
Open Research Online
The Open University’s repository of research publications
and other research outputs

Integrating adaptive user interface capabilities in
enterprise applications

Conference or Workshop Item

How to cite:

Akiki, Pierre A.; Bandara, Arosha K. and Yu, Yijun (2014). Integrating adaptive user interface capabilities in
enterprise applications. In: 36th International Conference on Software Engineering (ICSE 2014), 31 May - 7 Jun 2014,
Hyderabad, India, ACM.

For guidance on citations see FAQs.

c© 2014 ACM

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://2014.icse-conferences.org/

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://2014.icse-conferences.org/
http://oro.open.ac.uk/policies.html

Integrating Adaptive User Interface Capabilities
in Enterprise Applications

Pierre A. Akiki, Arosha K. Bandara, and Yijun Yu
Computing and Communications Department

The Open University
Milton Keynes, United Kingdom

{pierre.akiki, arosha.bandara, yijun.yu}@open.ac.uk

ABSTRACT
Many existing enterprise applications are at a mature stage in their

development and are unable to easily benefit from the usability

gains offered by adaptive user interfaces (UIs). Therefore, a

method is needed for integrating adaptive UI capabilities into

these systems without incurring a high cost or significantly

disrupting the way they function. This paper presents a method for

integrating adaptive UI behavior in enterprise applications based

on CEDAR, a model-driven, service-oriented, and tool-supported

architecture for devising adaptive enterprise application UIs. The

proposed integration method is evaluated with a case study, which

includes establishing and applying technical metrics to measure

several of the method’s properties using the open-source enterprise

application OFBiz as a test-case. The generality and flexibility of

the integration method are also evaluated based on an interview
and discussions with practitioners about their real-life projects.

Categories and Subject Descriptors
[Software Engineering]: D.2.11 Software Architectures - Domain-

specific architectures; D.2.2 Design Tools and Techniques - User

interfaces; [Information Interfaces and Presentation]: H.5.2 User

Interfaces – User-centered design

General Terms
Design; Human Factors

Keywords
Adaptive user interfaces; enterprise systems; software architectures;

model-driven engineering; integration; software metrics

1. INTRODUCTION
Existing research shows that adaptive user interfaces (UIs) can

help enterprise applications to overcome some of their usability

problems by tailoring their off-the-shelf UIs to each end-user’s
needs [2]. Yet, many enterprise applications incorporate hundreds

or even thousands of UIs and are already at a mature stage in their

development. A method is needed for integrating adaptive UI

capabilities into these systems, without incurring a high

development cost or significantly changing the way they function.

In his paper on criteria for evaluating UI research, Olsen [29] gives

an example about the objections that were made in the late 1970s

towards new UI architectures due to the large amount of legacy

code written for command-line or text UIs. He notes that legacy

code can be a barrier to progress hence, if rewriting applications is

necessary, it could be the price of progress. Yet, Olsen also states

that providing a new advance while maintaining legacy code is

desirable. The latter is what we aim to achieve with our method for

integrating adaptive UI capabilities in enterprise applications.

Another integration challenge lies in the difference between

research work on adaptive user interfaces presented in the literature

and traditional UI development techniques. For example, many

research works on adaptive UIs adopt the model-driven approach

to UI development either partially (e.g., Supple [20]) or fully (e.g.,

MASP [10]). However, despite the advantages of the model-driven

approach, the user interfaces of many existing software systems

including enterprise applications have been developed using

traditional techniques. Therefore, an important issue to consider for

adaptive UI integration in existing applications is the means of

combining new UI development approaches such as the model-

driven approach with UIs that have been built using existing UI

design tools such as interface builders.

This paper contributes a method for integrating adaptive UI

capabilities in enterprise applications without the need for a major

integration effort. We evaluated our method by establishing and

applying technical metrics to measure several of its properties using

the open-source enterprise application Apache Open for Business

(OFBiz) as a test-case. This evaluation covered different phases

including: reverse-engineering, integration, and runtime execution.

We also evaluated the method’s generality and flexibility based on

an interview and discussions with industry practitioners and data from

their real-life enterprise system projects.

Our proposed method in this paper is based on CEDAR [1], a

model-driven, service-oriented, and tool-supported architecture for

devising adaptive enterprise application UIs. Using an architecture

for adaptive systems is promoted [23] since it provides generality,

abstraction, and a potential for scalability. Our proposed method is

applicable as a generic solution for adapting the UIs of different

enterprise applications. Also, the abstraction provided by CEDAR

offers a high-level understanding of the UI adaptation process for

stakeholders interested in adopting it as a reference for devising

adaptive UIs. Furthermore, UI adaptation mechanisms that are

based on CEDAR are bundled as a separate system and made

accessible through web-services, thereby creating a loose coupling

with potential for scalability, and facilitating the integration in

large-scale enterprise applications.

The type of UI adaptation that we applied in the evaluation of our

integration method is UI simplification using our Role-Based UI

Simplification (RBUIS) mechanism. In a previous work [2], we

presented RBUIS as a mechanism based on CEDAR for providing

end-users with a minimal feature-set and an optimal layout based

on the context-of-use, and showed that it can improve end-user

Authors’ Version

ICSE'14, Hyderabad, India

satisfaction and efficiency through a usability study. We define a

feature as a functionality of the software and a minimal feature-set

as the set with the least features required by a user to perform a job.

An optimal layout is the one that maximizes the satisfaction of

constraints imposed by a set of factors such as: the user’s skills and

motor abilities, hardware devices, etc. An optimal layout is achieved

by adapting concrete widget properties such as the type, grouping,

size, location, etc. The example shown in Figure 1 was part of the

evaluation of our integration method. It demonstrates feature-set

minimization and layout optimization operations on the “Product
Store” UI of OFBiz. Our adaptation and integration mechanisms

can be observed in operation through demonstration videos [33].

The remainder of this paper is structured as follows: Section 2

briefly discusses the related work. Section 3 provides an overview

of the CEDAR architecture and presents our technique for

integrating adaptive UI capabilities in enterprise applications

based on CEDAR and using OFBiz as a test-case. The metrics we

established for evaluating the different phases of our method are

presented in Section 4 and applied to scenarios from OFBiz. In

Section 5, we assess the generality and flexibility of our method.

The threats to validity and limitations are presented in Section 6,

and the conclusions and future work are given in Section 7.

2. RELATED WORK: ADAPTIVE UI SOLUTIONS
In this section, we shall briefly cover the prior art for UI adaptation

solutions and argue their strength and shortcomings in terms of

how they integrate in existing software systems.

2.1 Architectures

Several architectures were proposed as a reference for applications

targeting adaptive UIs. CAMELEON-RT [5] is an architecture for

distributed, migratable, and plastic UIs. However, it only serves as

a high-level reference without providing low-level implementation

specifications including information on integrating in existing

systems. Lehmann et. al. [25] proposed an architecture for devising

adaptive smart environment UIs, which was only applied to the

development of new prototype systems. Malai was presented as an

architectural model for interactive systems [8]. In Malai, developers

have to define several code-based presentations for the same UI at

design-time. In addition to being technology dependent (a Java

example is provided), UI adaptation in Malai is not decoupled from

the target software systems thereby requiring significant code

modification to the system. With our method, we aim to provide

specifications on integrating with existing systems and to decouple

the UI adaptation mechanism from the target enterprise application.

