Techniques for Multiprocessor Global Schedulability Analysis*

Sanjoy Baruah
The University of North Carolina at Chapel Hill

Abstract

The scheduling of sporadic task systems upon multipro-
cessor platforms is considered, when inter-processor migra-
tion is permitted. It is known that current schedulability
tests for such systems perform quite poorly when compared
to schedulability tests for partitioned scheduling. Limita-
tions of current tests are identified, which may be responsi-
ble for the unsatisfactory performance of these tests. A new
test that overcomes some of these limitations is proposed
and proved correct.

1 Introduction and Motivation

A real-time system is often modelled as a finite collec-
tion of independent recurring tasks, each of which gener-
ates a potentially infinite sequence of jobs. Every job is
characterized by an arrival time, an execution requirement,
and a deadline, and it is required that a job complete execu-
tion between its arrival time and its deadline. Different for-
mal models for recurring tasks place different restrictions
on the values of the parameters of jobs generated by each
task. One of the more commonly used formal models is the
sporadic task model [23, 9], which will be considered in this
paper.

Scheduling is the allocation of processor time to jobs,
and a scheduling algorithm is used for determining such al-
location. A schedulability test for a given scheduling algo-
rithm accepts as input the specifications of a real-time sys-
tem, and determines whether the scheduling algorithm can
guarantee to schedule the system such that all jobs of all
tasks will meet all deadlines, under all permissible combi-
nations of job-arrival sequences by the different tasks com-
prising the system. In this paper, we study the scheduling
of systems of sporadic tasks upon a platform comprised of
several identical processors. In scheduling a task system
upon such a platform, it is possible to divide the processors
into clusters and assign each task to a cluster. A scheduling

*Supported in part by NSF Grant Nos. CNS-0408996, CCF-0541056,
and CCR-0615197, ARO Grant No. W911NF-06-1-0425, and funding
from the Intel Corporation.

algorithm is then applied locally in each cluster, to the jobs
generated by the tasks that are assigned to the cluster. It is
assumed that inter-processor communication within a clus-
ter incurs no overhead. We focus here on the two extremes
of clustering. In partitioned scheduling, each processor is a
cluster of size one. That is, each task is assigned to one pro-
cessor and all the jobs generated by a task are constrained
to execute only upon the processor to which the task has
been assigned. In global scheduling, by contrast, there is
only one cluster containing all the processors. A job may
execute upon any processor, and a preempted job may later
resume execution upon the same processor as, or a differ-
ent processor from, the one on which it had previously been
executing. However, each job may execute on at most one
processor at each instant in time.

Current state of the art. Currently, the partitioned
scheduling of sporadic task systems is much better un-
derstood than global scheduling. Sufficient schedulabil-
ity tests of polynomial time-complexity have been de-
signed [7, 17, 8] for various commonly-used scheduling
algorithms (such as Earliest Deadline First (EDF) [22, 14]
and Deadline Monotonic (DM) [21]). Worst-case resource-
augmentation bounds, that provide a quantitative measure
of how effective these tests are, have been obtained. These
schedulability tests have also been extensively evaluated via
simulations [4, 6], and shown to have much better average-
case behavior than indicated by their worst-case guaran-
tees. In contrast, we are not aware of non-trivial theoreti-
cal bounds on the performance of known sufficient schedu-
lability tests [2, 3, 10] for global scheduling (other than
a relatively naive resource-augmentation bound on global
DM [16]), and simulation experiments have tended to in-
dicate that they perform poorly in comparison to the parti-
tioned schedulability tests.

This research. This research is aimed at obtaining a bet-
ter understanding of global schedulability for sporadic task
systems. After formally defining the task and machine mod-
els in Section 2, we start out in Section 3 by highlighting
what appears to be one of the root causes of difficulty in
such analysis: our failure thus far to come up with tech-

niques for characterizing the “worst case” behavior of such
systems. In Section 4, we demonstrate that global and
partitioned scheduling are incomparable for priority-based
scheduling algorithms that are not allowed to dynamically
change the priorities of jobs; this extends a result of Leung
and Whitehead [21], who obtained a similar incomparabil-
ity result for algorithms in which all jobs of each task are
required to have the same priority. In Section 5, we briefly
summarize prior tests for global EDF-schedulability analy-
sis, and highlight their features and disadvantages. In Sec-
tion 6, we derive and analyze a new global-EDF schedulabil-
ity test that overcomes some of the disadvantages of these
prior tests. We conclude in Section 7 with a summary of the
main results in this paper.

For the sake of concreteness, we have chosen to fo-
cus in this paper upon a specific global scheduling algo-
rithm — EDF. However, the issues are similar for many
other scheduling algorithms, and many of the techniques
that are applicable to global EDF scheduling are likely
to be applicable to these other scheduling algorithms as
well. (For example, Baker has used similar techniques to
study both global EDF-schedulability [2, 3] and global DM-
schedulability [2, 5], and Bertogna et al. have extended
their global EDF-schedulability results [10] to apply to DM
scheduling [11].)

