
Integrating Agile Software Development
and Enterprise Architecture Management

Sebastian Hanschke, Jan Ernsting, Herbert Kuchen

European Research Center for Information Systems (ERCIS)
University of Münster

Email: {sebastianhanschke,jan.ernsting,kuchen}@uni-muenster.de

Abstract

Practitioners consider the focus of Agile Software
Development and Enterprise Architecture Management
as divergent. Following this view, two questions arise
and are answered by this paper: whether and how
agile methods such as Scrum can be used to create
architecture deliverables and how enterprise architects
can collaborate with agile software development teams.
Based on expert interviews in a major German con-
sultancy, a railway company, and an automotive OEM
an integration of the TOGAF ADM and Scrum has
been developed and evaluated following the Design
Science research process. Both questions are answered
by two different procedure models, one to be used on
TOGAF’s Enterprise Strategic and Segment Architecture
Level and another for the Capability Architecture Level.
The first enables the creation of the EA in form of
Scrum projects. The second focuses on the necessary
collaboration of empowered implementation teams with
a central EA function.

1. Introduction

Although professionals are already trying to combine

both Agile Software Development (ASD) and Enterprise

Architecture Management (EAM), this combination has

to the authors’ knowledge been barely researched so

far (cf. [1, p. 324]). According to Breivold et al. “it

is hard to conclude neither that agile and architecture

is like oil and water, nor that the two are the perfect

marriage” [2, p. 36]). As such, EAM is not assumed

by ASD and vice versa [3, p. 56f.]. Yet, the two “can

be combined in a fruitful manner” [4, p. 3].

Integration approaches typically answer either of

two questions: Whether and how can agile methods

such as Scrum [5] be used to create architecture

deliverables? How can enterprise architects collaborate

with agile software development teams? Highlighting

the importance of this collaboration, our paper focuses

on both and contributes an integration of The Open

Group Architecture Framework (TOGAF) [6] as an

example of a EAM framework and Scrum, representing

an ASD approach, to fill this gap. Due to their wide

dispersion and thus relevance in practice [7, p. 2],

TOGAF and Scrum have been chosen. Overall, the

proposed integration offers an unprecedented level of

detail and deals with the divergent focuses of ASD

and EAM, e.g. short vs. long-term goals, bottom-up

vs. top-down perspectives, single system vs. system

landscape, etc. (cf. [8, p. 68]).

To answer the above questions, two research methods

are combined. This paper follows the Design Science

(DS) research process [9]. The knowledge required

in some of the steps of the DS process was gathered

by means of semi-structured interviews, which allow a

rather flexible course of discussion. These interviews are

characterised by openly formulated questions that serve

as an orientation, to which interviewees can answer

rather freely [10, p. 156]. They were conducted with

EA and software development experts of a consultancy,

a railway company, and an automotive OEM. Thus,

problems that the integration has to overcome can be

identified. In the subsequent phase, identified problems

are used to derive objectives of a solution, based on

which a concrete solution is developed. This solution

was iteratively improved based on the Design and

Development phase interviews. As the introduction of

an integrated method would require a large investment

in terms of money and time, and as effects are rather

hard to measure, the Demonstration and Evaluation

phases are replaced by several in-depth discussions of

the final integration proposal with the experts.

First, we describe basic concepts of EAM and ASD.

In Section 3 the integration is developed following the

DS process. Next, we provide an overview of existing

approaches. Finally, the conclusion summarises our

findings and discusses future work.

2015 48th Hawaii International Conference on System Sciences

1530-1605/15 $31.00 © 2015 IEEE

DOI 10.1109/HICSS.2015.492

4099

Table 1. Phases of the TOGAF ADM [6, pp. 10f.]