2.2 Techniques

Some works on UI adaptation such as: “multi-layered UI design”
[32], “two UI design” [27], and “training wheels UI” [15], present

a theoretical basis for UI adaptation but do not offer an engineering

solution for applying their propositions in practice. Other existing

works with practical solutions can be classified as follows:

Toolkit-based approaches for adaptive UIs have been explored

extensively in the literature (e.g., caring, sharing widgets [24],

selectors [21], swing states [4], etc.). Technology dependence is

one of the disadvantages of toolkits in comparison to model-driven

UIs. This disadvantage could impact the integration of adaptive UI

toolkits in existing enterprise applications since the entire toolkit

has to be redeveloped for each technology. Providing technology-

independence is an important part of our CEDAR-based adaptation

mechanism as will be explained in Section 3.1. The Comet(s) [13]

attempts to combine the toolkit and model-driven approaches for

building adaptive UIs. Nevertheless, even if the toolkit was

technologically compatible with an existing enterprise system, the

amount of code modification that is required to switch the UI from

the classical toolkit to the adaptive one could be significant. This is

especially true if the enterprise application’s UI was not developed

by following design patterns such as a “bridge” to decouple each
widget’s abstraction from its implementation. In such a situation, a

conversion tool is necessary with some manual work for shifting

the UI specification from one toolkit to another. Our approach can

operate on existing UIs without having to update them to a new

toolkit due to the separation of concerns between the adaptation

mechanism and the technology dependent UI representation.

Aspect-oriented programming (AOP) was proposed for improving

the separation of concerns in software systems [22]. One approach

that used AOP for adapting UIs requires several presentations to be

Figure 1. An Example on Adapting the “Product Store” User Interface of the OFBiz Enterprise Application

defined for the same UI at design-time and a weaver is used to

associate these presentations to instrument classes that handle the

way the UI functions [9]. Our approach is conceptually similar to

AOP since we are trying to achieve a separation of concerns

between the UI adaptation technique and the enterprise system.

Yet, our main focus is on adapting the UI’s presentation and not its
code-behind functionality. From this perspective, the existing AOP-

based approach requires UI variations to be defined manually by

developers at design-time, whereas our approach aims at adapting

UIs through adaptive behavior using rules that could be applied to

different UIs at runtime. For example, a rule could be defined to

switch the way the UI’s widgets are grouped by changing group
boxes to tab pages. Adaptation rules defined outside the enterprise

system could save integration time and support dynamic changes

that narrow the gap between development-time and runtime.

Design-time model-driven approaches rely on generating multiple

adapted UIs based on models that represent the UI at several levels

of abstraction. Approaches based on software product-lines (SPL)

[31] are used to tailor software systems in general and some, such

as MANTRA [12], particularly target tailoring UIs. SPLs can be

dynamic [7]. However, SPL-based UI adaptation approaches focus

on design-time adaptation such as generating UIs with different

subsets of features based on a feature model, whereas runtime

adaptive behavior is not addressed. Smart templates are another

generative approach and were used with ubiquitous remote control

mobile UIs [28]. Code generation makes such approaches difficult

to adopt for existing mature enterprise applications due to the

amount of effort needed to integrate the generated code in the

existing systems and the increased number of software artifacts

that can require maintenance. Also, if the adopted presentation

technology required compilation (e.g., Windows Forms) adding UI

artifacts would increase the compilation time. Our integration

method requires a few lines-of-code to be added to the enterprise

application at design-time to trigger UI adaptations at runtime.

Therefore, our approach can be integrated without major design-

time effort or the need for a large number of new software artifacts.

Runtime model-driven approaches keep the models alive at

runtime for adapting the running UI dynamically. Some are

generative, thereby generate an individual UI specification from

the models at design-time and use the models to adapt this UI at

runtime. MASP [11] follows this approach and targets ubiquitous

UIs in smart environments. MASP does not provide specifications

on integrating with existing systems and it was evaluated by

(re)building home automation applications such as: energy,

cooking, and health assistants. Other approaches such as Supple

and DynaMo-AID rely on interpreting the models and dynamically

rendering the UI. Supple [20] is a system, which primarily targets

generating UIs that are automatically adapted to each user’s motor

abilities. DynaMo-AID is a design process and runtime architecture

for devising context-aware UIs [17]. Both Supple and DynaMo-

AID did not demonstrate and evaluate the ability to integrate their

proposed approaches in existing software systems. Supple was

evaluated by developing a variety of simple UI dialogs (e.g., email

client, ribbon, print dialog, etc.) and DynaMo-AID was used to

develop a tourist guide mobile application. An additional point that

is neglected by existing runtime model-driven approaches is the

support for user feedback on the adapted UI. Supporting feedback

in adaptive systems is promoted for keeping users involved in the

adaptation process to insure their trust [16]. Nevertheless, it could

also play an important role in reducing development and integration

efforts. Tuning the adaptation according to each user’s needs can

take several cycles of development, deployment, user-testing and

change reporting. These cycles can be shortened by empowering

users to report changes directly to the system using a feedback

mechanism. Most existing works on adaptive UIs do not focus on

feedback. One exception is Supple [20], which supports user-

feedback for runtime elicitation of the adaptation rules. However,

the sole reliance on runtime elicitation could be time consuming

especially in large-scale enterprise applications and might not

provide sufficient data. With our CEDAR-based approach we

allow an initial definition of the adaptation rules (e.g., based on

expert knowledge) and rely on user feedback for further tuning.

We think that runtime model-driven UI development is the most

suitable approach to support a method for integrating adaptive UI

capabilities in existing enterprise applications due its dynamic

nature. Yet, the lack of attention from existing works in the literature

towards integration drives us to present an integration method

based on our CEDAR architecture. Section 3 provides an overview

of CEDAR and explains our method for integrating adaptive UI

capabilities in enterprise applications using OFBiz as a test-case.

3. INTEGRATING ADAPTIVE UIS IN OFBIZ
This section provides an overview of CEDAR and the way of using

it for integrating adaptive UI capabilities in enterprise systems. The

open-source enterprise application OFBiz is used as a test-case.

Apache Open For Business (OFBiz) [34] is an open-source

enterprise automation software project that contains several sub-

systems such as: Enterprise resource planning (ERP), manufacturing

resources planning (MRP), customer relationship management

(CRM), e-business and e-commerce, and supply chain management

(SCM). It could be considered as a general-purpose, large-scale,

enterprise system having the characteristics shown in Table 1.

Table 1. Some of OFBiz’s Characteristics

OFBiz Release 12.04

Number of User Interfaces > 750

Number of Lines-of-Code ≈ 1,466,000

Projects Based on OFBiz 20

Public Sites using OFBiz 90

Although commercial enterprise systems can be larger, for example

SAP has over 250,000,000 lines-of-code [35] and Lawson has over

10,000 UIs [36], OFBiz has complex UIs with a large number of

widgets that may need adaptation making it a good candidate for

our study. For example, the main UIs from its Catalog module have

an average of 55 widgets and a maximum of 170. Also, an open-

source system is necessary to test our integration method. Our

method could work with commercial systems but the company that

owns the source-code should perform the integration.

3.1 The CEDAR Architecture

This section offers an overview of CEDAR [1], and the way we

used it for integrating the RBUIS [2] UI adaptation mechanism in

OFBiz as shown in Figure 2. The CEDAR architecture serves as a

reference for stakeholders interested in developing adaptive

enterprise application UIs based on a model-driven approach. It

promotes the use of interpreted runtime models, which allow UIs

to be loaded, adapted, and rendered dynamically without resorting

to code generation. Although CEDAR has the potential to make the

UIs of software systems adaptive, it had not been integrated with

complex enterprise applications.