2 Model

A sporadic task 7, = (C;, D;, T;) is characterized by a
worst-case execution requirement C;, a (relative) deadline
D;, and a minimum inter-arrival separation T;, which is,
for historical reasons, also referred to as the period of the
task. Such a sporadic task generates a potentially infinite
sequence of jobs, with successive job-arrivals separated by
at least 7; time units. Each job has a worst-case execution
requirement equal to C; and a deadline that occurs D; time
units after its arrival time. We refer to the interval, of size
D;, between such a job’s arrival instant and deadline as its
scheduling window. We assume a fully preemptive execu-
tion model: any executing job may be interrupted at any
instant in time, and its execution resumed later with no cost
or penalty. A sporadic task system is comprised of several
such sporadic tasks. Let 7 denote a system of such sporadic
tasks: 7 = {71, 72,...Tn}, With 7, = (C;, D;, T;) for all
i, 1 < ¢ < n. Task system 7 is said to be a constrained
sporadic task system if it is guaranteed that each task 7; € 7
has its relative deadline parameter no larger than its period:
D, < T;, and an implicit-deadline sporadic task system if
D; = T; for all 7; € 7. (Implicit-deadline systems are also
known as Liu and Layland [22] task systems.) In this pa-
per, we restrict our attention to constrained and implicit-
deadline task systems.

Schedulability. A real-time system implemented on a
particular computing platform is said to be A-schedulable
with respect to a given scheduling algorithm A, if the al-
gorithm A schedules the system such that all jobs of all
tasks will meet all deadlines, under all permissible (also
called legal) combinations of job-arrival sequences by the
different tasks comprising the system. A schedulability test
for scheduling algorithm A (also called an A-schedulability
test) accepts as input the specifications of a real-time sys-
tem, and determines whether the system is A-schedulable
or not. An A-schedulability test is said to be exact if it cor-
rectly identifies all A-schedulable systems, and sufficient if
it may fail to identify some A-schedulable systems (it must
guarantee, though, that all identified systems are indeed A-
schedulable.)

Task and system characteristics. The concepts of task
and system utilization and density prove useful in the analy-
sis of sporadic task systems on multiprocessors. These con-
cepts are defined as follows:

Utilization: The utilization u; of a task 7; is the ratio C; /T;
of its execution time to its period. The total utilization
Ugum (7) and the largest utilization wuyax(7) of a task
system 7 are defined as follows:

usum(T) déf Z Ui,

TiET

Umax (T) e max(u;)
TiET

Density: The density d; of a task 7; is the ratio C;/D; of
its execution time to its relative deadline. The total
density dsum(7) and the largest density dmax(7) of a
task system 7 are defined as follows:

55111‘0(7—) = Z 517 5max(7—) = I}lgi(((sl)
TiET

An additional concept that plays a critical role in the
schedulability analysis of sporadic task systems is that of
demand bound function. For any interval length ¢, the
demand bound function DBF(7;,t) of a sporadic task 7;
bounds the maximum cumulative execution requirement by
jobs of 7; that both arrive in, and have deadlines within, any
interval of length ¢. It has been shown [9] that

t_TD"J + 1)ci>

(2

DBF(7;,t) = max (0, ({

A load parameter, based upon the DBF function, may be
defined for any sporadic task system 7 as follows:

def (Z‘riE‘r DBF(T'L'; t))
= max| ———

LOAD
(T) t>0 t

Fixed job-priority (FJP) scheduling. Run-time schedul-
ing algorithms are typically implemented as follows: at
each time instant, a priority is assigned to each job that has
been released but not yet completed, and the available pro-
cessors are allocated to the highest-priority jobs. In EDF
scheduling, jobs are assigned priorities according to their
deadline parameters: the earlier the deadline of a job, the
greater its priority.

It has long been known that global EDF, in common
with many other global scheduling schemes, suffers from
the so-called Dhall effect [15] which results in task sys-
tems with arbitrarily low utilization and density not being
EDF-schedulable. In order to circumvent the Dhall effect,
hybrid variants of EDF have been designed [18] in which all
the jobs of some selected tasks are assigned highest priority,
and the remaining tasks’ jobs are assigned priorities accord-
ing to EDF. Such priority-driven scheduling algorithms are
instances of a class of algorithms called fixed job-priority
(FJP) scheduling algorithms. In FJP scheduling algorithms,
the priority of a job may not change between its arrival time
and the instant it completes execution; however, different
jobs of the same task may have different priorities. (In
contrast, fixed task-priority (FTP) algorithms require that
all jobs of a task have the same —fixed— priority, while in
dynamic-priority (DP) algorithms the priority of a job may
change between its arrival time and its completion time. It
is evident from these definitions that FJP scheduling is a
generalization of FTP scheduling, and DP scheduling is a
generalization of FJP scheduling.)

3 Global scheduling and Worst-case behav-
ior

Recall that in order for a sporadic task system to be con-
sidered A-schedulable for a given scheduling algorithm A,
A must generate schedules meeting all deadlines for all le-
gal job-arrival sequences of the task system. Since any
sporadic task system has infinitely many different legal job
arrival sequences, an approach of exhaustive enumeration
of such sequences, followed by simulating algorithm A on
each of these sequences, will not yield an effective schedu-
lability test. Instead, the typical approach has been to iden-
tify one or a few worst-case job arrival sequences for a
task system for which it can be proved that if algorithm A
successfully schedules all these worst-case job arrival se-
quences, then A is guaranteed to successfully schedule all
legal job arrival sequences of the task system. For example,
with respect to EDF or Deadline-Monotonic (DM) schedul-
ing upon preemptive uniprocessors it is known [22, 20, 9]
that there is a unique worst-case job arrival sequence: every
task has one job arrive at the same instant in time, and each
task has subsequent jobs arrive as soon as legally permitted
to do so. (Such a job arrival sequence is often called the

synchronous arrival sequence for the task system.) It has
been shown [7, 17, 8] that the synchronous arrival sequence
is also the worst-case job arrival sequence for partitioned
multiprocessor EDF and DM scheduling.

For global scheduling, however, the synchronous arrival
sequence is not necessarily the worst-case arrival sequence,
as the following example illustrates with respect to EDF
scheduling.

