
Integrating a Structured-Text Retrieval System with 

an Object-Oriented Database System 

Tak W. Yantt 

tyan@cs.stanford.edu 

tD epartment of Computer Science 

Stanford University 

Stanford, CA 94305 

Abstract 

We describe the integration of a structured- 
text retrieval system (TextMachine) into an 
object-oriented database system (OpenODB). 

We use the external function capability of 

the database system to encapsulate the text 

retrieval system as an external information 
source. Through query translation, we are 

able to provide a tight integration in the query 

language and processing; the user can access 

the text retrieval system using a standard 

database query language. The efficient and ef- 
fective retrieval of structured text performed 

by the text retrieval system is combined with 

the rich modeling and general-purpose query- 
ing capabilities of the database system, re- 

sulting in an integrated system with querying 

power beyond those of the underlying systems. 
The integrated system also provides uniform 

access to textual data in the text retrieval sys- 
tem and structured data in the database sys- 

tem, thus allowing fusion of information. 

1 Introduction 

With the advent of document structure markup stan- 

dards such as SGML [Go1901 and ODA [ATL93], struc- 
tured documents have recently received a lot of atten- 

tion. The logical structure of text constitutes impor- 

tant information for querying and/or retrieval, but tra- 

Permission to copg without fee all ot part of this material is 

granted provided that the copies are not made or distributed for 

direct commercial advantage, the VLDB copyright notice and 
the title of the publication and its date appear, and notice is 

given that copying is by pcmaiasion of the Very Large Data Base 
Endowment. To copy otherwise, or to republish, requires a fee 

and/or special permission from the Endowment. 

Proceedings of the 20th VLDB Conference 
Santiago, Chile, 1994 

Jurgen Annevelinkt 

annevelink@hpl.hp.com 

SHewlett-Packard Laboratories 

1501 Page Mill Road 

Palo Alto, CA 94304 

ditional text retrieval systems typically do not make 
full use of the document structure. New research pro- 

posals and prototypes, such as [Bur92, KM93, MacQO], 
and commercial text retrieval systems, such as [Ah93], 
have emerged to address this problem. 

Structured documents also lend themselves to be 

managed by database systems. A lot of efforts have 

been made to add text retrieval capability to both 

relational and object-oriented systems. Past efforts 

to model structured text in a relational system have 

met with difficulties [ZTSDQl], and object-oriented 

database systems have been developed partly with the 

aim to store and manage text and other complex data. 

In either case, the database system stores the docu- 
ments and is extended with text indexing and retrieval 

capabilities. 

In this paper, we present a flexible approach of inte- 

grating a text retrieval system (TextMachine [All93]) 

and an object-oriented database system. (OpenODB 
[Hew92]). The text retrieval system retrieves struc- 

tured components of documents. It exists alongside 
with the database system. Documents are stored in, 
and all indexing and retrieval of documents are per- 

formed by, the text retrieval system. The database 

system treats the text retrieval system as an external 

information source. It communicates with the text 
retrieval system through the latter’s application pro- 

gramming interface, submitting queries and receiving 

answers. The interface is encapsulated by the so-called 

external function capability of the database system, 
and the underlying processing is transparent to the 

user; i.e., the user is unaware that the text retrieval 

system is an external source. 

, 

Thii integration combines the best of both worlds 
- the efficient and effective indexing and retrieval of 
structured documents performed by the text retrieval 

system, and the rich modeling and general-purpose 
querying capabilities supported by the object-oriented 

740 



database system - resulting in an integrated system 

with querying power beyond those of the underlying 

systems. To illustrate, we consider here an example 

(Q3) that we will further discuss in Section 3.3.4. A 

TextMachine user retrieves text components by speci- 

fying a certain pattern (detailed in Section 2.2.2). In 

the integrated system, a user can submit a query with 
a number of patterns, and further add constraints on 

the relationship (e.g., adjacency) between components 

retrieved by the different patterns, using database 

query language constructs. We cannot express such re- 

lationship between components in TextMachine alone. 

In addition, the integrated system provides uniform 

access, i.e., the ability to uniformly query over both 

the textual data managed by the text retrieval sys- 

tem and the structured data stored in the database 

system, thus allowing fusion of information. For ex- 

ample, in a sample query (Q2) described in Section 

3.3.3, we retrieve paragraphs from TextMachine that 

mention Ubronchitis” and also the name of a physician 
whose specialty is “respiratory”; structured informa- 

tion about physicians is stored in the database system. 

The text data retrieved can further be extracted and 

assimilated into the structured database. 

In this paper, we describe the design and implemen- 

tation of our prototype integrated system. We address 

the following issues: 

l Framework for external integration 

We investigate the use of the database system’s 
external function capability to access the retrieval 

system. We show what abstraction of the external 

source is desirable for integration and how docu- 

ment schemas from the text retrieval system are 

imported. We show how, in spite of the nature of 
the external integration, we achieve a tight cou- 

pling of query language through query transla- 

tion. 

l Modeling text 

We discuss the use of object-oriented concepts - 

objects, types, and functions - to model complex 

categorization and structure hierarchies of docu- 

ments. We address the modeling issues involved 
when we import document schema from the text 

retrieval system into the integrated system. 