As illustrated in Figure 2, CEDAR has three server-side technology-

independent layers. The decision components handle decision

making in various adaptive UI scenarios such as evaluating whether

a change in the context-of-use requires the UI to be adapted. The

adaptation components are mainly responsible for adapting the UI

models by executing the appropriate adaptive behavior on them.

The adaptive behavior and UI models layer hosts the models that

comprise the different levels of abstraction representing the UI.

These levels of abstraction follow the CAMELEON [14] framework

and include task, domain, abstract UI (AUI), and concrete UI (CUI)

models. The adaptive behavior is also hosted on this layer and

could be represented visually as workflows or using scripts that

dictate how the UI models are adapted for the different contexts-of-

use. The components of a server-side layer can access those of the

layer above it as depicted by the vertical arrows in Figure 2 (right).

CEDAR’s client components integrate in enterprise applications

and empower them with adaptive UI capabilities as illustrated by

arrows (1) to (5) in Figure 2, using OFBiz as an example. These

components are dependent on the programming and presentation

technologies, since they have to be integrated in the enterprise

application’s code. Hence, different sets of components are required.

These components offer an application programming interface (API)

that is loaded globally (1) in the enterprise application (e.g.,

common header in OFBiz). Whenever the end-user launches a UI,

a request is made to the API for adapting this UI; the identifiers of

the end-user and the UI are passed as parameters (2). The API uses

web-services to pass the UI adaptation request to the server-side

layers (3), which perform the adaptation and return the result to the

API as XML (4). The API’s UI Renderer is responsible for

applying the adaptation result to the running enterprise application

UI, which is an HTML page in the case of OFBiz. Once a UI is

adapted, the Caching Engine is responsible for caching the adapted

version on the client-side in case the end-user requests it again.

Adaptive UI mechanisms can affect an end-user’s UI control [27]:

End-users might feel loss of control if the adaptive UI mechanism

makes decisions they cannot understand or change. Reduction

mechanisms can affect feature-awareness [19]: If a UI was adapted

by reducing features without providing a means of exploring the

features that were removed and possibly bring them back, the end-

users can become unaware of some features that they might want

to use in certain contexts. These negative effects could be overcome

if the end-users are kept in the adaptation loop by supporting

feedback on adaptations. Hence, the Feedback Monitor allows end-

users to report their feedback on the UI adaptations presented by

the system. End-users are given the ability to reverse adaptations or

choose other possible alternatives.

Cedar Studio [3] is an integrated development environment (IDE),

which helps developers and I.T. personnel in defining and

managing artifacts such as UI models and adaptive behavior,

which are stored in a server-side database. This IDE can access the

server-side layers through web-services in order to request or

update artifacts. Cedar Studio can be observed in operation through

online demonstration videos [33].

CEDAR and RBUIS were only evaluated in our previous work by

constructing new UI prototypes. In this paper, we contribute a

method for integrating RBUIS in existing enterprise applications

following the CEDAR architecture. The OFBiz system is used as a

test-case for evaluating if the proposed integration method works

without incurring a high development cost or significantly

disrupting the way the enterprise application functions.

3.2 The RBUIS UI Adaptation Mechanism

CEDAR is a generic architecture that can form the basis for a

variety of UI adaptation mechanisms such as RBUIS [2]. RBUIS

was created in the spirit of RBAC [18] and was evaluated in terms

of usability enhancement. In RBUIS, roles are applied to task

models (represented as ConcurTaskTrees [30]) for adapting the

UI’s feature-set by removing features that are not required by

certain end-users. Also, the layout can be optimized by adapting

concrete widget properties such as: size, location, type, etc. Layout

optimization is done by executing adaptation workflows that can

embody visual and code-based constructs, on the concrete UI (CUI)

models. To adapt a UI using RBUIS, a call is made to the server-

Figure 2. Integrating Adaptive User Interface Capabilities in OFBiz based on our CEDAR Architecture

side layers with the identifiers of the end-user and the UI as

parameters. The end-user-identifier is used to retrieve the roles,

which are granted to the logged-in end-user. Then, the adaptive

behavior associated with these roles is executed on the UI models

relevant to the UI identifier. Finally, the adapted UI is transmitted

to the client-side as XML to be rendered on the screen. In this

paper, we used RBUIS to give OFBiz adaptive UI capabilities.

3.3 Adaptive UI Integration Technique

OFBiz uses HTML to represent its UIs. Hence, in order to integrate

RBUIS in it, we developed a JavaScript version of CEDAR’s client
API that works with HTML UIs. Since RBUIS adopts a model-

driven UI development approach, we devised a procedure for

reverse engineering HTML forms into a model-driven representation

supporting the levels of abstraction suggested by CAMELEON

(Task, AUI, and CUI models). The reverse engineering is done at

design-time. However, our technique launches the HTML pages of

OFBiz in the browser then acquires the HTML through JavaScript

to include the elements that are generated by server-side scripts.

Our procedure transforms an HTML form into an XML document,

which is used to create a CUI model. Then, the CUI is reverse

engineered into an AUI model and the AUI into a task model

automatically. The only manual part in this procedure is the

definition of mapping rules. An excerpt of the code for reverse

engineering an HTML table is shown in Listing 1.

Listing 1. Code for Reverse Engineering HTML UI to a Model-

Driven Representation: Excerpt of HTML Table Example

 1: function ConvertHTMLTableToXml(TableID) {

 2: var xml = "";

 3: $("#" + TableID + " tr").each(function () {

 4: var cells = $("td", this); /*Parse Cells*/

 5: for(var cellCtr=0;cellCtr<cells.length;++cellCtr){

 6: var inputs = $("input", cells.eq(cellCtr));

 /*Parse Input Fields*/

 7: for(var inpCtr=0;inpCtr<inputs.length;++inpCtr){

 8: var fieldType=inputs.eq(inpCtr).attr('type'),

 9: fieldID = GetFieldID(inputs.eq(inpCounter)),

10: element = GetElement(fieldID);

 /*Generate XML for Element*/

11: var xmlInput = GetInputFieldXml(element,
fieldType, fieldID) + "\n";

12: xml += xmlInput; } } }

13: return xml; }

After reverse engineering the UIs that require adaptation, we can

apply RBUIS on the obtained UI models using Cedar Studio. To

make the adaptation work at runtime on OFBiz’s HTML pages,

we need to extend OFBiz with a few lines-of-code that load the

CEDAR API, call its web-service, and apply the obtained result.

OFBiz uses a master page to wrap its UI forms with a common

header, footer, and panel as shown in Figure 2. To reduce the

integration effort we loaded the API and performed the adaptation

call in the common header using the code shown in Listing 2.

Listing 2. Code for Enabling Adaptive UI Capabilities

 //Load the API Scripts

1: <script type="text/javascript" src="http://

[ServiceAddress]/CedarScripts.js"></script>

2: <script type="text/javascript">

3: $(document).ready(function() {

4: Initialize('[ServiceAddress]'); //Setup the API

//Call the API to adapt the UI and

//pass the logged-in user id as a parameter)

5: LoadAdaptedUI(getUserID()); }); </script>

The “getUserID()” function call on Line 5 in Listing 2 should be

implemented by the developer to obtain the identifier of the

logged-in user from the OFBiz system. The “LoadAdaptedUI”
function can internally acquire the UI identifier through a mapping

table that contains the UI’s URL and a number to identify the UI’s
models in the CEDAR database. The UI’s URL is obtained from

the web-browser and passed as a parameter to the adaptation

function on CEDAR’s web-service. The mapping is done on the

server-side by querying a mapping table in the CEDAR database.