Example 1 Consider the task system comprised of the
three tasks 1 = (1, 1,2), 72 = (1,1, 3), and 73 = (5, 6, 6),
executing upon two unit-capacity processors. It may be
seen (Figure 1 (a)) that the synchronous arrival sequence is
successfully scheduled by EDF to meet all deadlines. How-
ever, if task 77 ’s second job were to arrive three, rather than
two, time units after the first (Figure 1 (b)), then EDF would
miss some deadline over the interval [0, 6] (and indeed, no
scheduling algorithm can possibly guarantee to meet all
deadlines for this job arrival sequence). |

Without knowing what the worst-case behavior of a
sporadic task system may be, it is not possible to de-
sign simulation-based exact (necessary as well as sufficient)
schedulability tests. To our knowledge, no finite collection
of worst-case job arrival sequences has been identified for
global scheduling of sporadic task systems. This, at a ba-
sic level, is the fundamental difference between our under-
standing of partitioned and global scheduling of sporadic
task systems. As stated above, it is known that the syn-
chronous arrival sequence represents the worst-case behav-
ior of a task system under partitioned scheduling. Hence,
partitioned schedulability testing can be solved in principle
by determining whether it is possible to partition the tasks
among the processors such that no deadlines are missed in
the synchronous arrival sequence. An exact algorithm for
solving this is provably highly intractable, but approxima-
tion algorithms that run in polynomial time and exhibit ex-
cellent average-case and provably bounded worst-case be-
havior have been devised [7, 17, 8].

In the global case, however, we do not know how to
determine schedulability even if computational tractability
were not an issue. That is, we do not yet have an ade-
quate understanding of what precisely the characteristics of
a globally schedulable system are; without knowing these
characteristics, it seems futile to seek accurate, efficient
tests for identifying such systems. (In this regard, Exam-
ple 1 above illustrates that LOAD is not an exact indicator
of schedulability: while LOAD(7) < m is clearly necessary
for 7 to be EDF-schedulable on an m-processor platform,
the task system in Example 1 illustrates that this is not suf-
ficient.)

T1

|
721;_i51
wl
0 1 2 3 4 5 6

Y

Y

A A A
| |

Y

N
» = f=
nt T R

—
\S)
w
N
9}
(@)

(b)

Figure 1. Figure for Example 1, illustrating that the synchronous arrival sequence does not represent

the worst case.

4 Partitioned versus global FJP scheduling

As stated in Section 1 above, simulation experiments [4,
6] have shown that currently-known global schedulability
tests perform poorly compared to partitioned schedulabil-
ity tests. That is, it appears that a far greater fraction
of randomly-generated sporadic task systems are deemed
schedulable by currently-known partitioned schedulability
tests than by currently-known global schedulability tests.

One might consider this result surprising, since at first
glance it appears that partitioned scheduling (which forbids
jobs from migrating between processors) is a special case
of global scheduling (which allows, but does not require,
such migration). However, this is erroneous. It has previ-
ously been shown by Leung and Whitehead [21, page 242]
with regard to fixed task priority (FTP) scheduling schemes
that there are sporadic task systems schedulable by some
global algorithm but not by any partitioned algorithm, and
that there are other sporadic task systems that are schedu-
lable by some partitioned algorithm but not by any global
algorithm. Theorem 1 below demonstrates similar incom-
parability between global and partitioned scheduling for the
more general class of FIP scheduling algorithms as well.

As one might expect, there are systems that global al-
gorithms can schedule but partitioned ones cannot; this is
formally shown in Lemma 1 below. Somewhat counter-
intuitively, it turns out (Lemma 2 below) that there are sys-
tems which partitioned FJP algorithms can schedule, which
cannot be scheduled by any global FJP algorithm.

Lemma 1 There are task systems that are schedulable us-
ing global FJP algorithms that partitioned FJP algorithms
cannot schedule.

Proof Sketch: Here’s an example task system, on 2 pro-
Ccessors:

71 =1(2,2,3),72 =(3,3,4),73 = (5,12,12)

Clearly, this system cannot be scheduled using partitioning,
since w1 + uo, u1 + u3, and us + ugz are each > 1. To show
that a global FJP algorithm can schedule this task system,

consider any FJP algorithm which assigns lowest priority to
73’s jobs. Since there are two processors, 71 and 72’s jobs
are guaranteed to meet all deadlines. Now observe that each
job of 73 needs to execute for 5 time-slots over an interval
of 12 slots'. Now over any 12 contiguous slots, 7; may
execute during at most 8 slots, thereby leaving at least 4
slots for 73’s job upon one processor.

o If 71 executes for fewer than 8 slots between a job of
73’s scheduling window, then it is straightforward to
see that the job of 73 completes execution by its dead-
line, since no more than one other job (of 75) will
be active during the at least 5 time units of this job’s
scheduling window.

e If 7’s jobs execute for exactly 8 slots during the
scheduling window of one of 73’s jobs, it is easily
seen that 71 ’s jobs must be arriving exactly 3 time-units
apart. Hence, it is not possible that 73’s jobs execute
in parallel with 7;’s jobs during all 8 of the time-slots
during which 71’s jobs execute within this scheduling
window. Therefore there are at least 5 slots within this
scheduling window during which one of both proces-
sors is idle after both 7, and 75 have been scheduled.

Perhaps surprisingly, the converse of the above lemma is
also true:

Lemma 2 There are task systems that are schedulable us-
ing partitioned FJP algorithms that global FJP algorithms
cannot schedule.

Proof Sketch: Here’s an example task system, on 2 pro-
Ccessors:

1 =1(2,2,3),72 = (3,3,4), 73 = (4,12,12), 74 = (3,12,12)

This task system may be partitioned by assigning 77 and 73
to one processor and the other two tasks to the remaining

IFor ease of exposition, we are assuming a slotted model of time for
this proof sketch; however, it is easily generalized to a non-slotted model.

processor, and scheduling each processor using uniproces-
sor EDF.