0 Performance issues 

A potential drawback of this approach is the per- 

formance penalty of accessing an external source. 
However, we can minimize the overhead in a num- 
ber of ways, such as efficient techniques to perform 

conversion between keys referencing external ob- 
jects and database object identifiers (OIDs), op- 
timizing the processing of external functions, and 

so on. In our prototype, we investigate the use of 

algorithmic OID conversion. 

Although the work reported in this paper is on in- 

tegrating with a particular structured-text retrieval 
system, the approach and techniques are orthogo- 

nal to the underlying retrieval model and language, 

and can be extended to other text retrieval sys- 

tems as well. In fact, we have integrated OpenODB 

with another system, Wide Area Information Servers 
(WAIS) [KM91], a networked information retrieval 
system. This demonstrates the flexibility of our ap- 

proach yYA94a]. 

The rest of the paper is organized as follows. In 

Section 2 we describe the testbed systems of our inte- 

gration. In Section 3 we present the integrated system. 

The implementation details of the prototype are cov- 

ered in Section 4. We survey related work in Section 
5. Finally, Section 6 is for conclusion and discussion 

of future work. 

2 The Testbed 

In this section, we briefly describe the object-oriented 

database system and the text retrieval system that we 

have integrated. The scope of our paper limits this to 

a short description of relevant topics. The reader is 

referred to [AlI93] and [Hew921 for detailed coverage 
of the systems. 

2.1 OpenODB: a Functional Object-Oriented 

Database System 

OpenODB is an object-oriented database system de- 
veloped by Hewlett-Packard. OSQL [AA@941 is 

a database programming language for OpenODB. It 
combines the object-oriented features found in such 

languages as C++ and Smalltalk with a query capa- 

bility that is a superset of the familiar SQL relational 

query language. 

The OSQL language is centered around three basic 

concepts: objects, types, and functions. Objects rep- 

resent the real-world entities and concepts from the 

application domain that the database is storing infor- 

mation about. Each object has a unique object iden- 

tifier (OID). !Qp es are used to classify objects on the 
basis of shared properties and/or behavior. Types are 

also used to define the signature of functions, i.e., their 

argument and result types. Types are related into 

a subtype/supertype hierarchy that supports multiple 

inheritance. The type hierarchy enforces type contain- 
ment, i.e., if an object is an instance of a given type 
T, it must also be an instance of alI supertypes of the 
type T. OSQL surrogate objects can be instances of 
any number of types, even if the typss are not related 

by a subtype/supertype relationship. 

741 



Functions are used to model attributes of the ob- 

ject, interobject relationships, and arbitrary compu- 

tations. One of the key distinctions of OSQL as com- 

pared to other models is this unifying notion of a func- 

tion to model stored and derived attributes, stored and 
derived relationships, and arbitrary computations (be- 

havior). An OSQL function takes one or more objects 
as arguments and may return an object as a result. 
OSQL functions can be overloaded, i.e., there can be 

multiple functions with the same name but different 

argument types. Functions have extensions. The ex- 

tension of a function is the mapping from its argu- 

ment(s) to its results. Function extensions can be ex- 

plicitly stored, or they can be computed. Functions 

whose extension is computed can be implemented ei- 

ther as an OSQL expression, or as a program (subrou- 

tine, procedure) written in a general purpose program- 

ming language (e.g., C). These latter are called exter- 
nal functions and give OSQL a unique form of exten- 

sibility by allowing the encapsulation of (entry points 

in) external libraries, to access information, data, and 

functionality outside of an OpenODB database. We 

made extensive use of external functions in our inte- 
gration. 

OSQL supports a query language whose semantics 

is based on domain calculus. The OSQL select function 
provides the basic query facilities of OSQL and closely 

resembles the select statement of SQL. For example, 

suppose we have a type Physician with an attribute 

specialty in our database. Then the query 

select p for each Physician p 

where specialty(p) = ‘respiratory’; 

returns the OIDs of the physicians whose specialty is 

“respiratory.” 

2.2 TextMachine 

TextMachine (hereafter abbreviated to TM) is a 
structured-text retrieval system from Alliance Tech- 

nologies [All93]. 

2.2.1 Structured Documents 

TM provides a text preparation system that marks up 
raw ASCII documents with tags that identify the vari- 

ous structural componenta of documents, such as chap- 

ters, sections, paragraphs, and sentences. It also iden- 

tifies domain-specific information, called attributes, in 

documents; e.g., proper names, drug names, or phone 
numbers. The particular components and attributes 
identified for a certain kind of documents are user- 

defined. We do not go into the details of the mark-up 
process in this paper. Figure 1 shows a sample excerpt 

from a TM-tagged document. 

(DOC) (DOCTITLE) Integrating a Structured- 

Text Retrieval System with an Object-Oriented 

Database System (/DOCTITLE) . . . (SECT) 

(SECTTITLE) Introduction (/SECTTITLE) 

With the advent of document structure markup 

standards such as . . . Finally, Section 6 is 

for conclusion and discussion of future work. 

(/SECT) . . . 