After receiving an XML representation of the adapted UI from the

server, the UI renderer component will apply the changes to the

HTML page loaded on the client by modifying the widgets’
properties. An excerpt of the code that applies the adaptations is

shown in Listing 3. This code excerpt demonstrates hiding the

widgets that were set to be invisible by an adaptation (e.g.,

removing features that are not required by a certain user).

Listing 3. API Code for Applying the Adapted User Interface:

Excerpt of Widget Hiding Example

1: function ApplyAdaptedUI(UIXML){

 //Loop around the UI widgets

2: $(UIXML).find("Control").each(function () {

 //Get the name and visibility attributes

3: var technicalName=$(this).attr('TechnicalName');

4: var isVisible = $(this).attr('Visible');

 //Hide the invisible elements

5: if(isVisible == 'false'){

6: var element = GetElement(technicalName);

 //Hide the element if it exists

7: if (typeof (element)!= 'undefined')

8: {element.style.visibility = 'collapse';}}

9: }); }

3.4 User Feedback Mechanism

The Feedback Monitor presented in Section 3.1 allows users to

change simplification operations by bringing back features in the

case of feature-set minimizations or choosing alternatives in the

case of layout optimizations as shown in Figure 3-A. Based on a

recommendation we obtained by interviewing an industry expert,

we extended this mechanism’s functionality to allow users to add

fields that did not previously exist in the enterprise application as

illustrated by Figure 3-B. Changing simplification operations is

enabled for the adapted UIs whereas adding new fields is enabled

for all the reverse engineered UIs. Users can access the feedback

mechanism by clicking a chameleon icon that appears in the corner

of the UI. Upon changing the simplification operations, a request is

made to the server passing the changes as a parameter and the UI is

readapted accordingly. As for adding new fields, the UI models are

extended and the UI is reloaded to show the addition.

(A) Changing Simplification Operations

(B) Adding New Fields

Figure 3. User Feedback Mechanism

4. METRIC-BASED EVALUATION
The process of integrating UI adaptation capabilities in enterprise

applications starts by reverse engineering the target application’s
UIs. Afterwards, the application is extended to support adaptation

hence becoming able to adapt its UIs at runtime. This section

explains the metrics that we used to evaluate our integration

method at all the stages of the process and demonstrates an

application of these metrics to scenarios from OFBiz.

4.1 Reverse Engineering the User Interfaces

As we mentioned in Section 3.3, we devised a procedure for reverse

engineering HTML forms into a model-driven representation that

can be adapted by RBUIS. Although it is automated, this procedure

requires mapping rules to be defined manually. Hence, the first

question that might come to mind is about the difficulty of

deducing these rules from the existing enterprise system since it has a

large number of UIs. Assuming that there is no prior knowledge of

the types of mapping rules required for reverse engineering the

enterprise system at hand, we defined the following metrics for

estimating the number of UIs that require manual work before the

majority of the mapping rules are detected. These metrics

indirectly show the level of diversity in an application’s UIs. More

diversity could signify that there are more mapping rules, which

are more uniformly distributed over the entire system.

The approximate mapping rule detection saturation point SP

indicates that the number of new encountered mapping rules

stabilized after reverse engineering a number of UIs a. This metric

will allow us to test if the Pareto principle (70-30 rule) applies for

detecting 70% of the mapping rules in the first 30% of the UIs. If

this principle applies, it indicates that less manual work is required

for reverse engineering since the UIs have similar characteristics.

To check if the Pareto principle holds, we define the following

equation where {R} is the set of rules detected in the UIs before

SP and {MR} is the set of all the detected mapping rules: { } { } { }

The saturation point SP is defined as follows: { }

where UI is a user interface being reverse engineered, C is the

number of new mapping rules detected in this UI, the subscript b of

C indicates the next UI to be reverse engineered, and T is the total

number of UIs to be reverse engineered. The types of mapping

rules that are encountered when reverse engineering a UI can differ

depending on the characteristics of the software application being

reverse engineered. We hypothesize that the Pareto principle holds

for enterprise applications due to the use of similar WIMP style UIs.

OFBiz Scenario: We selected a sample formed of the 19 main

input UIs from the “Catalog” and “Human Resources” modules.

We were able to deduce two types of mapping rules necessary for

reverse engineering these UIs into a model-driven representation:

(1) The most common type of rule is the one that maps individual

HTML elements to CUI elements that are in turn mapped to AUI

elements then tasks in the task model, and (2) the second type of

rule is related to grouping widget pairs composed of a label and an

input widget into logical groups that are reflected in the AUI and

task models. Defining rules from these two types alongside getting

information provided by the HTML UI (e.g., widget properties

such as name, size, location, etc.) was sufficient to obtain a model-

driven user interface representation that we can adapt using our

RBUIS mechanism.

Figure 4. Saturation Point for Mapping Rules

We encountered 8 different widget types, each requiring 1

mapping rule, and were able to detect the second mapping rule

relating to logical widget grouping in the first UI. We obtained a

saturation point SP = 2 / 19 = 0.10 signifying that after the second

UI the mapping rules become minimal as shown in Figure 4.

Following our example where SP = 0.1, P is: 7 / 9 = 0.77 (77%) in

best case scenario and 6 / 9 = 0.66 (66%) in the worst case one.

With an average of 71.5 % of the rules detected in the first 10% of

the UIs, we can say that the Pareto principle holds and the UIs of

OFBiz are highly similar.

4.2 Integrating the Adaptive UI Capabilities

After reverse engineering the UIs, we can assess the level of change

the integration will incur on the enterprise application. We defined

the lines-of-code and change-impact metrics for this assessment.

The lines-of-code metric refers to the code required locally in each

UI or globally in the enterprise application to apply a type of

adaptation. This metric excludes the API code since CEDAR

requires each presentation technology (e.g., HTML) to have one

API that is reusable with any enterprise application. The lines-of-

code metric is given as follows:

where LLOC represents a UI’s local lines-of-code, whereas GLOC

represents the global lines-of-code common across the application,

A is the required adaptation, UI is the user interface to which this

adaptation will be applied, and EA is the enterprise application. The

values for LLOC and GLOC represent the number of lines-of-code

that must to be added to make the adaptation operational.

OFBiz Scenario: As an example test-case, we considered the

context-driven UI adaptations listed in Table 2 and applied them to

OFBiz. An example of the output was shown earlier in Figure 1.

Adaptation A1 is a feature-set minimization, whereas adaptations

A2, A3, and A4 are examples of layout optimizations.

Table 2. Example User Interface Adaptations

Code Adaptation

A1 Reduce features (e.g., hide or disable widgets)

A2 Switch widget type (e.g., combo boxes to radio buttons)

A3 Change layout grouping (e.g., group boxes to tab pages)

A4 Change font-size (e.g., larger fonts for visually impaired users)

Our method only requires the 5 lines-of-code shown in Listing 2 to

be added globally to OFBiz’s common header to empower it with

adaptive UI capabilities. Consider {AE} to be the set of adaptations

listed in Table 2. The lines-of-code needed to make these

adaptations work in OFBiz using our method are ⩝ x x ∊ {AE},

GLOC (x, OFBiz) = 5 and LLOC (x, AnyUI) = 0. Achieving this

low number of lines-of-code is possible because all the adaptation

rules are defined on the server-side as shown in Figure 2.