To show that no global FJP priority assignment scheme
can meet all deadlines, consider the synchronous arrival se-
quence over the interval [0,12). It may be verified that
whichever of 73°s and 74’s job has lower priority ends up
missing its deadline while one processor goes idle over
[11,12). 1

Hence our intuition that global is a generalization of par-
titioned turns out to be incorrect for FJP scheduling as well
as FTP scheduling:

Theorem 1 Global and partitioned FJP scheduling are in-
comparable.

One implication of this is that the current state of the
art — partitioned schedulability tests being far superior to
global ones — are not contradicted by facts (only intuition).
That is, it has not been ruled out that a far larger fraction of
sporadic task systems are schedulable under partitioned FJP
scheduling as compared to global FJP scheduling.

5 Global EDF schedulability: Prior results

In this section, we provide brief summaries of currently-
known tests for global EDF-schedulability analysis of spo-
radic task systems. In addition, we highlight salient fea-
tures and drawbacks of these tests; efforts to overcome these
drawbacks will drive the design of the new test we propose
in the next section.

The density, [BAK], and [BCL] tests. The global mul-
tiprocessor scheduling of implicit-deadline (Liu and Lay-
land) sporadic task systems was studied in [18]. It was
shown that [ugum(7) < m — (m — Dumax(7)] is a suffi-
cient condition for implicit-deadline sporadic task system 7
to be global EDF-schedulable upon m unit-capacity proces-
sors. Minor extensions to the proofs in [18] can be used
to obtain the following sufficient global-EDF schedulability
test for constrained-deadline sporadic task systems:

1)0max(7) - (1)

This test is often referred to in the literature as the density
test for global EDF-schedulability of sporadic task systems.

Meanwhile Baker [2, 3, 10] designed a test, based on
some deep insights, for global-EDF schedulability analysis.
In essence, Baker’s test — henceforth referred to here as the
[BAK] test — is obtained by assuming that a task 7’s job
misses its deadline, and then determining necessary condi-
tions on the parameters of all the tasks that must be satis-
fied in order for such a deadline miss to occur. Then negat-
ing these conditions for each 7, yields a sufficient test for
global-EDF schedulability.

Osum(7) <m — (m —

In 2005, Bertogna et al. [10] used ideas very similar to
Baker’s to came up with a simpler test that occasionally out-
performed both the density and the [BAK] tests. The test
from [10] will be referred to here as the [BCL] test.

Overview of the [BAK] and [BCL] tests. Both tests are
built around the following general strategy, first introduced
by Baker [2]. Suppose that 7 is not global EDF-schedulable,
and consider a legal sequence of job requests of 7 on which
global EDF misses one or more deadlines. Suppose that a
job of 74 is the first job that misses its deadline, at some
time-instant t4. Both tests analyze the situation over some
interval [t,,tq), where t, is different in the [BAK] and
[BCL] tests (and is precisely defined for each test). Both
tests compute upper bounds on the amount of work that EDF
can be required to execute over the interval [¢,, t4), and ob-
tain an unschedulability condition by setting this bound to
be large enough to deny 7’s job C}, units of execution over
its scheduling window.

In bounding the total amount of work that each task 7;
needs to have executed over [t,,t4) in the EDF schedule,
one must consider (i) jobs of 7; that arrive within the inter-
val, and (ii) possibly one additional job that arrives prior
to t, but has not completed execution by time-instant ¢,
and hence ‘“carries in” some execution into the interval.
The contribution of jobs arriving within the interval may be
computed using the demand bound abstraction (Section 2
above), but new techniques are needed for bounding the
carry-in. Both the [BAK] and [BCL] tests use different
bounds on the amount of such work for each 7;.

Differences between the [BAK] and [BCL] tests. Despite
the similarities in overall approach, the two tests differ quite
significantly in the details:

1 In [BCL], ¢, is set equal to (tg — Dy); i.e., the arrival
time of the job that misses its deadline. In [BAK], it is set
equal to the earliest time-instant prior to this job’s arrival
time, at which a certain condition? is satisfied.

2 In [BCL], fairly primitive techniques are used to bound
the amount of work that 7; may contribute to this inter-
val, while [BAK] uses a far more sophisticated analysis.
Specifically, while [BAK] is able to show that parts of
“carry-in” jobs — jobs whose scheduling windows span ¢,
— must have completed execution before ¢,, [BCL] pes-
simistically assumes that each carry-in job executed as
late as possible, immediately before their deadlines and
hence carried in as much work as possible.

3 The length of the interval [t,,t4) could be larger in
the [BAK] tests than in the [BCL] test. This is desir-

21t is not essential for us to know what this condition is, in order to
understand the remainder of this paper. Please consult [3] for details.

able since any additive inaccuracy introduced in comput-
ing bounds on the amount of work that must be executed
over [t,,tq) gets amortized over a larger interval. (How-
ever, a closer examination of the [BAK] test indicates that
this potential advantage is not exploited — a final step in
the derivation of the [BAK] test lower-bounds the size of
the interval [t,,tq) by Dy, which is the value used by
the [BCL] test as well.)

Comparison. Although the [BAK] test employs consid-
erably more sophisticated analysis than the [BCL] test, it
does not unequivocally outperform the [BCL] test. Baker
has conducted extensive simulation experiments comparing
the density, [BAK] and [BCL] tests. These simulations have
demonstrated that all three tests are incomparable: there are
task systems deemed EDF-schedulable by each test but not
by the other two tests. They also seem to demonstrate that
the density and [BCL] tests, taken together, are able to cover
most of the task systems that are handled by the [BAK] test;
in Baker’s words (Email communication, February 2007) it
seems that many of the cases where my test does better than
the [BCL] test are also cases where the density test works,
and many of the cases where my test does better than the
density test the [BCL] test also works.