Phase Description

Preliminary Phase Preparation and initiation activities necessary to setup the Architecture Capability including
customisation of TOGAF and definition of Architecture Principles, usually only carried out once

A: Architecture Vision Initial phase of an architecture development cycle:
Definition of scope, identification of stakeholders, creation of the Architecture Vision, obtainment
of stakeholder approval to proceed

B: Business Architecture Development of Business Architecture to support the agreed Architecture Vision

C: Information Systems Architecture Development of Information Systems Architecture to support the agreed Architecture Vision (i.e.
Data and Application Architectures)

D: Technology Architecture Development of Technology Architecture to support the agreed Architecture Vision

E: Opportunities & Solutions Initial implementation planning and identification of ways to deliver the architecture defined in the
previous phases

F: Migration Planning Detailed Implementation and Migration Plan to move from Baseline to Target Architectures
(Transition Architectures)

G: Implementation Governance Architectural oversight of the implementation, governance function

H: Architecture Change Mgmt. Procedures for managing change to the architecture

Requirements Mgmt. Continuous process of managing architecture requirements throughout the ADM, influences
activities/results of each of the eight main phases

2. Background

2.1. Enterprise Architecture Management

Although there is no agreement on a definition of

the term Enterprise Architecture (EA) [11, p. 113], the

definition by Lankhorst is widely-used and appropriate

within the context of this paper. According to [12,

p. 11], EA can be defined as “a coherent whole of

principles, methods, and models that are used in the

design and realization of an enterprises organizational

structure, business processes, information systems,

and infrastructure”. EAM is a holistic approach to

continuously control and plan the development and the

implementation of a company’s EA which seeks to en-

sure that the company’s goals and strategy are reflected

in both business and IT. EAM enables operational,

tactical, and strategic planning and does, consequently,

not only look at the current As-Is architecture, but also

gathers requirements of the different stakeholders with

regard to the To-Be architecture. Despite the modelling

of the EA, EAM also covers the management of the

application portfolio and the IT infrastructure, as well

as the monitoring of the project portfolio and each of

its projects.

EA frameworks such as TOGAF or the Zachman

Framework aim to ease the otherwise rather challenging

execution of EAM [13, p. 205]. For example, the

frameworks help with the design and establishment

of EAM processes, e.g. to enable the effective and

efficient creation of architecture models at an adequate

level of detail [14, p. 65]. TOGAF itself consist of seven

main parts, the Introduction, Architecture Development

Method (ADM), ADM Guidelines and Techniques,

Architecture Content Framework (ACF), Enterprise

Continuum (EC), Architecture Reference Models, and

the Architecture Capability Framework. Although all

of these parts are meant to work together, it is, due to

this modular structure, possible to select only parts, e.g.

to incrementally adopt TOGAF or to merge parts of

TOGAF into self-developed frameworks [6, p. 5]. It is

thus possible that the integration described in Section 3

of this paper is limited to the ADM.

The ADM is the core of TOGAF. It is a holistic,

step-by-step approach to develop an EA on different

levels of detail, i.e. Enterprise Strategic, Segment, and

Capability Architectures. The ADM consists of eight

plus two phases, which are, apart from the usually non-

recurring Preliminary and the continuously executed

Requirements Management phase, enumerated from A

to H (see Table 1). Although the graphical description

of the ADM (see upper right of Figure 2) gives the

impression that it is sequential, the ADM is iterative

over all, within, and between phases. The ADM is

meant to be tailored; steps can be adapted in scope or

level of detail [6, p. 10].

2.2. Agile Software Development

In recent years, software development endeavours

increasingly employ ASD. Its iterative and incremental

nature [15, p. 5302] leads to short feedback loops

resulting in improved stakeholder collaboration and the

ability to deal with changing requirements [16, p. 340].

Scrum is one prominent ASD approach and provides

a well-defined framework [5], [17], which can also

4100

be used in domains such as sales [18]. Through the

interaction of roles, events, and artefacts in the Scrum

life-cycle, a Product Increment is delivered at the end

of each Sprint (see lower half of Figure 2). Each sprint

lasts for a fixed time period of one to four weeks.

During this time period, the team works on a number

of tasks that it has committed to and is not disrupted

from the outside. Not only the sprint, but most activities

are time-boxed, i.e. they are strictly limited to a certain

timespan. Scrum focuses on the use of feedback and

retrospectives to enable continuous improvement. As

Scrum’s roots lie within the empirical process control

and engineering, the process of how the software is

developed during a sprint is not described. Scrum

rather emphasises the cooperation of cross-functional

individuals in small, self-organised teams.