Some approaches discussed in Section 2 operate by changing the

UI’s representation (e.g., HTML tags) at design-time. Therefore,

we established the change-impact (CI) metric to measure the level

of change each approach will incur on the enterprise application. A

higher change-impact could signify that: (1) More time and effort

could be needed to perform the integration and (2) the compilation

time could increase if a compiled presentation technology such as

Windows Forms was used. Since we can think of UIs in terms of

widgets, the change-impact metric is given as follows:

 ∑ { }

where A is the adaptation being applied, UI is the user interface

being adapted, k is a type of widget (e.g., text box, combo box,

etc.), n is the number of widget types in the UI, lk is the number of

lines required for representing each widget type (e.g., number of

HTML tags), and |{W}k| is the number of widgets of a certain type

that have been changed by the adaptation.

The variable v represents the number of generated UI versions and

is > 1 for approaches that cannot adapt the same UI copy (e.g., a

single HTML page) but generate multiple copies of the UI each of

which is adapted to a certain context-of-use. Widget toolkits aim at

replacing existing widgets from the standard toolkit with adaptive

equivalents. Hence, the value of v for widget toolkits would be = 1

since the change is occurring in the initial UI copy. We should note

that widget toolkits are generally used to adapt the layout and do

not have the ability to adapt the feature-set due to their lack of a

high-level UI model such as the task model. Model-driven design-

time generative approaches generate multiple versions of the same

UI adapted to different contexts-of-use. Hence, the value for v in

this approach would be > 1. The research work that used AOP for

adapting the UI’s behavior [9] (Section 2.2) relied on manually

creating multiple adapted UI layouts hence we also consider its v

value to be > 1. As for our method, CI is always = 0 since we use

runtime adaptation hence the UI representation (e.g., HTML pages)

will remain completely intact at design-time.

Table 3. Integration Time of Different Adaptation Approaches

Approach Integration Time

Widget Toolkits Average / High

Model-Driven Generative D.T. Average

AOP + D.T. Manual Adaptation High

Model-Driven Interpreted R.T. Low

Based on CI we provided a conceptual comparison between the

different UI adaptation approaches as shown in Table 3. Our aim is

to give an idea about the differences in the required integration effort

between approaches, while recognizing that there could be slight

differences between adaptation techniques using the same approach.

Widget toolkits require an average amount of time if a conversion

tool existed to automatically convert the UI otherwise a high amount

of time is needed. Model-driven generative design-time approaches

require an average amount of time since the adapted versions could

be automatically generated but more time could be still required to

integrate them with the software application. Logically, manual

adaptation requires a high amount of time. The integration time of

our method is low since CI is always = 0, hence the developers can

continue working on the application without major disruptions.

OFBiz Scenario: We attempted to apply adaptation A2 (Table 2) to

the 19 main input UIs of the Catalog and Human Resources modules

of OFBiz. This adaptation switches combo boxes with three other

types of widgets including: radios buttons, list boxes, and lookups.

These possibilities indicate that we could obtain three different

versions of the UI hence v (Equation 4) = 3 for the model-driven

generative and manual design-time approaches and v = 1 for the

widget toolkit approach. The value for n (Equation 4) is 1 since we

are only adapting combo boxes, and we consider that each combo

box is represented by a single HTML tag hence l (Equation 4) = 1.

The results we obtained from calculating CI are listed in Table 4,

and show that the CEDAR approach has the lowest change-impact.

Table 4. CI Example Based on 19 UIs from OFBiz

 Change-Impact

Approach Mean Total

Widget Toolkits 6.94 132

Model-Driven Generative D.T. 106.73 2028

AOP + D.T. Manual Adaptation 106.73 2028

Model-Driven Interpreted R.T. 0 0

* The applied adaptation switches combo boxes with radio buttons, list boxes, and lookups

4.3 Level of Decoupling

The level of decoupling shows how much intertwining exists

between the adaptive behavior and the enterprise application. It is

affected by the percentage of adaptive behavior defined in the

enterprise application versus that defined separately. Decoupling

provides a separation of concerns that could offer potential for

scalability and facilitate the integration of an adaptation technique

in existing enterprise applications. As shown earlier in Figure 2,

CEDAR provides complete separation between the implementation

of the adaptive UI technique (e.g., RBUIS), which resides on a

server and the enterprise application that uses a client-side API to

communicate with it through a web-service.

It is important to maintain the backward compatibility of UI

adaptations as enterprise applications evolve. We consider an

adaptation A to be backward compatible if it can be applied to

previous UI versions successfully and without reintegration effort.

Decoupling helps in improving backward compatibility in terms

of eliminating reintegration effort. A conceptual assessment of the

backward compatibility of UI adaptation approaches is presented

in Table 5 based on the need for reintegration effort.

Table 5. Backward Compatibility of UI Adaptation Approaches

Approach Backward Compatible

Widget Toolkits
Depends on the ability to load a new

widget toolkit version at runtime

Model-Driven Generative D.T. False

AOP + D.T. Manual Adaptation False

Model-Driven Interpreted R.T. True

Widget toolkits can be backward compatible if it is possible to load

a new toolkit version at runtime to update the existing adaptive

behavior in older versions of the enterprise system. This is not

possible with model-driven approaches that generate UIs at design-

time since the generated artifacts have to be manually integrated in

all the previous enterprise application versions. Manual design-

time adaptation suffers from a similar problem. If we consider the

adaptations listed in Table 1, we can say that our approach is

backward compatible since it is only necessary to define a global

code once to make these adaptations work for all the UIs. Hence,

the adaptations would work for all the previous versions that have

this code since the adaptive behavior are being defined separately.

An adaptation’s success can be partial due to differences in the UI

definition between one version and another. We defined a metric

for calculating the backward compatibility success ratio as follows:

 { } { } { } { }
where UIvn is a UI from the enterprise application version into

which the adaptation A was integrated for the first time, and UIvn-k

is one of the previous versions; {W} is the set of widgets in a UI

and {AW} is the set of widgets affected by an adaptation A.

As an example of partial UI adaptation success, let us consider a

UI for managing customer records. Consider that CustomerUIv2

has multiple fields, 10 of which are for data selection and are

represented as combo boxes (e.g., gender). Assume that the

previous UI version CustomerUIv1 has the same data selection

fields but only 8 are represented as combo boxes and the other 2

are list boxes. If we introduce an adaptation to switch data selection

widgets with radio buttons in CustomerUIv2, we might ignore list

boxes. In this case, BC = 8/10 = 0.8 indicating an 80% success rate.

With approaches that are not dynamic and rule-based (e.g., design-

time generative), two adapted UIs have to be generated and integrated

into each respective CustomerUI version to achieve a 100% success

rate. As for our approach, we only have to adjust the adaptation

rule in our RBUIS mechanism to take into consideration list boxes

as well as combo boxes to obtain a 100% backward compatibility.