Shortcomings common to both tests. The [BAK] and
[BCL] tests share certain shortcomings.

1. First, in analyzing a possible deadline miss for 73 both
tests consider a “worst-case” scenario in which it is as-
sumed that every one of the n tasks in the system carries
work into the interval that must be considered. In systems
with a large number of tasks (n >> m), this results in se-
vere over-estimation of the cumulative carry-in. This is
further aggravated by the feature of both tests — outlined
above — of amortizing this carry-in over an interval of size
Dy;. Due perhaps to these facts, our observation has been
that these tests tend to perform poorly on “non-uniform”
task systems: they are likely to flag as being not schedula-
ble an inordinately large fraction of task systems in which
different tasks’ parameters are of different orders of mag-
nitude.

2. Second, both tests have run-time polynomial in the repre-
sentation of the task system: the [BCL] test runs in O(n?)
time and the [BAK] test in O(n?) time, where n is the
number of tasks in the system. It may seem strange to
refer to this low run-time complexity as a “shortcoming,”
but the fact is that, in real-time scheduling theory, pseudo-
polynomial run-time complexity is usually considered sat-
isfactory for schedulability analysis; this is a consequence
of the fact that task parameters are typically not too large
in such systems. (For example, commonly-used exact

uniprocessor EDF [9, 24] and DM [19, 1] schedulabil-
ity tests have pseudo-polynomial run-time.) It would be
nice if the [BCL] and [BAK] tests could be rendered more
accurate by being allowed to run for pseudo-polynomial
time; however, we are not aware of any technique that en-
ables such a trade-off. So this low run-time complexity
is a “shortcoming” in the sense that it provides a bene-
fit (polynomial run-time) that is not particularly needed,
and which we cannot trade in for a more needed benefit
(greater accuracy).

6 An improved schedulability algorithm

We have designed a new global EDF-schedulability test
that overcomes some of these shortcomings of the [BAK]
and [BCL] tests. Our test possesses the following features
that distinguishes it from the [BAK] and [BCL] tests: (i) it
runs in time pseudo-polynomial in the representation of the
task system; (i) it considers intervals [t,,tq) that do not
necessarily coincide with the scheduling window of the task
Tk being assumed to miss its deadline; (iii) it allows us to
bound the number of tasks carrying in work into the interval
[to,tq) at (m — 1), where m is the number of processors in
the system. In contrast to the [BAK] and [BCL] tests, it will
be shown (Corollary 1) that our test generalizes the known
exact EDF-schedulability test on uniprocessors.

Our algorithm, like the [BCL] test, draws inspiration
from the seminal work of Baker [2, 3] that yielded the
[BAK] test, and follows the same general framework. We
consider each task 7j, separately; when considering a spe-
cific 7%, we identify sufficient conditions for ensuring that
T, cannot miss any deadlines. To ensure that no dead-
lines are missed by any task in 7, these conditions must be
checked for each of the n tasks 71, 7o, ..., 7.

Consider any legal sequence of job requests of task sys-
tem 7, on which EDF misses a deadline. Suppose that a job
of task 75 is the one to first miss a deadline, and that this
deadline miss occurs at time-instant ¢4 (see Figure 2). Let
t, denote this job’s arrival time: t, = tq — Dy.

Discard from the legal sequence of job requests all jobs
with deadline > di, and consider the EDF schedule of the
remaining (legal) sequence of job requests. Since later-
deadline jobs have no effect on the scheduling of earlier-
deadline ones under preemptive EDF, it follows that a dead-
line miss of 7, occurs at time-instant ¢4 (and this is the ear-
liest deadline miss), in this new EDF schedule

Let ¢, denote the latest time-instant < ¢, at which at
least one processor is idled in this EDF schedule. Let A;, =
ta — to-

As in [2, 3], our goal now is to identify conditions neces-
sary for a deadline miss to occur; i.e., for 7 ’s job to execute
for strictly less than C}, time units over [t,, t4). In order for

some proc. idled

deadline miss

Dy,

N

.

Ito

la

> time
tq

Figure 2. Notation. A job of task 7, arrives at ¢, and misses its deadline at time-instant ¢,. The latest
time-instant prior to ¢, when not all m processors are busy is denoted ¢,.

Tk’s job to execute for strictly less than C, time units over
[ta,td), it is necessary that all m processors be executing
jobs other than 7’s job for strictly more than (Dy — C,)
time units over [t,, t4). Let us denote by 'y, a collection of
intervals, not necessarily contiguous, of cumulative length
(D), — Cy) over [tq, tq), during which all m processors are
executing jobs other than 7;’s job in this EDF schedule.

For each i, 1 < i < n, let I(7;) denote the contribu-
tion of 7; to the work done in this EDF schedule during
[to,ta) UTk. In order for the deadline miss to occur, it is
necessary that the total amount of work that executes over
[to, ta) Uk satisfy the following condition

ZI(Ti)>mX(Ak+Dk_Ck)§

T, €T

@)

this follows from the observation that all m processors are,
by definition, completely busy executing this work over the
A}, time units in the interval [t,, t,), as well as the intervals
in T'j; of total length (D), — Cy).

It is important to understand exactly what Equation 2
means. Equation 2 represents necessary conditions for task
71 to miss a deadline Ay, time units after an instant at which
at least one processor is idled. To show that a task system
is EDF-schedulable, it therefore suffices to demonstrate that
for all tasks Ty and for all values of Ay, Equation 2 cannot
be satisfied.