Each member of a Scrum team has one of three

roles, namely Product Owner, Scrum Master, or being

a Development Team Member. The Product Owner

(PO) is held responsible for the product at hand and is

the main collaborator for stakeholders. He continuously

maintains the Product Backlog (PBL) – a list of the

stakeholders’ requirements with regard to the product –

and prioritises its items with respect to their expected

return on investment. Furthermore, the PO accepts or

rejects product increments during the Sprint Review.

The Scrum Master (SM) serves the team and tries

to ensure that they have understood and adhere to

their process. Thus, he may help the PO in creating

succinct PBL Items or remove impediments to the

team. Providing the opportunity for introspection, SMs

typically facilitate the Sprint Retrospective during which

the Scrum team identifies and plans improvements

for the next sprints. Development Team Members are

responsible for creating the Product Increment. It is

defined by the PBL Items that were selected as the

Sprint Backlog during Sprint Planning. Facilitated by

the SM, team members meet to synchronise their

progress and identify impediments in the Daily Scrum.

3. The Integration of TOGAF and Scrum

The integration described in the following is based

on semi-structured interviews [10, p. 156f.] conducted

with experts of a consultancy, a railway company, and

an automotive OEM. Initial ideas for the integration

were discussed in a focus group [10, p. 195f.], before

they were presented to the first interviewee. Each of the

subsequent interviews has been slightly different, as an

updated version of the integration was discussed, while

the pretested interview guidelines remained unchanged.

Two of the five focus group experts also participated

in one of the ten individual interviews. Both the focus

group and the interviews lasted one up to one and

a half hours. According to Flick [10, p. 294f.] these

were recorded to be transcribed and paraphrased by

the interviewer. Next, the paraphrases were reduced

and summarised to generate inputs for the integration

design. Here the final version is presented.

3.1. Problem Identification

First of all, the different focuses of the two methods

hinder their integration, while at the same time showing

that they could clearly complement each other. EAM,

on the one side, takes a rather top-down perspective

directly derived from and even influencing business

goals and strategy. It is used to set long-term goals and

define a roadmap for reaching them. The focus of EAM

is on long-term value. ASD is more likely used on a

project level. It takes a bottom-up perspective, breaks

down requirements into atomic entities, and implements

them in short time-boxes. These short-term planning

horizons enable the dynamic consideration of changing

requirements and reduce the time-to-market. Thereby,

the focus of ASD is on short-term value.

Using Scrum, while keeping an eye on the strategy

and the goals of the overall enterprise, is not easy.

Often teams lose sight of these objectives and try to

achieve a project-specific rather than an enterprise-wide

optimum. This problem may be reinforced by the self-

empowerment. Especially when being used in complex

settings, even ASD does need guidance as it can be

provided by EA(M). Results have to be documented in

detail, e.g. due to regulations or because teams are being

replaced or contracted from external service providers;

yet, ASD does not remove documentation altogether.

Furthermore, due to the fact that Scrum is often used

in pilot projects to develop new products, migration

planning is often not considered. Here, Scrum might

benefit from being enhanced by aspects from TOGAF.

While agile approaches might control or steer too little

and require more goal-orientation, EAM on the other

hand can benefit from becoming more dynamic and

develop a stronger focus on collaboration.

EA is often perceived to be created in an ‘ivory

tower’. There might be truth in this, as substantial effort

is typically required before first results are delivered,

for which the architects withdraw themselves. It does,

however, create a distance between them and project

teams. Thus, mistakes are identified relatively late and

implementation teams often have to await architecture

decisions. Architects are perceived to prevent teams

from doing what they think is best for their project

instead of enabling them to deliver the best possible

solution. In the eyes of agile software developers, EAM

4101

forces to create too much unneeded documentation.

Although TOGAF and other EA frameworks do not

necessarily have to be as static and sequential as they

are in many companies, most of the big transformation

projects relying on them are not perceived to be agile.

Furthermore, EAM and project (portfolio) management

are not as tightly linked as needed. It remains to

be seen how to derive projects from the To-Be IT

landscape and how to ensure architecture compliance

of these implementation projects. Thus, EA(M) might

also benefit from the integration with Scrum.

3.2. Solution Objectives

In general, the solution should enable architects and

software developers alike, to overcome the identified

problems. At least one of the two methods will have

to be adapted. According to the interviewees, TOGAF

is well suited for this, as it is intended to be tailored.

Moreover, premature changes to Scrum are said to

impair its overall effect [19].