4.4 Runtime Performance

Considering that our approach is highly dynamic we had to test its

runtime efficiency and scalability especially since we are working

with UIs that are expected to load in real-time. In a previous work

[2], we conducted a complexity analysis to show that the algorithms

behind our RBUIS mechanism are theoretically scalable. In this

paper, we tested our technique’s runtime efficiency and scalability

after integrating it with an existing real-life system (OFBiz). To

perform this test we defined the following efficiency metric as a

function of an adaptation A and a user interface UI:

where t0a is the time required to perform an adaptation on the

server-side, t0b is the common server-side time required for any

number of adaptations (e.g., loading common data before applying

the adaptations), t1 is the time needed to transmit the adapted UI as

XML back to the client, and t2 is the time it takes the API to apply

the adaptation on a running UI such as an HTML page in OFBiz.

We used this metric to test the efficiency of the four example

adaptations listed in Table 2 on the three UIs with the highest

number of widgets in OFBiz’s Catalog module. The test was

conducted on a single machine with an Intel Core 2 Duo 2.93GHz

CPU and 4 GB of RAM running a 32 bit edition of Windows 7.

We used the Firefox web-browser to run OFBiz.

We determined the t0b variable to be equal to 30 milliseconds (ms).

The t1 variable depends on the network connection and is

negligible for our test since we were operating on a single machine.

We calculated the average XML document size for the 3 selected

UIs to be 20kb. Based on this file size, t1 will be very small over an

internet connection (e.g., ≈15ms / 10Mbps) and negligible over a
corporate network (e.g., ≈0.15ms / 1Gbps). The values of variables

t0a and t2 are shown in Figure 5 for each UI and adaptation.

Figure 5. Results of the Efficiency Test on 3 OFBiz UIs Using

4 Example Adaptations (t0b = 30ms and t1 =15ms)

Using the data shown in Figure 5 and considering t1 to be 15ms we

determined the average efficiency for each adaptation to be:

E(A1)=75ms, E(A2)=115ms, E(A3)=150ms, and E(A4)=90ms. The

general average is (75 + 115 + 150 + 90) / 4 = 107.5ms. If we do

not consider the fixed values t0b (30ms) and t1 (15ms), the general

average will be 62.5ms. Based on this number, we can say that our

technique can perform around 15 different adaptations on the same

UI, transmit it, and display the result all in less than 1 second

(62.5 × 15 + 30 + 15 = 982.5ms).

Since the CEDAR architecture supports client-side and server-side

caching, performance can be further enhanced. Client-side caching

is used if a user that is still operating in the same context (e.g., still

logged in with the same roles) requests a UI that has already been

adapted. In this case the efficiency metric will be: E (A, UI) = t2

(general average 24.5ms). As for the server-side caching, it is used

when a user requests a UI that has already been adapted for another

user operating in the same context (e.g., a user that has the same

roles). In this case, the efficiency metric will be: E (A, UI) = t1 + t2.

After testing the efficiency of our technique we verified its

scalability by load-testing CEDAR’s UI adaptation web-service.

We selected the largest of the three UIs that were used in the

scalability test (Product Store UI with 170 widgets) and applied to

it the four adaptation operations shown in Table 2. We submitted

increasing requests of that UI to the server over five minute periods

and repeated the whole cycle five times. The web-service was

hosted on an Amazon cloud server with a single Intel Xeon CPU

with 2 cores (2.40 GHz, 2.15GHz), 3.75 GB of RAM, and running

a 64-bit edition of Windows Server 2012 Standard with the IIS 7

web-server. We consider this setup to be an average configuration

since enterprises with hundreds of users usually setup servers with

multiple CPUs and a larger amount of RAM. We simulated the load

using an application that we developed and ran simultaneously on

three client machines. The resulting server response times (t0a + t0b

from Equation 6) are shown as a box plot in Figure 6.

Figure 6. Box plot of Load-Testing Results (showing medians)

The fitting curve of the mean response times shown in Figure 7 is

polynomial of the 4th order with R2=0.9999431. We should note that

the polynomial curves of the 2nd and 3rd orders also produced a high

R2 where R2 (2nd) = 0.9977252 and R2 (3rd) = 0.9989506. Based on

this test, we can say that our UI adaptation service is scalable and

will not form a bottle-neck if it receives a high number of requests.

Figure 7. Curve of the Load-Testing Results (showing means)

5. GENERALITY AND FLEXIBILITY OF OUR

METHOD: INDUSTRIAL EXPERTISE AND DATA
This section presents an evaluation of the generality and flexibility

of our method based on industrial expertise and data.

To evaluate our method from an industrial perspective, we drew on

the expertise and data from real-life projects offered to us by a

software company that sells enterprise systems to medium and large

enterprises in China. We selected this company due to its expertise

in enterprise systems, UI adaptation, and our test-case OFBiz.

We initially visited the company to get information on their work

and the problems that they face with enterprise applications. In this

initial visit, we discovered that one of the major problems they face

is usability related. The enterprise applications that they sell suffer

from a diminished user experience due to the diverse end-user

needs that make one UI not fit for all users. We established through

a verbal explanation of our UI adaptation technique that it could be

useful with real-life enterprise systems such as OFBiz. At a later

stage, since we were able to integrate our UI adaptation technique

successfully in OFBiz, we sought to further evaluate its usefulness

by assessing its generality and flexibility. These two criteria were

introduced (alongside others) by Olsen [29] for evaluating UI

research including architectures such as CEDAR. According to

Olsen, Generality evaluates the possibility of using the proposed

solutions with different use cases and flexibility evaluates “the

possibility of making rapid design changes that can be evaluated

by the users” (p.255). We demonstrated our UI adaptation and

integration techniques to the manager with videos [33] of running

examples on using our IDE Cedar Studio for developing adaptive

model-driven UIs and an example on integrating these capabilities

in OFBiz. Afterwards, we conducted a semi-structured interview over

the phone with the manager and followed it with several discussions.

To achieve generality, our method only requires an API for the

presentation technology adopted by the target enterprise application.

As shown by the CEDAR architecture in Figure 2, all the server-

side components are technology independent and can be accessed

from a technology dependent API through web-services. An API

for a particular presentation technology can be used with any

application adopting this technology by following the integration

procedure described in Section 3. This is deemed acceptable by the

manager especially since we developed an API and demonstrated it

in a working example alongside our IDE, Cedar Studio.

According to Olsen’s definition [29], flexibility is regarded as a

development metric that assesses how easy it is for developers to

make rapid design-time changes using a tool. It is achieved from

this perspective by our IDE Cedar Studio, which supports visual-

design tools for both UI models and adaptive behavior in addition

to integrated testing of the adapted UIs. These features allow

changes and testing to be done rapidly. Nevertheless, during our

interview we deduced a helpful end-user perspective of flexibility.

It covers the possibility and ease through which end-users can

change the UI themselves without referring to software developers.

Based on his company’s experience, the manager said that UIs are

initially adapted by the developers based on initial knowledge

acquired on the needs of an enterprise’s end-users. Afterwards, the

UI adaptation is tuned over several cycles in a process that includes

user evaluation, change reporting and discussion, and readapting

the UI based on the newly reported changes. He noted that the

adaptation mechanism available to them in OFBiz supports

reducing features (layout optimization is not supported) through

XML configuration files, which are defined by the developers.

Therefore, as he stated, the feedback mechanism provided by our

approach is an important advantage that empowers end-users to

provide direct feedback to the system in order to shorten the cycles

of the adaptation process. This reduces the implementation cost

and allows the users to obtain an adapted UI more quickly. As a

result of this interview, we were able to establish the process shown

in Figure 8, which demonstrates conceptually these advantages.