Figure 1: An excerpt from a TM-tagged document 

Documents are grouped into -+&abases. Documents 

in the same database share the same logical struc- 

ture: they are tagged by the same mark-up procedure. 
The logical structure of documents in a database is 

described by some sort of document schema, called 

the database definition file (DDF). The DDF specifies 

(the tags of) th e components and their nesting rela- 

tionship, the titles of certain components (if defined), 

and the attributes. Different databases may have dif- 
ferent structures, described by different DDFs. This 
is sqmewhat analogous to the Document Type Defi- 

nitions (DTD) in SGML. Figure 2 shows the relevant 
information from the DDFs of two TM databases. Fig- 

ure 2A is for a technical memo database (of which the 
document in Figure 1 is a sample document) and Fig- 

ure 2B is for a medical progress note database. 

2.2.2 Retrieval Model and Query Language 

The retrieval model and query language of TM bear re- 

semblance to recent proposals in the literature [Bur92, 
KM93, MacSO], and are closest to the tree inclusion 

primitive [KM93]. Here, we briefly discuss the primi- 
tive, as formalized in [KM93]. 

The tree inclusion primitive applies to general tree 

structures. If p and t are trees, an embedding of p 

in t is an injective function e from the nodes of p to 

the nodes of t. An embedding e preserves a binary 

property 4 between nodes, if for any pair of nodes u 
and u of p, we have 4(u, V) holds in p if and only if 

4(44 e(u)) h o ld s in t. Given a set S of properties 

to be preserved, an S-embedding is an embedding that 

preserves the properties of S. Given a pattern tree p, a 

target tree t, and a set S of properties, p is an included 

tree oft if there exists an S-embedding of p in t. 

In TM, we may view documents as labeled trees. 

The height of a document tree is equal to the number 

of levels in the DDF plus one. The root represents the 

top level component in the DDF, its children represent 
the second level components, and so on. The leaves 
represent the individual words. The interior nodes are 

labeled by the level names, while the leaves are labeled 

by the words. As an example, the upper half of Figure 

3 is the tree of a document instance described by the 

742 



level0 DOC 

level 1 SECT 

level2 SUBSECT 

title0 DOCTITLE 

title1 SECTTITLE 

attribute PNAME 

level0 DOC 

level1 SECT 

level2 PAR 

level3 SENT 

title0 DOCTITLE 

title1 SECTTITLE 

attribute DRUG 

B 

J 

Figure 2: Sample DDFs for two TM databases 

DDF in Figure 2B. 
In the terminology of [KM93], TM retrieval pre- 

serves labeling and ancestorship properties, and is un- 

ordered (i.e., does not preserve left-to-right ordering). 

In Figure 3, the partial pattern in the lower half is an 

included tree of the document tree in the upper half, 
under the preservation of these properties. To retrieve 

documents, the user specifies a partial pattern p of 

the desired document trees. All documents that sat- 

isfy the tree inclusion primitive are returned (i.e., all 
documents of which p is an included tree). 1 

The TM query language supports different retrieval 

operators for databases described by different DDFs. 

For example, for a database described by the DDF in 

Figure 2B, we have the following “window operators”: 

W/DOC, W/SECT, W/PAR, and W/SENT. An opera- 
tor takes an arbitrary number of words as arguments 
and we can also compose the operators to specify com- 

plex partial patterns. For example, the query 

W/PAR[headache (W/SENT[artery biopsy])] 

specifies the pattern shown in the bottom half of Fig- 
ure 3. It retrieves documents that have a paragraph 

containing the word “headache” and a sentence with 

the words “artery” and “biopsy.” 

TM also provides the ability to search on compo- 

nent titles and attributes. For example, the query 

W/SECT(course)[headache DRUG[tylenol]] 

is for sections with the word ‘course” in the title, and 

containing the word “headache” and the drug name 

“tylenol.” In addition to these DDF-specific operators, 

TM supports the OR operator and the proximity op- 

erator W/n (n an integer). Extensions such as phrases 

and truncation are also provided. 

‘Note that the unit of retrieval in TM is a document. We 

believe that it is desirable for the user to retrieve the minimal 

document components that satisfy a specified pattern; e.g., the 

user may want to retrieve at the paragraph level, instead of en- 

tire documents. Thus, in our integration, we allow the . ’ \1 

components to be retrieved. 

DOC 

/\ 

SECT SECT 

/I /\\ 

I SENT SENT . ~ . 

I artery biopsy : . . . headache 

I 

I ? f ' I ? 

I I L-C-----7 I 

I I I , I 

I 
headache , SENT : : 

I I 
I I 
I I / \i i 

I 

I L --- artery biopsy : 
L,-,,,-,,--,,,,-,J 

Figure 3: Tree inclusion 

3 The Integrated System 

We present the integrated system according to the 

three object-oriented concepts: objects, types, and 
functions. 

3.1 Text Objects 

In our integration, we provide a view of text objects, 

which are used to model the individual structural com- 

ponents of documents. The granularities of text ob- 

jects for a given kind of document are as defined by 

the associated document schema (DDF). For example, 
in a progress note document defined by the schema 

shown in Figure 2B, we have text objects that model 

documents, sections, paragraphs, and sentences. Each 
text object is uniquely identified by an OID. 

