρ
,

which is bounded, and therefore

{

∣

∣

∣

∣

∞

∑
j=i

E
(

F (θ∗,x j,u j,x j+1)
∣

∣xi,ui

)

∣

∣

∣

∣

2
}

is uniformly integrable.

5.3 There is a matrix Σ0 such that

1

m

n+m−1

∑
j=n

E
[

F (θ∗,x j,u j,x j+1)F (θ∗,x j,u j,x j+1)
T
∣

∣

∣
xn,un

]

−Σ0 → 0

in probability as n,m → ∞.

Proof

Since the Markov chain is ergodic, by the law of large numbers this is satisfied by defining

Σ0 = lim
n→∞

E
[

F (θ∗,xn,un,xn+1)F (θ∗,xn,un,xn+1)
T
]

.

5.4 There is a matrix Σ1 such that

1

m

n+m−1

∑
j=n

∞

∑
k= j+1

E
[

F (θ∗,x j,u j,x j+1)F (θ∗,xk,uk,xk+1)
T
∣

∣

∣xn,un

]

−Σ1 → 0

in probability as n,m → ∞.

Proof

Since the Markov chain is ergodic, by the law of large numbers this is satisfied by defining

Σ1 =
∞

∑
j=1

lim
n→∞

E
[

F (θ∗,xn,un,xn+1)F (θ∗,xn+ j,un+ j,xn+ j+1)
T
]

.
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6. g(·,x,u) is continuously differentiable for each x,u, and can be expanded as

g(θ,x,u) = g(θ∗,x,u)+ [∇θg(θ∗,x,u)]T (θ−θ∗)+ [y(θ,x,u)]T (θ−θ∗) ,

where

[y(θ,x,u)]T (θ−θ∗) =
∫ 1

0
[∇θg(θ∗+ s(θ−θ∗) ,x,u)−∇θg(θ∗,x,u)]ds, (55)

and if δ → 0 as ε → 0 and n → ∞, then

E |y(θn,xn,un)| I{|θn−θ∗|≤δ} → 0

as ε → 0 and n → ∞.

Proof Recall that for IPM-TD(0)

g(θ,x,u) =

(

r (x)+

(

γ∑
y

Pu (y|x)φ(y)T −φ(x)T

)

θ

)

φ(x) ,

which is linear in θ and thus can be expanded as

g(θ,x,u) =

(

r (x)+

(

γ∑
y

Pu (y|x)φ(y)T −φ(x)T

)

(θ−θ∗+θ∗)

)

φ(x)

= g(θ∗,x,u)+

(

γ∑
y

Pu (y|x)φ(y)T −φ(x)T

)

(θ−θ∗)φ(x)

= g(θ∗,x,u)+ [∇θg(θ∗,x,u)]T (θ−θ∗) .

Since ∇θg(θ,x,u) does not depend on θ, the integral in (55) is zero and y(θ,x,u) = 0, thus

the assumption is satisfied.

7. The set {∇θg(θ∗,xn,un)} is uniformly integrable.

Proof As was shown above, ∇θg(θ∗,xn,un) is clearly bounded, and therefore uniformly in-

tegrable.

8. There is a Hurwitz matrix A such that

1

m

n+m+1

∑
j=n

[

E
[

∇θgT (θ∗,x j,u j)
∣

∣xn,un

]

−A
]

→ 0

in probability as ε → 0 and n,m → ∞.
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Proof We have,

∇θgT (θ∗,x,u) = φ(x)

(

γ∑
y

Pu (y|x)φ(y)−φ(x)

)T

.

Recall our definition of A

A , ΦT Πµ (γPµ − I)Φ.

Then, by the law of large numbers, we have

1

m

n+m+1

∑
j=n

[

E
[

∇θgT (θ∗,xi,ui)
∣

∣xn,un

]

−A
]

→ 0.

As was stated before, it can be shown (Bertsekas and Tsitsiklis, 1996, Lemma 6.6b) that the

eigenvalues of A all have a negative real part, therefore A is Hurwitz.
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