Figure 8. UI Adaptation Process: Design-Time versus Runtime

UI Adaptation Cycles (based on interviewing industry experts)

A complementary indication on the importance of runtime

adaptation approaches is made by an existing research work, which

states that software systems should attempt to break the boundary

between development-time and runtime to handle the changes that

cannot be anticipated or predicted beforehand [6]. Empowering

users with control over the UI adaptations narrows this boundary

and helps in reducing the round trip in the adaptation process.

In a previous work [2], we conducted a usability study with 25

participants that demonstrated the ease of use of our feedback

mechanism since 80% of the participants were able to use it by

only referring to a few written words of instruction on its purpose.

In this paper, we estimated the time that the feedback mechanism

could save in the UI adaptation cycle based on real-life data. We

asked the manager who we interviewed to provide us with

timestamps of requests on the different steps of the UI adaptation

process from past projects. We were provided with a sample of 36

timestamps of requests from 3 past projects that were running in

parallel. The timestamps were obtained by referring to historic

emails of requests on development, deployment, and change

reporting and discussion. Based on these timestamps, we

calculated the mean number of days for developing and deploying

the adapted UIs and reporting and discussing change requests

between the enterprise employees and the software company. The

results are shown in Figure 9 but the project names are hidden for

confidentially purposes. The results indicate that the highest mean

days in the UI adaptation process are allocated to user evaluation,

and change reporting and discussion (Project A=45.25, Project

B=25.66, Project C=35) and a smaller mean number of days is

allocated to the development and deployment of UI adaptations

(Project A=9, Project B=4.75, Project C=5.25).

Figure 9. Mean Number of Days for 1 UI Adaptation Cycle

from Real-Life Enterprise Projects Running in Parallel

The results in Figure 9 show that if the UI adaptation process was

repeated from the start with every cycle, a period of over 1 month

could pass before the users get their requested UI adaptations. On

the other hand, if the users were given the ability to report the

changes directly to the system through a feedback mechanism this

process could become much shorter by eliminating the time

required for development, deployment, and change discussion.

6. THREATS TO VALIDITY AND LIMITATIONS
The data presented in this paper is based on applying our UI

adaptation approach to scenarios from OFBiz. The figures we

obtained by applying the saturation point (SP) metric give us an

indication about the nature of enterprise application UIs without

claiming generalizability to all enterprise applications. When we

compared our approach to others from the literature using the

change-impact (CI) and backward compatibility (BC) metrics, we

aimed at giving a general conceptual idea about the differences

while acknowledging that there could be some variations between

the low-level adaptation techniques using the same approach. The

load-testing curve presented in Figure 7 is intended to show that

our UI adaptation mechanism is scalable. Determining an accurate

regression equation, which is not the purpose of this test, requires a

larger sample of mean execution times. Interviewing more industry

experts could support our generality claim further. Concerning the UI

adaptation cycle data (Figure 9), as we mentioned earlier, it is based

on a sample of 36 request timestamps from 3 projects. Therefore,

our intention is not to generalize it but to give an indication about

the time each adaption cycle could take to show the usefulness of

our runtime feedback mechanism in shortening these cycles.

Task models represented as ConcurTaskTrees support temporal

operators, which can help in determining inter-task dependency.

Determining this dependency is helpful for feature-reduction

adaptation operations. Currently, we are unable to automatically

detect these operators when reverse engineering a UI specified in a

presentation technology such as HTML to a model-driven

representation. It is possible to specify these operators manually

using the task model design tool in our IDE Cedar Studio. Another

limitation lies in the addition of new fields using the feedback

mechanism. This functionality allows the new fields to be rendered

on the screen by updating the UI models. However, for the fields’
values to be stored in the enterprise’s database, the enterprise

application should support domain model extension. OFBiz allows

its domain model to be extended by the developers but the

feedback mechanism makes it extensible by the end-users. In case

other enterprise applications did not support domain model

extension, this functionality has to be programmed before the end-

users can use the field addition part of our feedback mechanism.

7. CONCLUSIONS AND FUTURE WORK
Adaptive UIs can help enterprise applications to overcome some of

their usability problems [2]. Many of these systems have a large

number of UIs and are at a mature stage in their development life-

cycle. However, existing works on adaptive UIs mostly test their

approaches by building new prototype systems but do not present

and evaluate methods that can integrate such capabilities in

existing systems without causing major changes to the way they

function or incurring a high integration cost.

In this paper, we presented a method for integrating adaptive UIs in

enterprise applications based on our CEDAR architecture. This

method uses interpreted runtime models to empower enterprise

applications with adaptive UI capabilities without the need for a

major integration effort. We established several technical metrics

and applied them to evaluate our method based on scenarios from

the open source enterprise application OFBiz. This assessment

covered the different phases of our method including reverse

engineering, integration, and runtime execution. We showed that

due to the similarity between enterprise-application UIs, around 70%

of the mapping rules required for the reverse engineering phase

could be determined by examining the first 30% of the UIs to be

reverse engineered. After determining the mapping rules, the

reverse engineering process becomes fully-automated. Without

changing the underlying functionality, our integration method only

requires a few lines-of-code to work, and does not have a high

change-impact on existing UI definitions in comparison to other

approaches. Furthermore, we demonstrated that our runtime UI

adaptation mechanism is both efficient and scalable by applying it

to real-life scenarios from OFBiz. Finally, we showed the generality

and flexibility of our method based on an interview and discussions

with practitioners and data from their real-life projects.

In the future, we aim to devise a technique that can automatically

detect the temporal operators for the task models when reverse

engineering a final user interface (e.g., HTML) into a model-driven

representation. An interesting starting point could be an existing

work that has explored a way to transform HTML pages into state-

machine diagrams by relying on the function calls in the code

behind the UI [26]. Additionally, we are aiming to ask software

developers to evaluate our UI adaptation and integration approach

and our supporting tool (Cedar Studio) in a focus group setting.

8. ACKNOWLEDGMENTS
We would like to thank Shanghai Banff Technology Ltd for the

interviews, feedback, and data they provided us from their projects

and Prof. Marian Petre for her input on this paper. This work is

funded by The Open University and ERC Advanced Grant 291652.

9. REFERENCES
[1] Akiki, P.A., Bandara, A.K., and Yu, Y. Using Interpreted

Runtime Models for Devising Adaptive User Interfaces of

Enterprise Applications. Proceedings of the 14th

International Conference on Enterprise Information Systems,

SciTePress (2012), 72–77.

[2] Akiki, P.A., Bandara, A.K., and Yu, Y. RBUIS: Simplifying

Enterprise Application User Interfaces through Engineering

Role-Based Adaptive Behavior. Proceedings of the 5th ACM

SIGCHI Symposium on Engineering Interactive Computing

Systems, ACM (2013), 3–12.

[3] Akiki, P.A., Bandara, A.K., and Yu, Y. Cedar Studio: An

IDE Supporting Adaptive Model-Driven User Interfaces for

Enterprise Applications. Proceedings of the 5th ACM

SIGCHI Symposium on Engineering Interactive Computing

Systems, ACM (2013), 139–144.

[4] Appert, C. and Beaudouin-Lafon, M. SwingStates: Adding

State Machines to the Swing Toolkit. Proceedings of the 19th

Annual ACM Symposium on User Interface Software and

Technology, ACM (2006), 319–322.