3.2 Text Type Hierarchies 

We model text by two kinds of hierarchies, which are 

orthogonal to each other. The first, called the cate- 

gorization hierarchy, models the relationship between 

the different kinds or categories of texts (e.g., medi- 

cal notes, technical reports). The second, called the 
structure hierarchy, models the relationship between 
the structural components within a certain category 
of text. Below we first describe each kind of hierar- 
chies in turn, then we explain the interplay between 
them, and show how the hierarchies are automatically 

143 



TextObj 

/I\ 
Memo Tech Report MedNote 

/\A /\ 
. . . TechMemo DisSum ProgNote 

I I 
-------------- - 
I I 

,---------- ~ 

: TechMemoDoc 
I I I 

I 
I I 

: ProgNoteDoc 1 
I I I 

I 
I I 

I 
I I 

I TechMemoSect 
I 

I 
: ProgNoteSect : 
I 

I I I 

I I 
I I I 

I 

1 TechMemoSubSect : 
: ProgNotePar : 
I I I 

L--,,,,,,,,--- J I I I 

: ProgNoteSent : 
L----------d 

Figure 4: Text categorisation (is-a) and structure 

(part-of) hierarchies for a database instance 

constructed from meta information extracted from the 

DDFs. 

3.21 Text Categorisation Hierarchy 

The text categorisation hierarchy is an is-a hierarchy 

that defines the relationship among different hinds of 
text. The system-defined type TextObj is the super- 

type of all text objects. In any database instance of the 

integrated system, we have a single text categorisation 

hierarchy. Different database instances may have dif- 

ferent categorisation hierarchies. For example, Figure 
4 shows the categorization hierarchy (in solid lines) of 

a particular database instance. The subtypes of Tex- 

tObj include types Memo, TechReport, and MedNote. 

Type MedNote in turn is the supertype of types Prog- 

Note (for progress notes) and DisSum (for discharge 

summaries). Note that OpenODB allows multiple su- 
pertypes; e.g., type TechMemo is subtype of both types 

Memo and TechReport. 

3.2.2 Text Structure Hierarchy 

Within a text category, we have text objects that cor- 

respond to different structural components. These 

text objects are organised into a part-of hierarchy, or 

structure hierarchy. In a database instance, there are 
multiple structure hierarchies, one for each node in 
the categorisation hierarchy. For example, in Figure 

4, we show the structure hierarchies for two of the 
nodes in the categorisation hierarchy. For text ob- 

jects of type ProgNote, we have type ProgNoteDoc for 

objects that correspond to entire progress note docu- 

ments, ProgNoteSect for sections within progress notes 

documents, ProgNotePar, and ProgNoteSent. A Prog- 

NoteSect object is part of a ProgNoteDoc object, and 
a ProgNotePar object is part of a ProgNoteSect object 

(and also part of a ProgNoteDoc object). Structure hi- 
erarchies are effected by functions that allow the user 
to traverse from one component to another (described 
in Section 3.3.2). 

3.2.3 Interplay between the Hierarchies 

As just mentioned, each node in the categorisation hi- 

erarchy has its own structure hierarchy. A leaf node 

corresponds to a TM database and its structure hier- 

archy directly maps from the document schema associ- 
ated with the TM database. For an interior categorisa- 

tion node, its structure hierarchy must be explicitly 

constructed by the user. (Automatic generalisation 

from the leaf nodes would lead to semantic difficul- 

ties; see last paragraph in Section 3.2.4.) The struc- 
ture types are made into subtypes of the categorisation 

type. For example, in Figure 4, ProgNoteDoc, Prog- 

NoteSect, ProgNotePar, and ProgNoteSent are all sub- 

types of ProgNote. A ProgNotePar object is a ProgNote 

object, a MedNote object, and a TextObj object. Note 
that the categorisation types are all abstract types; 

i.e., every ProgNote text object also belongs to a cer- 

tain structure subtype, such as ProgNotePar. 

We may contrast this with an alternative. Suppose 

that in our example, we create instead the structure 

hierarchy Dot - Sect - Par - Sent and make every text 

object belong to two immediate types: a structure type 
and a categorisation type. That is, a ProgNotePar 

object in the original scheme would have two imme- 

diate types in the alternative scheme: ProgNote and 
Par. This has some drawbachs. First, different TM 

databases may have identical names for components 

that are related by different part-of relationships. For 

example, in a magasine database we may have a Sec- 

tion component being part of an Article, in another we 

may have the opposite. The first scheme handles this 

situation easily, but complications arise for the alter- 
native. Another drawback is that the user may want 

to query on or to have a function for a specific catego- 

risation+structure type; e.g., a function for displaying 

progress note sections. This is difiicult to achieve using 

the second scheme. 

3.2.4 Schema Importation 

These hierarchies are automatically constructed as we 
import TM databases into OpenODB as leaf subtypes 

in the categorisation hierarchy. While the structure hi- 
erarchy directly maps from the TM document schema, 

the information for building the text categorisation 

744 



hierarchy has to be explicitly specified during impor- 

tation. EssentialIy, we have to name the immediate 

categorisation supertypes of the type that we are im- 

porting. 