On the one hand, the integration should concentrate

on the creation of the EA and its implementation in agile

projects. Thereby, the first objective of the integration

is to combine the different focuses of the two methods.

The integration should enable the definition of long-

term goals for and the concerted development of the

IT landscape, while keeping an eye on the business

strategy and the overall goals of the enterprise. At

the same time it should facilitate adapting the EA to

changing requirements of its stakeholders. On the other

hand, the method should support the identification of

reasonable projects to implement the architecture using

Scrum.

From an enterprise architect’s point of view, the

integrated method is the answer to two questions. First,

how to collaborate with agile software development

teams. Second, taking into consideration the advantages

of ASD, an architect might ask himself whether it can

also be applied in his domain. Thereby, the solution

should not be restricted to the Technical Architecture,

but should be suitable to create the overall EA. In short,

the complete TOGAF ADM should be considered by the

solution. Architecture changes or the current status of

the architecture should regularly be communicated. The

solution should not require spending too much time on

documenting the As-Is architecture, but should enable

to start implementing architecture changes as quickly

as possible. Instead of being driven by projects, the EA

should trigger projects itself. Yet, this should not mean

that projects are handed over a ready-made architecture

for implementation. The EA is responsible for setting

the context of implementation projects. As the EA

Figure 1. Classification Model for Architecture Land-
scape [6, p. 196]

triggers projects which might have interdependencies,

an integrated method has to take care of the project

(portfolio) management and migration planning. During

the execution of the implementation projects, there

should be close collaboration between the architects

and the agile teams. As every architecture deliverable,

which these projects create, is integrated into the overall

EA, an up-to-date overview is created incrementally.

From the point of view of an agile software devel-

opment team, the architecture should not be created by

architects sitting on an ‘ivory tower’. The integration

should rather leverage the knowledge and expertise of

the members of the development teams and leave as

many of the decisions as possible to them. The teams

should therefore be empowered to define solutions on

their own, which have to consider limitations set by the

current and future IT landscape. Apart from enabling

teams to make their own decisions, interaction with the

EA should be enabled. The integration should help to

cross the chasm between the EA and the project teams

and increase the collaboration between them.

3.3. Solution Design & Development

As an integrated approach fulfilling these objectives

could not be found and does not exist according to the

knowledge of the interviewed experts, it is developed

below. Thereby, different levels of granularity on which

architectures are created are distinguished. This paper

follows the distinction proposed by TOGAF, assuming

that architectures are created on three different levels

(see Figure 1). Nevertheless, it assumes that the same

procedure model can be used for the Enterprise Strategic

and the Segment Architecture level.

The goal of the solution is to enable agility on all

of these levels. On the Enterprise Strategic and the

Segment Architecture Level, the proposed procedure

model does thereby have a two-folded focus. On the

one hand, it enables the agile creation of architecture

models and other deliverables. On the other hand, it

empowers the EA function to work together with the

4102

projects implementing this strategy, whenever they have

a need for architecture input. Thereby the architecture

compliance of decisions taken by the teams is ensured.

On these levels, the TOGAF ADM is carried out as

a number of Scrum projects. These Scrum projects

set the framework based on which a detailed overall

architecture can gradually be developed.

On the Capability Architecture Level, Scrum projects

are used to implement architecture changes. As all

interviewees agreed, that Scrum should only be changed

if absolutely necessary, only small adaptations have

been carried out. Thus, on this level, pure Scrum with

connection points to the EA(M) is used. Despite a

close collaboration with the EAM, it is also important

to closely work together with all stakeholders. The

implementation teams should, however, be empowered

to take a large part of the decisions themselves. In doing

so, the teams have to respect limiting factors set by the

overall EA, but still, programmers should be seen as

experts and not as assembly-line workers. The results of

their decisions should directly be incorporated into the

overall architecture. Future projects might benefit from

the fact that they can get a complete and up-to-date

overview of the system landscape among other possible

merits.

3.3.1. Integration on the Enterprise Strategic and
the Segment Architecture Level. On the Enterprise

Strategic or Segment Architecture Level a framework

architecture is created and its refinement and implemen-

tation in vertical cuts through all architecture layers, as

proposed by Scrum, are enabled. Therefore, the TOGAF

ADM is split up into four different Scrum projects.