[5] Balme, L., Demeure, R., Barralon, N., Coutaz, J., Calvary,

G., and Fourier, U.J. Cameleon-RT: A Software Architecture

Reference Model for Distributed, Migratable, and Plastic

User Interfaces. Proceedings of the 2nd European

Symposium on Ambient Intelligence, Springer (2004), 291–
302.

[6] Baresi, L. and Ghezzi, C. The Disappearing Boundary

Between Development-time and Run-time. Proceedings of

the FSE/SDP Workshop on Future of Software Engineering

Research, ACM (2010), 17–22.

[7] Bencomo, N., Sawyer, P., Blair, G.S., and Grace, P.

Dynamically Adaptive Systems are Product Lines too: Using

Model-Driven Techniques to Capture Dynamic Variability of

Adaptive Systems. Proceedings of the 12th International

Conference on Software Product Lines, Lero Int. Science

Centre, University of Limerick (2008), 23–32.

[8] Blouin, A. and Beaudoux, O. Improving Modularity and

Usability of Interactive Systems with Malai. Proceedings of

the 2nd ACM SIGCHI Symposium on Engineering Interactive

Computing Systems, ACM (2010), 115–124.

[9] Blouin, A., Morin, B., Beaudoux, O., Nain, G., Albers, P.,

and Jézéquel, J.-M. Combining Aspect-Oriented Modeling

with Property-Based Reasoning to Improve User Interface

Adaptation. Proceedings of the 3rd ACM SIGCHI

Symposium on Engineering Interactive Computing Systems,

ACM (2011), 85–94.

[10] Blumendorf, M., Lehmann, G., and Albayrak, S. Bridging

Models and Systems at Runtime to Build Adaptive User

Interfaces. Proceedings of the 2nd ACM SIGCHI Symposium

on Engineering Interactive Computing Systems, ACM

(2010), 9–18.

[11] Blumendorf, M., Lehmann, G., Feuerstack, S., and Albayrak,

S. Executable Models for Human-Computer Interaction.

Interactive Systems. Design, Specification, and Verification,

Springer-Verlag (2008), 238–251.

[12] Botterweck, G. Multi Front-End Engineering. In H.

Hussmann, G. Meixner and D. Zuehlke, eds., Model-Driven

Development of Advanced User Interfaces. Springer (2011),

27–42.

[13] Calvary, G., Coutaz, J., Dâassi, O., Balme, L., and Demeure,

A. Towards a New Generation of Widgets for Supporting

Software Plasticity: The “Comet.” In R. Bastide, P. Palanque

and J. Roth, eds., Engineering Human Computer Interaction

and Interactive Systems. Springer (2005), 306–324.

[14] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,

Bouillon, L., and Vanderdonckt, J. A Unifying Reference

Framework for Multi-Target User Interfaces. Interacting with

Computers 15, Elsevier (2003), 289–308.

[15] Carroll, J.M. and Carrithers, C. Training Wheels in a User

Interface. Communications of the ACM 27, 8, ACM (1984),

800–806.

[16] Cheng, B.H.C., Lemos, R., Giese, H., et al. Software

Engineering for Self-Adaptive Systems: A Research

Roadmap. In B.H.C. Cheng, R. Lemos, H. Giese, P. Inverardi

and J. Magee, eds., Software Engineering for Self-Adaptive

Systems. Springer (2009), 1–26.

[17] Clerckx, T., Luyten, K., and Coninx, K. DynaMo-AID: a

Design Process and a Runtime Architecture for Dynamic

Model-Based User Interface Development. In R. Bastide,

P.A. Palanque and J. Roth, eds., Engineering Human

Computer Interaction and Interactive Systems. Springer

(2005), 77–95.

[18] Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., and

Chandramouli, R. Proposed NIST Standard for Role-Based

Access Control. ACM Transactions on Information and

System Security 4, 3 ACM (2001), 224–274.

[19] Findlater, L. and McGrenere, J. Evaluating Reduced-

Functionality Interfaces According to Feature Findability and

Awareness. Proceedings of the 13th International

Conference on Human-Computer Interaction, Springer

(2007), 592–605.

[20] Gajos, K.Z., Weld, D.S., and Wobbrock, J.O. Automatically

Generating Personalized User Interfaces with Supple.

Artificial Intelligence 174, 12-13, Elsevier (2010), 910–950.

[21] Johnson, J. Selectors: Going Beyond User-Interface Widgets.

Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, ACM (1992), 273–279.

[22] Kiczales, G., Lamping, J., Mendhekar, A., et al. Aspect-

Oriented Programming. Proceedings of the European

Conference on Object-Oriented Programming (ECOOP),

Springer (1997), 220–242.

[23] Kramer, J. and Magee, J. Self-Managed Systems: an

Architectural Challenge. Proceedings of the Workshop on the

Future of Software Engineering, IEEE (2007), 259–268.

[24] Lecolinet, E. A Molecular Architecture for Creating

Advanced GUIs. Proceedings of the 16th Annual ACM

Symposium on User Interface Software and Technology,

ACM (2003), 135–144.

[25] Lehmann, G., Rieger, A., Blumendorf, M., and Albayrak, S.

A 3-Layer Architecture for Smart Environment Models.

Proceedings of the 8th Annual IEEE International

Conference on Pervasive Computing and Communications,

IEEE (2010), 636 –641.

[26] Maezawa, Y., Washizaki, H., Tanabe, Y., and Honiden, S.

Automated Verification of Pattern-based Interaction

Invariants in Ajax Applications. Proceedings of 28th

IEEE/ACM International Conference on Automated Software

Engineering, ACM (2013), 158–168.

[27] McGrenere, J., Baecker, R.M., and Booth, K.S. An

Evaluation of a Multiple Interface Design Solution for

Bloated Software. Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, ACM (2002), 164–
170.

[28] Nichols, J., Myers, B.A., and Litwack, K. Improving

Automatic Interface Generation with Smart Templates.

Proceedings of the 9th International Conference on

Intelligent User Interfaces, ACM (2004), 286–288.

[29] Olsen,Jr., D.R. Evaluating User Interface Systems Research.

Proceedings of the 20th ACM SIGCHI Symposium on User

Interface Software and Technology, ACM (2007), 251–258.

[30] Paternò, F., Mancini, C., and Meniconi, S. ConcurTaskTrees:

A Diagrammatic Notation for Specifying Task Models.

Proceedings of the 6th International Conference on Human-

Computer Interaction, Chapman and Hall (1997), 362–369.

[31] Pleuss, A., Botterweck, G., and Dhungana, D. Integrating

Automated Product Derivation and Individual User Interface

Design. Proceedings of the 4th International Workshop on

Variability Modelling of Software-Intensive Systems,

Universitat Duisburg-Essen (2010), 69–76.

[32] Shneiderman, B. Promoting Universal Usability with Multi-

Layer Interface Design. Proceedings of the Conference on

Universal Usability, ACM (2003), 1–8.

[33] Our Demonstration Videos. http://adaptiveui.pierreakiki.com.

[34] Apache Open For Business (OFBiz). http://ofbiz.apache.org/.

[35] How does SAP turn 250 million lines of code into modular

services? http://bit.ly/SAPLinesOfCode.

[36] Lawson Smart Office brings WPF Goodness to the Enterprise.

http://www.youtube.com/watch?v=TnagncUOlVE.