As an example, the type ProgNote is imported as 

follows: 

import /u/tyan/ProgNote/db/ProgNote MidNote 

Import is a C program that generates the OSQL state- 
ments for building the hierarchies. The first argument 

to import is the path of the TM text database. The 

name of the database (ProgNote in the example) is 

used as the name of the text categorisation type. The 

first argument is followed by one or more names of the 
immediate supertypes of the imported type. In our 

example, ProgNote is imported as a subtype of Med- 

Note, which we assume has already been created in the 

database (as a subtype of TextObj). The import pro- 

gram reads the DDF and outputs the following OSQL 

statements: 

create type ProgNote subtype of McdNote; 

create type ProgNoteDoc subtype of ProgNote; 

create type ProgNoteSec subtype of ProgNote; 

create type ProgNotePar subtype of ProgNote; 

create type ProgNoteSent subtype of ProgNote; 

The importation also creates OSQL statements that 

insert information into the OpenODB database needed 
for query translation and algorithmic OID generation, 

discussed later on. Once the importation is done and 

the user loads the statements into a database of the 

integrated system, he can start querying TM using 

functions described in the next section. 

Note that in importation, no automatic generation 

of structural subtypes is done for the categorisation 
supertypes. As an example, in importing the Prog- 

Note subtype, the import program generates the struc- 

ture subtypes ProgNoteDoc, ProgNoteSect, and so on, 

but it does not generate the structure subtypes Med- 

NoteDoc, MedNoteSect, and others. This avoids se- 
mantic inconsistencies that may occur when we import 
later another subtype of MedNote that may not have 

the corresponding structure subtypes. On the other 

hand, the integrated system does allow user to explic- 

itly specify the generalised structure subtypes; for ex- 

ample, the user may create the type MedNotePar, and 

make DisSumPar and ProgNotePar its subtypes. 

3.3 Querying and Browsing Functions 

33.1 Querying 

The basic querying of text objects in the integrated 

system is conceptually performed by a set F of func- 
tions. Each function fP in F is associated with a par- 

tial tree pattern p, which describes a certain logical 

text structure. The result of application of fP to a 
text object is TRUE if it is a minimal text object that 

satisfies p (i.e., no subcomponent satisfies p), FALSE 
otherwise. 

To specify a function in F, the user makes use of 

some high-order OSQL functions. a Each TM oper- 

ator has a corresponding high-order OSQL function. 
For example, the OSQL function par corresponds to 

the TM operator W/PAR. For convenience, we call 
these high-order functions TM functions. In the sim- 

ple case, a TM function takes an arbitrary number of 

character strings as arguments and return a function 

in F. For example, in the query 

select t for each TextObj t 

where par(‘headache’)(t); - (Ql) 

the par function takes the word ‘headache” as argu- 

ment. It returns a function (in F) that maps a text 

object to TRUE if the text object is a paragraph with 
the word “headache” in it, FALSE otherwise. OIDs of 

text objects that satisfy the pattern are then returned 

by the select statement. 

TM functions also take functions from F as argu- 

ments. For example, in the query 

select t for each MedNote t 

where par(‘headache’, sent(‘artery’, ‘biopsy’))(t); 

the second argument to par is a function, which is the 

result of sent(‘artery’, ’ biopsy’). The function returned 

by par is then a function (in F) that returns TRUE 
if its argument is a text object that is a paragraph 

containing the word Uheadache” and a sentence with 

the words %rtery” and ubiopsy.” We can thus com- 

pose the TM functions to describe the tree pattern the 

retrieved text objects should satisfy. 

Par and sent are second order OSQL functions. For 
text components with titles defined, we have third or- 

der OSQL functions: 

select t for each ProgNoteSect t 

where 

sect(‘course’)(‘headache’. drug(‘tylenol’))(t); 

Here, sect is a function that takes a character string 

and returns a second order function. A retrieved sec- 

tion must have the word ucourse” in its title. Also 

note the use of the TM function drug that corresponds 

to the attribute operator DRUG. 

The user does not need to define these TM f ‘nc- 

tions explicitly. They are implicitly defined as th 
/ 

TM 

databases are imported into OpenODB. Consequently 
text types imported from different schemas have differ- 
ent TM functions defined. The importation automati- 

cally extracts necessary information from the DDF for 

zA high-order function is one that returna a function aa 

result. 

745 



translating TM functions to some external function for 

execution (see Section 4.2.2). We also have built-in 

functions that correspond to basic TM operators OR 

and W/n: the choose and near functions. 

3.3.2 Navigation 

Functions are also used to traverse the text structure 

hierarchies. We have four basic navigational functions: 

up, down, prev, and next, each being an external func- 

tion. Each takes (the OID of) a text object, and based 

on the text structure hierarchy it belongs to, returns 
the OID of another text object: up returns the parent 

of a text object, down returns the first child, prev re- 

turns the previous sibling, and next returns the next 

sibling. The semantics of these functions are based on 
the actual document structure, and not on the struc- 

ture hierarchy. For example, given the progress note 
structure hierarchy in Figure 4, the next of a para- 
graph is the next paragraph in the document, regard- 

less of whether they are in the same section. We can 

further define other traversal functions that provide 
convenience. 