The Architecture Development Team (ADT) is the

first of these four teams. It consists of an Architecture

Product Owner (APO), an Architecture Scrum Mas-

ter, and further Business, Information Systems, and

Technology Architects as team members. As the name

suggests, the ADT is responsible for developing the

EA. It does thereby take care of the phases A to D and

the Requirements Management phase of the TOGAF

ADM (see Figure 2).

The Architecture Vision, which can be compared to

the Product Vision of Scrum, is the starting point of

the architecture development. It is developed by the

APO along with the business management and directly

represents the business strategy. As in Scrum, the

Architecture Product Owner is commissioned with the

development of the architecture according to this vision

by the management. He starts to derive requirements, on

the one hand from the Architecture Vision, and, on the

other hand, by talking to stakeholders, gathering their

expectations and needs with respect to the architecture.

For the Requirements Management an Architecture

Product Backlog (APBL) and User Stories are used,

which are prioritised by the APO. The team does

then select a certain amount of the highest-rated

stories to work on during the sprint. Depending on the

selected Architecture Product Backlog Item, Business

Architecture, Information Systems, and/or Technology

Architecture deliverables are created.

As the Implementation Teams are empowered Scrum

teams, it is important not to pre-specify too much of

the Capability Architecture on this level. Especially

with respect to Information Systems and Technology

Architecture, decisions on the upper levels should only

be of strategic nature, e.g. with respect to standards

or requiring long-term investments. Concrete, technical

decisions are however taken by the technical experts

in the Implementation Teams. As every architectural

decision and every architecture deliverable created by

these teams is sent back to the EA and incorporated

into the overall architecture, a complete and up-to-date

picture of the EA is created incrementally.

Especially when there is more than one ADT, the

second type of Scrum teams, the Portfolio Management

Team (PMT), becomes relevant. It fulfils the objectives

of the Opportunities and Solutions and the Migration

Planning phase of the TOGAF ADM (see Figure 2). The

team is thereby responsible for keeping an overview of

the various changes to the architecture that are planned

by the different ADTs, resolving potential conflicts, and

combining changes into projects. This separate team of

portfolio management experts performs its tasks parallel

to the architecture work (see Subsubsection 3.3.3). To

get an idea of what the different ADTs are working on,

the PO of the PMT meets with all APO in the Team

of Product Owners (see Figure 2).

The PMT does then create an initial version of

the Product Vision and the Product Backlog for each

Implementation Team. These PBL contain architecture

requirements that the team has to fulfil, e.g. inter-

faces that have to be implemented as well as items

roughly describing the functionality to be implemented.

Whenever such a PBL is ready for implementation, e.g.

whenever the value of items is big enough to justify

the commissioning of an Implementation Team, a new

implementation project is triggered.

With the Implementation Teams being the third, the

Architecture Change Management Team is the fourth

type of Scrum teams. This separate Scrum team looking

for trends, new technologies, or business models that

require Architecture Change is however outside of the

focus of this paper, which is on the development and

implementation of the architecture.

4103

Figure 2. Overview of the Integration

3.3.2. Integration on the Capability Architecture
Level. During the Implementation Governance phase

the Implementation Team (ImplT) starts to develop the

product according to the PBL and the Product Vision

assigned to it. On this level, Scrum, only extended by

interaction points with the EA, is used. During the

implementation project three situations might occur:

• Architecture Deliverables might be required or

created by the Implementation Team,

• Architecture Compliance should be checked, or

• Impediments might be caused by the EA function.

Whenever an Architecture Deliverable is required

or created, the team should think about the nature

of the deliverable. If a decision is product-specific,

i.e. it does not have an effect on systems outside

of the project’s scope, and the team wants to use a

standard technology, the empowered ImplT takes the

decision itself. Every architecture deliverable created

to document this decision is sent to the EA function

to be included into the overall architecture. Whenever

a team feels that a decision might have an impact

on the overall EA or whenever the team requires

further information about the system landscape it is

obliged to contact the EA. Whenever the EA function is

contacted and asked for architectural input, they create

an Architecture Product Backlog Item. As the APO

knows, that the ImplT needs this input to move on, he

usually assigns a high priority to this item. In order

to be able to use the architectural input provided, but

also create documentation that can be incorporated into

4104

the overall architecture and can be re-used by other

teams, architectural knowledge in the Scrum team is

essential. Therefore, each team should at least have one

Architecture Expert.