Observe that the total length of the intervals in
[to,ta) UTk is equal to (Ay + Dy — Cy).

Let us say that 7; has a carry-in job in this EDF schedule
if there is a job of 7; that arrives before ¢, and has not com-
puted execution by ¢,. In the following, we compute upper
bounds on I(7;) if 7; has no carry-in job (this is denoted as
I, (7)), or if it does (denoted as I (7;)).

Computing [, (7;). If a task 7; contributes no carry-in
work, then its contribution to this total amount of work that
must execute over [t,,t,) |JT'x is generated by jobs arriv-
ing in, and having deadlines within, the interval [t,, t4). Let
us first consider ¢ # k; in that case, it follows from the defi-
nition of the demand bound function (DBF — see Section 2
above) that the total work is at most DBF(7;, Ax + Dy);
furthermore, this total contribution cannot exceed the total

length of the intervals in [¢,, t,) | T'x. Hence, the contribu-
tion of 7; to the total work that must be done by EDF over
[to,ta) Tk is at most

Hlin(DBF(ﬁ7 A + Dk), A+ Dy — Ck)

Now, consider the case 7 = k. In that case, the job of 7 ar-
riving at time-instant ¢, does not contribute to the work that
must be done by EDF over [t,,t,)|JT'x; hence, its execu-
tion requirement must be subtracted. Also, this contribution
cannot exceed the length of the interval [¢,, t,); i.e., Ag.

Putting these pieces together, we get the following bound
on the contribution of 7; to the total work that must be done
by EDF over [t,, tq) | JTk:

def

Li(m) =
min(DBF(Ti,Ak—‘y—Dk),Ak—FDk —Ck) ifi;ék‘ 3)
Hlin(DBF(Ti7 Ag + Dk) — Ck, Ak) ifi =k

Computing I>(7;). Let us now consider the situation
when 7; is active at ¢,, and hence potentially carries in some
work. It was shown in [10] that the total work of 7; in this
case can be upper-bounded by considering the scenario in
which some job of 7; has a deadline at ¢4, and all jobs of 7;
execute at the very end of their scheduling windows.

Let us denote as DBF'(7;, t) the amount of work that can
be contributed by 7; over a contiguous interval of length ¢, if
some job of 7; has its deadline at the very end of the interval
and each job of 7; executes during the C; units immediately
preceding its deadline. It is easily seen (see Figure 3) that
there are exactly |[¢/T;] complete jobs of 7; within this in-
terval, and an amount min(D;, ¢ mod T;) of the scheduling
window of an additional — carry-in — job.

t mod T;

[t/T:] T
} o)

>
v
~
o

Figure 3. Computing DBF'(7;,).

This carry-in scheduling window may bring in at most
C; units of execution, yielding the following expression for
DBF'(7;, t):

, def t .
DBE’(7;,t) = {TJ x C; + min(Cy, t mod T;) (4)
K]

In computing 7;’s contribution to the total amount of work
that must execute over [t,,%,)|J Tk, let us first consider
i # k. In that case, it follows from the definition of the
demand bound function (DBF’, as defined above) that the
total work is at most DBF (7;, Ay, + Dy,); furthermore, this
total contribution cannot exceed the total length of the in-
tervals in [t,, ¢,) |JT'x. Hence, the contribution of 7; to the
total work that must be done by EDF over [t,,t,) |JT'x is at
most

min(DBF'(Ti, A + Dk), A + Dy — Ck)

Now, consider the case 7 = k. In that case, the job of 7 ar-
riving at time-instant ¢, does not contribute to the work that
must be done by EDF over [t,,t,)|JT'x; hence, its execu-
tion requirement must be subtracted. Also, this contribution
cannot exceed the length of the interval [t,, t,); i.e., Ag.
From the discussion above, we get the following bound
on the contribution of 7; to the total work that must be done
by EDF over [to, to) |JTk:
L) &

min(DBF’ (73, Ak + D), Ax + Dy — Cl)
min(DBF’ (73, Ay, + D) — Ci, A)

ifi #k
ifi=k
©)

Putting the pieces together. Let us denote by Ip;(7;)
the difference between I (7;) and I (7;):

IDIFF(T’L) = IQ(Ti) -1 (Tz) (6)

By definition of ¢,, at most (m — 1) tasks are active at time-
instant t,. Consequently, there are at most (m — 1) tasks 7;
that contribute at amount I5(7;), and the remaining (n —
m+ 1) tasks must contribute I, (7;). Hence Equation 2 may
be rewritten as follows:

Z Il(Ti) + Z IDIFF(Ti)

TiET the (m — 1) largest

>m(Ag + Dy — Cx) (7)

Observe that all the terms in Equation 7 above are com-
pletely defined for a given task system, once a value is cho-
sen for Aj. Hence for a deadline miss of 75, to occur, there
must exist some Ay, such that Equation 7 is satisfied. Con-
versely, in order for all deadlines of 71 to be met it is suffi-
cient that Equation 7 be violated for all values of Aj. The-
orem 2 follows immediately:

Theorem 2 Task system T is EDF-schedulable upon m unit-
capacity processors if for all tasks T, € T and all Ay, > 0,

Zh(ﬁ) + Z

TiET the (m — 1) largest

<m(Ar+ Dy, — Ci) (8)

Ipire (Ti)

where I1(7;) and Ipge(T;) are as defined in Equations 3
and 6 respectively. B

The earlier tests — the density, [BAK] and [BCL] tests
— are not exact even for uniprocessor systems (the special
case when m = 1). (This is also indicated by the fact that
all these prior tests have polynomial run-time, while EDF-
schedulability analysis of sporadic task systems on unipro-
cessors is not known to be in polynomial time.) The follow-
ing corollary asserts that our test is superior to earlier tests
in this regard:

Corollary 1 The EDF schedulability test of Theorem 2 is a

generalization of the exact uniprocessor EDF schedulability
test of [9].