3.3.3 Uniform Access 

The character string arguments to the TM functions 

can be the result of an ordinary OSQL function. This 

gives us a way to join the data stored the database 

with the information stored in the documents in the 

text retrieval system. To illustrate, suppose we have 

the type Physician with attributes name and specialty 

in our database. Consider the following query: 

select t for each ProgNotcPar t, Physician p 

where 

par(name(p), ‘bronchitis’)(t) and 

specialty(p) = ‘respiratory’; - (Q2) 

When this query is processed, the names of physicians 

with specialty “respiratory,, are used in queries sub- 

mitted to TM. The results are progress note para- 

graphs that contain the name of a physician whose 

specialty is 9espiratoryv and the word “bronchitis.” 

Besides using structured data in text retrieval 

queries, we may do the opposite - extract data 

from documents and bring them into the structured 

database. The results of the TM querying and brows- 

ing functions are OIDs that reference text objects. 

Thus we may store these OIDs in the database and 

follow the references later. Another way to extract 

the data is to retrieve the actual text. We define the 
external function content that takes a text object OID 
and returns the corresponding piece of text. Its use is 

demonstrated in this example: 

select content(t) for each ProgNoteSent t 

where sent(‘artery’, ‘biopsy’)(t); 

I TM 
I 

I I 

Figure 5: Implementation overview 

The text strings returned may then be assimilated into 

the database directly or after further massaging. 

3.3.4 Beyond Tree Inclusion 

The processing of TM functions is integrated with the 

general query processing of OpenODB. The power of 

the two systems combined allows us to perform query- 
ing not possible with any one of them. Specifically, we 

are able to ask queries that cannot be expressed with 

the tree inclusion primitive. For example, consider 

select t for each TextObj t, TextObj s 

where 

par(‘heart failure’)(t) and 

par(‘headache’)(s) and 

(next(s) = t or next(t) = s); - (Q3) 

Here, we are asking for paragraphs with the phrase 

“heart failure,” which are adjacent to paragraphs with 
the word “headache.,, We cannot express this query 

in TM or using the tree inclusion primitive alone. 

4 Prototype Implementation 

In this section, we discuss the implementation details 

of our prototype (Figure 5). Text querying and brows- 

ing functions are implemented as OpenODB ezdemal 

functions. These functions access the Ted Objects lkfa- 
nipulation Module (TOMM), a module we have imple- 
mented to provide the desirable object abstraction of 

the text retrieval system. External keys returned by 

TOMM are converted into algorithmic OIDs. Below 

we discuss each of these aspects. 

4.1 Text Objects Manipulation Module 

Although the query language of TM allows an arbitrar- 
ily fine granularity of content specification (depending 
on the mark-up of the documents), it does not support 

the notion of text objects in the retrieval, i.e., the unit 

of retrieval result is still a document - a set of entire 

documents are returned. Thus, to support a model of 

746 



text objects in our integration, we built an encapsu- 

lating module, called the Text Objects Manipulation 

Module (TOMM), to objectise TM. 

TOMM identifies the individual components of a 
document, or text objects. Each text object is repre- 
sented by a tuple of integer keys, which contain infor- 

mation such as the TM document identifier of the doc- 

ument that contains the component and the position 

of the component within the document. Query results 

from TM, which are in the form of a set of TM docu- 
ment identifiers, are passed through TOMM. TOMM 

derives the starting and ending positions of the com- 
ponents, and returns a set of tuples as results. Section 

4.3 discusses how these keys are converted to and from 

OpenODB OIDs. Given a set of keys, TOMM also 
performs the opposite process of retrieving the actual 

text of the component. Function content can thus be 

implemented. 

4.2 External Functions 

4.2.1 Navigational Routines 

The external functions up, down, prev, and next 

have four corresponding supporting routines defined 

in TOMM. Each of the four routines takes as argu- 
ments the external keys of a text object, and returns 

the external keys of another text object. To illustrate, 
consider the routine for supporting the next function. 

Given the external keys, the routine first locates the 

component. It then searches the first start and end 

tags that appear in the document after the compo- 

nent. The keys for this component are then derived. 

4.2.2 Function GetTextObjs and Query Transla- 
tion 

In the integrated system, the user queries text data 

with high-order OSQL functions such as par and sect. 

These TM functions have no real implementation: in- 

stead of defining each and every TM function individ- 

ually, we implement a single external function GetTex- 

tObjs. It acts the entry point to query TM. A predicate 

expressed with high-order TM functions is translated 

into a call to GetTextObjs. Below we first discuss the 

function GetTextObjs and then we explain the query 

translation process. 

GetTextObjs takes a variable number of character 

strings as arguments. The first argument is special: it 

is the skeleton of a TM query. It has special substitu- 

tion symbols “%s” embedded, in the style of the printf 

statement in C. During query processing, the rest of 
the arguments are substituted into the first, forming a 

complete TM query. The result of GetTextObjs is a set 

of text objects retrieved by the TM query. Consider 

the following query: 

select t for each ProgNotePar t, Physician p 

where t occurs in 

GetTextObjs(‘(W/PAR[%s bronchitis])‘, 

name(p)) and 

specialty(p) = ‘respiratory’; - y 

In processing this query, the name of each physician 
whose specialty is ‘respiratory” wilI be substituted 

into the main query, and TM will be invoked a number 
of times; e.g., one query to TM may be (W/PARbohn 

bronchitis]), if “john” is the name of such a physician. 