This demand or the creation of architecture deliv-

erables can occur at different points of time in the

Scrum lifecycle. Whenever a Product Backlog Item is

selected or worked on, the team might have the need for

clarification with regard to the EA. Furthermore, it does

in some cases make sense to have the architects prepare

a User Story from an architectural point of view before

it is selected. Otherwise, impediments might result

from the fact that teams have to wait for architecture

decisions or else the number of architects has to be

very high to ensure a short response time. In this case,

the PBL Item might however still be discarded, so that

the architects would perform unnecessary work. This

preparation should therefore only be carried out for

PBL Items with a very high complexity and a high

likelihood of realisation in one of the next sprints.

Each of the ImplT’s decisions is documented in form

of architecture deliverables which are sent to the ADT

to be incorporated into the overall EA. The Architecture

Compliance of these decisions should however be

checked before. This does already happen during the

sprint, typically supported by advanced tool-support.

Decisions of the team might then be automatically

reported to the responsible architects, could directly be

checked, and – if necessary – an alternative might be

suggested. Furthermore, an architect might take part in

the Sprint Review and confirm the architecture compli-

ance to the PO, the customer, and other stakeholders.

The intense collaboration between ADTs and ImplTs

can lead to Impediments. If an ADT is under high

workload when an architecture deliverable is requested,

it might be unable to directly provide the necessary

information. This is an impediment, as the team has

to wait due to an external factor. As Scrum suggests,

it is the responsibility of the Scrum Master of the

ImplT to make sure that this impediment is cleared

away. Therefore, he might, for example, make sure,

that a higher priority is assigned to this APBL Item,

see whether the information can also be provided by

another Architecture Team, etc.

3.3.3. Pipelining. Apart from the ad hoc collaboration,

which has been described above, it is important to

understand how sprints of the different teams are

interconnected. Therefore, the concept of pipelining

is used. The Architecture Development Team and the

Portfolio Management Team start one sprint ahead of

the Implementation Team (depending on the level of

detail at which the EA is already documented more

sprints might be required). Although the PMT does of

course depend on the concrete design decisions taken

by the ADT, they should be able to do their work

in parallel. The results of these two teams are then

handed to a number of ImplTs. While these teams

work on the implementation, the ADTs and the PMT

can already prepare the next architecture changes to be

implemented.

As with pure software development teams working

together using pipelining, problems arise when an ImplT

does not manage to finish its work on time, e.g. because

of a problem with the architecture that the ADT has

designed. In this situation, rework or rectifications

are required. As the Sprint Backlog of the ADT can

however not be changed, a new APBL Item has to wait

for the next sprint. One solution for this is a very short

sprint length of the ADT.

This pipelining is supported by personal cooperation,

meaning that members of each team are encouraged

to regularly take part in the Daily Scrum of other

teams they work with. Furthermore, an Architecture

Community is established, to stimulate the exchange

between people dealing with the EA.

3.4. Demonstration & Evaluation

The demonstration of the above integration would

take several years. Therefore, demonstration could not

be completely carried out, yet. Instead, the solution

was presented to the interviewees as well as in several

presentations and discussions.

Overall, the interviewees considered it promising to

apply Scrum to areas other than software development

and are looking forward to see, whether the integration,

and especially the collaboration between EA and ASD,

is going to work in practice. On the one hand, the EA

(among other business functions) can thereby be closer

aligned with agile projects. On the other hand, the EA

function itself strives to become more agile, i.e. flexible

and may be quicker to react. This last prospect of the EA

becoming less cumbersome and creating results more

quickly was neglected by some of the experts. They did

however agree that single steps of the TOGAF ADM

could benefit from increased agility. The integration

would lead to a better prioritisation of the architecture

deliverables to be created and would thus enable a

directed, more purposeful EA. The idea of identifying

an analogue of the product in software development

in the EA and thus the integration presented in the

previous chapter was seen as “the right way” to do so.

According to the experts, it makes sense to have the

EA teams trigger implementation projects.