Proof Sketch: For m = 1, there are (m — 1) = 0 tasks
that are active at time-instant ¢,; i.e., t,, is the classical “idle
instant” of uniprocessor real-time scheduling theory. By
adding C, to both the LHS and the RHS of Condition 8,
it can be shown that the LHS reduces to the sum of the de-
mand bound functions of all tasks over an interval of size
Ag+ Dy, and the RHS reduces to the interval length. Hence,
when m = 1 Condition 8 is asserting that the cumulative
processor demand over all intervals must not exceed the in-
terval length, which is exactly what the uniprocessor EDF
schedulability test of [9] checks. H

Corollary 1 does not imply that we have obtained
an exciting new result showing that uniprocessor EDF-
schedulability analysis can be done in polynomial time;
Section 6.1 shows that our algorithm has pseudo-
polynomial run-time when system utilization is bounded.

6.1 Run-time complexity

For given 7, and Ay, it is easy to see that Condition 8
can be evaluated in time linear in n:

e Compute I;(7;), I2(7;), and In;e (75) for each ¢ — total
time is O(n).

e Use linear-time selection [12] on
{IDIFF (7—1), IDIFF (7—2), ceey IDIFF (Tn)} to determine the
(m — 1) tasks that contribute to the second sum on the
LHS.

How many values of Ay, must be tested, in order for us to be
able to ascertain that Condition 8 is satisfied for all A, > 0?
Theorem 3 below provides the answer.

Theorem 3 If Condition 8 is to be violated for any Ay, then
it is violated for some Ay, satisfying the condition below:
< Cs — Dk(m — U(T)) -+ Zz(T’L — DZ)UZ + mCl

- m —U(T)

Ay ©

where C's; denotes the sum of the (m — 1) largest C;’s.

Proof: It is easily seen that I (7;) < DBF(7;, Ax + Di),
and Iy(7;) < DBF(7;, Ax + Di) + C;. From this, it
can be shown that the LHS of Condition 8 is < Cy +
ZTiET DBF(7;, A + Dy).

For this to exceed the RHS of Condition 8, it is necessary
that

Cs + DBF(1, Ay + Dy) > m(Ax + Dy, — C)
= (bounding DBF using the technique of [9])

Cs + (Ax + Dy)U(T) +Z(Ti —Di)Ui > m(Ag + Dy, — Cy)

= Co+DiU(7)+ > _(T:=Di)Us—m(Dy—Cy) > Ag(m—U(r))

- Cs — Di(m —U(7)) + >,(Ts — Di)Us + mCl

A m—U(r)

which is as claimed in the theorem. H

It can also be shown that Condition 8 need only be tested
at those values of Ay, at which DBF(7;, Ay + Dy) changes
for some ;. Corollary 2 follows.

Corollary 2 The condition in Theorem 2 above can be
tested in time pseudo-polynomial in the task parameters, for
all task systems T for which U(7) is bounded by a constant
strictly less than the number of processors m.

Comparison to the [BAK] and [BCL] tests. By design,
our test runs slower than the [BAK], [BCL], and density
tests: our test has pseudo-polynomial run-time complexity
while all the other tests have polynomial complexity. In
practice, we would expect that all tests be used within a sin-
gle framework: a system be first tested for schedulability
using the polynomial-time tests, and only those that are not
determined to be schedulable by any of these tests be sub-
jected to our slower test.

It is fairly easy to construct task systems that are de-
termined to be schedulable by only our test (and not the
other tests); indeed, Corollary 1 above demonstrates that
our test is the only one that is optimal upon uniprocessors
(i.e., when m = 1). Furthermore, preliminary simulation
experiments indicate that our test significantly outperforms
the other tests upon task systems in which

e The number of tasks n is significantly greater than the
number of processors m (i.e., n >> m). This is proba-
bly a consequence of the fact that our test only consid-
ers carry-in from m — 1 tasks, while all the prior tests
must account for carry-in from all n tasks.

e The parameters of the different tasks may be of widely
varying orders of magnitude. Once again, this is by
design: our test was specifically designed to handle
such systems.

7 Conclusions

Recently, much attention has been focused upon the
scheduling of systems of recurring tasks on multiproces-
sor platforms. A fairly deep and detailed understanding has
been obtained concerning the multiprocessor scheduling of
Liu and Layland task systems (see, e.g., [13] for a survey).

Encouraged by this success, researchers have been con-
sidering multiprocessor scheduling of task systems repre-
sented using more general models. Here the record is not
quite as positive — despite some recent successes, this field
of study has not yielded many results. In particular, while
some encouraging results have been obtained concerning
partitioned scheduling, our knowledge of global scheduling
remains rudimentary for recurring real-time task systems
represented in models more general than the Liu and Lay-
land model. One of the observations that has come out of all
this research is that global scheduling is fundamentally dif-
ferent from, and seems much more difficult than, partitioned
scheduling.

In this paper, we have described some of our recent find-
ings concerning global multiprocessor scheduling. We have
attempted to identify and highlight some of the fundamen-
tal issues that render global schedulability analysis so dif-
ficult. Building upon the techniques of Baker [2, 3] and of
Bertogna et al. [10], we have designed a global-EDF schedu-
lability test that is quite a bit more sophisticated than earlier
tests, and that has overcome several of the deficiencies of
these earlier tests.