The results from the TM invocations are merged to- 

gether and the OIDs of the matching paragraphs are 

then returned by the query. Occurs in is an OSQL 

function that tests the occurrence of an object in an 
aggregate. 

With the GetTextObjs function, we already achieve 

the goal of accessing TM from OpenODB. However, 
such basic integration is not adequate for a number 

of reasons. The first is the ease of use. The syntax 

of GetTextObjs, with the substitution symbols, is not 
very convenient. The user has to know the TM syn- 

tax. Secondly, as the TM query is not interpreted by 

OpenODB, syntax errors in the TM query are only dis- 
covered at run-time by TM. Thus, the syntax of high- 

order OSQL functions is a better way for the user to 
express text retrieval queries in the integrated system. 

To process these high-order functions, we mod- 

ify the OpenODB query translator to translate them 

into the primitive GetTextObjs. To illustrate, consider 

query (Ql) again. It is rewritten into the following for 

execution: 

select t for each TextObj t 

where t occurs in 

GetTextObjs(‘(W/PAR[headache])‘); 

Note the transformation is performed on the predicate 

par(‘headache’)(t) in the where clause. The pair (Q2)- 

(Q4) is another example of the translation; (Q4) is the 

actual query executed. 

In OpenODB query processing, after the parse tree 

of the query is built,. there is a stage in which we pro- 

cess predicates in the where clause. At this stage, we 

check if the predicate is a TM predicate, i.e., a pred- 
icate that contains a TM query operation. If it is, 

instead of allowing the normal processing to continue, 
we intercept and replace the call tree with that of a 

call to Occurs in, whose first argument is the text ob- 

ject variable (e.g., t in the example), and the second 
argument is a calI to GetTextObjs. The arguments to 
GetTextObjs are formed by transforming the TM func- 

tion call tree. Finally, after the call tree is replaced, 
normal query processing resumes. Details of the trans- 

formation routine are given in [YA94b]. 

747 



The necessary information required to do the check- 

ing and translation is looked up from some system ta- 

bles, which store meta information extracted from the 

DDF. 

4.3 Algorithmic OID Generation 

In mapping keys from external sources to OpenODB 

OIDs, we have two options. The first is to create new 
database objects to correspond to the external objects. 

The database objects would have an attribute, say cx- 

tkeys, to store the external keys. For example, in our 

integration, we could have created the type TextObj as 

follows (recall that the external keys from TOMM are 
a tuple of keys): 

create type TextObj functions 

(extkeyr TupletypeQnteger, . . . , Integer)); 

The extkeys attribute stores the external keys of a text 
object. We also need the inverse function that returns 

an OID for a text object, given its external keys; an 

OID is created if the text object does not already exist 

in the database. This scheme is expensive in terms of 

both time and storage: 

l the conversion involves expensive index lookups 

and potentially object creation, slowing down re- 

trieval, and 

l it is expensive to store these objects, as the num- 

ber of text objects is potentially huge (e.g., each 

text object can be a sentence, or of even finer 

granularity). 

A second option avoids these problems. In this scheme, 

we do not create any text objects in OpenODB. In- 

stead, we use an algorithmic conversion technique: 

from the external keys, we directly compute an OID. 
The inverse of this computation is used to convert from 

an OID to the external keys. These OIDs do not repre- 

sent any objects in the database; instead, they are just 

references to data stored in TM. No database system 

resource is used to store these OIDs. A basic assump- 
tion here is that the external keys for a text object are 

immutable, which is true if we only add documents to 

TextMachine (i.e., no deletion or update). 

We also need to modify the type checking system 
of OpenODB to recognise these OIDs. Basically, we 

must let the system know 

l the type to which a particular algorithmic OID 
belongs, and 

l the typing function of text types; i.e., given an 

algorithmic OID, determine if it is of a certain 

text type. 

The necessary information to do type checking of text 

objects is entered into some system tables during DDF 

importation. The typing functions are also automat- 
ically generated. In compiling the queries, the type 

checking system consults these tables and uses the ap- 

propriate typing functions. 

5 Related Work 

Much past efforts have been made to blend text re- 

trieval capability into database systems. Reference 

[ZTSDSl] investigates the efficiency of nested rela- 

tional document database systems. In [LS88], Lynch 

and Stonebraker propose to extend relational database 

systems with user-defined indexing. Reference [LW90] 
discusses the integration of text retrieval capabil- 

ity into the ORION object-oriented database system. 

These are internal integration approaches: text index- 

ing and retrieval capabilities are added to the database 

system internally. 

A recent work [CST92] is related to our external 

integration approach. There, Croft et al. describe the 
integration between the inference net model retrieval 

system INQUERY and the database system Iris (Iris 

is the research prototype of OpenODB, the database 

system used in our integration). It is a loosely-coupled 

integration: the user interacts with a separate con- 

trol module, which accesses both INQUERY and Iris 

through their application programming interface. Iris 

is used to store components of documents, and index- 

ing and retrieval are done by the INQUERY system. 