References

[1] AUDSLEY, N. C. Flexible Scheduling in Hard-Real-
Time Systems. PhD thesis, Department of Computer
Science, University of York, 1993.

[2] BAKER, T. Multiprocessor EDF and deadline mono-
tonic schedulability analysis. In Proceedings of
the IEEE Real-Time Systems Symposium (December
2003), IEEE Computer Society Press, pp. 120-129.

[3] BAKER, T. P. An analysis of EDF schedulability on
a multiprocessor. IEEE Transactions on Parallel and
Distributed Systems 16, 8 (2005), 760-768.

[4] BAKER, T. P. Comparison of empirical success
rates of global vs. partitioned fixed-priority and EDF
scheduling for hard real time. Tech. Rep. TR-050601,

(5]

(6]

(7]

(8]

(9]

[10

—

Department of Computer Science, Florida State Uni-
versity, 2005.

BAKER, T. P. An analysis of fixed-priority schedu-
lability on a multiprocessor. Real-Time Systems: The
International Journal of Time-Critical Computing 32,
1-2 (2006), 49-71.

BAKER, T. P. A comparison of global and partitioned
EDF schedulability tests for multiprocessors. In Pro-
ceeding of the International Conference on Real-Time
and Network Systems (Poitiers, France, 2006).

BARUAH, S., AND FISHER, N. The partitioned mul-
tiprocessor scheduling of sporadic task systems. In
Proceedings of the IEEE Real-Time Systems Sympo-
sium (Miami, Florida, December 2005), IEEE Com-
puter Society Press.

BARUAH, S., AND FISHER, N. The partitioned multi-
processor scheduling of deadline-constrained sporadic
task systems. IEEE Transactions on Computers 55,7
(July 2006), 918-923.

BARUAH, S., MOK, A., AND ROSIER, L. Pre-
emptively scheduling hard-real-time sporadic tasks on
one processor. In Proceedings of the 11th Real-Time
Systems Symposium (Orlando, Florida, 1990), IEEE
Computer Society Press, pp. 182-190.

BERTOGNA, M., CIRINEI, M., AND LIPARI, G. Im-
proved schedulability analysis of EDF on multiproces-
sor platforms. In Proceedings of the EuroMicro Con-
ference on Real-Time Systems (Palma de Mallorca,
Balearic Islands, Spain, July 2005), IEEE Computer
Society Press, pp. 209-218.

BERTOGNA, M., CIRINEI, M., AND LIPARI, G. New
schedulability tests for real-time tasks sets scheduled
by deadline monotonic on multiprocessors. In Pro-
ceedings of the 9th International Conference on Prin-
ciples of Distributed Systems (Pisa, Italy, December
2005), IEEE Computer Society Press.

BLuMm, M., FLoYyD, R. W., PRATT, V., RIVEST,
R. L., AND TARJAN, R. E. Time bounds for selec-
tion. Journal of Computer and System Sciences 7, 4
(Aug. 1973), 448-461.

CARPENTER, J., FUNK, S., HOLMAN, P., SRINI-
VASAN, A., ANDERSON, J., AND BARUAH, S. A
categorization of real-time multiprocessor scheduling
problems and algorithms. In Handbook of Schedul-
ing: Algorithms, Models, and Performance Analysis,
J. Y.-T. Leung, Ed. CRC Press LLC, 2003.

[14]

[22]

DERTOUZOS, M. Control robotics : the procedural
control of physical processors. In Proceedings of the
IFIP Congress (1974), pp. 807-813.

DHALL, S. Scheduling Periodic Time-Critical Jobs
on Single Processor and Multiprocessor Systems. PhD
thesis, Department of Computer Science, The Univer-
sity of Illinois at Urbana-Champaign, 1977.

FISHER, N., AND BARUAH, S. Global static-priority
scheduling of sporadic task systems on multiprocessor
platforms. In Proceeding of the IASTED International
Conference on Parallel and Distributed Computing
and Systems (Dallas, TX, November 2006), IASTED.

FISHER, N., BARUAH, S., AND BAKER, T. The parti-
tioned scheduling of sporadic tasks according to static
priorities. In Proceedings of the EuroMicro Confer-
ence on Real-Time Systems (Dresden, Germany, July
20006), IEEE Computer Society Press.

GOOSSENS, J., FUNK, S., AND BARUAH, S.
Priority-driven scheduling of periodic task systems on
multiprocessors. Real Time Systems 25, 2-3 (2003),
187-205.

JOSEPH, M., AND PANDYA, P. Finding response
times in a real-time system. The Computer Journal
29,5 (Oct. 1986), 390-395.

LEUNG, J., AND MERRILL, M. A note on the pre-
emptive scheduling of periodic, real-time tasks. Infor-
mation Processing Letters 11 (1980), 115-118.

LEUNG, J., AND WHITEHEAD, J. On the complex-
ity of fixed-priority scheduling of periodic, real-time
tasks. Performance Evaluation 2 (1982), 237-250.

Liu, C., AND LAYLAND, J. Scheduling algorithms
for multiprogramming in a hard real-time environ-
ment. Journal of the ACM 20, 1 (1973), 46-61.

MoK, A. K. Fundamental Design Problems of Dis-
tributed Systems for The Hard-Real-Time Environ-
ment. PhD thesis, Laboratory for Computer Science,
Massachusetts Institute of Technology, 1983. Avail-
able as Technical Report No. MIT/LCS/TR-297.

R1POLL, I., CRESPO, A., AND MOK, A. K. Improve-
ment in feasibility testing for real-time tasks. Real-
Time Systems: The International Journal of Time-
Critical Computing 11 (1996), 19-39.