The version of the Iris system used in their work had 

no external function capability, and thus the integra- 
tion achieved is not as tight as in our case: there is no 

integrated query language or query processing. Perfor- 

mance, in terms of retrieval response time, is reported 

as a serious problem. In our work, to improve perfor- 

mance, we make use of external functions to achieve 
tightly coupled processing and we investigate algorith- 

mic OID conversion techniques. We also address is- 

sues relating to the modeling of text, especially un- 

der automatic importation of document schema. Their 

work assumes a particular type of text (Ph.D. thesis 
in BTEX) and thus modeling issues are not addressed. 

6 Conclusion and Future Work 

We describe the integration of a structured-text re- 

trieval system (TextMachine) into an object-oriented 

database system (OpenODB). We use the external 
function capability of the database system to encap- 
sulate the text retrieval system as an external infor- 

mation source. Through query translation, we are 

able to provide a tight integration in the query lan- 

guage and processing; the user can access the text 

748 



retrieval system using standard database query lan- 

guage. The object-orientedness of the database system 

allows us to faithfully model complex text categoriza- 
tion and structure hierarchies. The user can retrieve 

components of documents at fine granularity, browse 

documents based on their structure, and have query- 

ing power beyond that provided by the text retrieval 
system. The importation of new text types from the 

retrieval system is effortless; meta information is ex- 

tracted automatically. The performance overhead of 

accessing an external source is alleviated by the tech- 

nique of algorithmic object identifier conversion. 

It is interesting to further generalise the framework 
to integrate diverse information sources and answer 

questions such as: What is the desirable abstraction 
for the information source? What meta information 

are needed? How do we generalise the query rewrite 

process to handle other retrieval languages? 

Another interesting issue is query optimisation in- 

volving external functions. Recent work [CS93] has 

been done on this topic, but external functions for text 

retrieval present a specific and yet important enough 
scenario for further investigation. 

Acknowledgement 

Thanks to Umesh Dayal, Hector Garcia-Molina, 
Catherine Hamon, and Anthony Tomasic for reading 

drafts of this paper and providing helpful comments. 

References 

[AAC+94] J. Annevelink, R. Ahad, A. Carlson, 

D. Fishman, M. Heytens, and W. Kent. 

Object SQL - a language for the design 

and implementation of object database. In 

W. Kim, editor, Database Challenges for 
the 90’s. ACM Press, 1994. 

[All931 

[ATL93] 

[Bur92] 

[CS93] 

Alliance Technologies. TedMachine User’s 
Guide and Reference Manuals, 1993. 

W. Appelt and M. Tetteh-Lartey. The for- 

mal specification of the IS0 Open Docu- 

ment Architecture (ODA) standard. Com- 

puter Journal, 36(3):269-79, 1993. 

F.J. Burkowski. An algebra for hierarchi- 

cally organised text-dominated databases. 

Information Processing & Managemeqt, 

28(3):333-48, 1992. 

S. Chaudlmri and K. Shim. Query opti- 

misatiori in the presence of foreign func- 
tions. In Proc. VLDB Conference, pages 

529-42, 1993. 

[CST92] 

[Go1901 

[Hew921 

[KM911 

[KM931 

[LS88] 

[LW90] 

[Mac901 

[yA94a] 

[YA94b] 

[ZTSDSl] 

W.B. Croft, L.A. Smith, and H.R. Tur- 

tle. A loosely-coupled integration of a text 

retrieval system and an object-oriented 

database system. In Proc. ACM SIGIR 
Conference, pages 223-31, 1992. 

CF. Goldfarb. The SGML Handbook. Ox- 
ford University Press, 1999. 

Hewlett-Packard. OpenODB Reference 

Manual B3185A, 1992. 

B. Kahle and A. Medlar. An information 

system for corporate users: Wide Area In- 
formation Servers. Connezions - The In- 

teroperability Report, 5(11):2-g, 1991. 

P. Kilpelainen and H. Mannila. Retrieval 

from hierarchical texts by partial patterns. 

In Proc. ACM SIGIR Conference, pages 

214-22, 1993. 

C.A. Lynch and M. Stonebraker. Extended 
user-defined indexing with application to 

textual databases. In Proc. VLDB Confer- 

ence, pages 306-17, 1988. 

W.L. Lee and D. Woelk. Integration of text 
search with ORION. IEEE Data Engineer- 

ing Bulletin, 13(1):58-64, 1990. 

I.A. Macleod. Storage and retrieval of 

structured documents. Information Pro- 
cessing EI Management, 26(2):197-208, 

1990. 

T.W. Yan and .I. Annevelink. Access- 

ing Wide-Area Information Servers from 

OpenODB. Technical Memo (in prepara- 
tion), Hewlett-Packard Laboratories, 1994. 

T.W. Yan and J. Annevelink. Integrating 
a structured-text retrieval system with an 

object-oriented database system. Technical 

Memo HPL-DTD-94-11, Hewlett-Packard 

Laboratories, 1994. 

J. Zobel, J.A. Thorn, and R. Sacks-Davis. 

Efficiency of nested relational document 

database systems. In Proc. VLDB Con- 
ference, pages 91-102, 1991. 

749 