4105

Although the final version of the integration was

well received by all interview partners, the experts

did also point out potential problems. Handing down

predetermined PBLs to Implementation Teams can be

problematic. It remains to be seen, whether POs of

these teams automatically prioritise these predetermined

PBL Items in a way that ensures their implementation.

Furthermore, as described above, the combination of

Scrum’s time-boxes and the concept of pipelining was

considered to be a potential issue. Instead of working

with short sprint-lengths, other (agile) methods, e.g.

Portfolio Kanban [20] might therefore be better suited

to be used on the more strategic layer. Approaches

such as S-BPM [21] might help to render the phases

B-D even more agile. Apart from these problems, there

are a number of limitations and possible extensions,

which should be overcome or at least thought of before

the integration is introduced. From the authors’ point

of view considering the rest of TOGAF is the most

interesting of these extensions. So far, the solution

focuses on the active design of the EA. Furthermore,

tools to support the integration should be developed or

existing tools adapted.

4. Existing Approaches

When differentiating the above integration from

existing approaches, it is worthwhile to consider the

problems that such an integration has to overcome (cf.

Subsection 3.1). Preparatory discussions with experts

who have a background in EAM, ASD, or both

hinted towards few existing integration approaches. Our

literature research confirmed the experts’ propositions.

Breivold et al. [2] provide an overview of the few

scientific sources. Similar to Buckl et al. [1], we do in

the following consider non-scientific sources such as

white papers or blog discussions due to their valuable

contributions.

Instead of describing actual approaches, the majority

of papers dealing with ASD and (Enterprise) Architec-

ture focus on discussing their differences or similarities

and the resulting challenges for an integration [22]–[24].

Buckl et al. [1] discuss the agility of current approaches.

According to Yaghoubi and Babanezhad [25, p. 36],

approaches either focus on the use of architecture in

agile methods or try to make the creation of architecture

work more agile. Consequently, approaches can be

distinguished in those based on ASD (i.e. Scrum or

another ASD method are extended by aspects of EAM)

and approaches based on EA(M) (i.e. trying to enable

a higher agility when using an EA(M) framework). In

the following, a brief overview is given and notable

approaches are presented.

4.1. Approaches based on ASD

Typically, ASD approaches such as Scrum, Extreme

Programming [26], etc. have to be extended to enable

the consideration of architecture [27], [3, p. 57]. These

approaches are usually limited to software architecture,

i.e. the architecture of the product being built. They do

not consider the full software development life-cycle

(SDLC) and often neglect the risk or consequences of

failing to deliver large enterprise projects [28, pp. XVII

& XXI].

Examples of more advanced approaches are the

pattern based process for agile architectural modelling

[29] and the proposal to use an Architecture Abstract

Specification [30].

Open Unified Process (OpenUP), the Dynamic Sys-

tem Development Method (DSDM), and Disciplined

Agile Delivery (DAD) [31, p. 10f.] are samples that

take EA one step further and do so by combining

practices from several core agile methods. With regard

to EA, DAD already includes some of the required

elements, e.g. the Architecture Owner role [28, p. 80],

which can be thought of as a PO of the architecture (cf.

Subsubsection 3.3.1). Although DAD can, according

to its developers, easily be tailored to fit to the overall

EA(M), no details on how to do this could be found.

Ambler and Lines [28, p. 1] advise that advanced

approaches should no longer limit themselves to small,

co-located teams. Dealing with larger teams or other-

wise complicated settings, e.g. due to geographical

distribution, regulation, complexity of the project,

outsourcing, or legacy systems, should rather be the

norm. They “recognize a basic need in enterprises for

a level of rigor that core agile methods dismiss as not

required such as governance, architectural planning, and

modelling” [28, p. 2]. Ambler [32] highlights that EA

should be business-driven, evolutionary, collaborative,

focused on producing valuable artefacts, and an explicit

part of overall delivery process.

4.2. Approaches based on EAM

Buckl et al. [1] and Edwards [33] investigate Scrum’s

applicability to EAM or the efficient management of

the activities of an EA practice. Apart from these, every

publication that we found focuses on TOGAF.

Edwards [34] identifies problems of TOGAF, e.g. that

the ADM is perceived to be a serial process, and argues

how these problems can be addressed on a conceptual

level, without however proposing a usable solution.

Alali [35] describes a mapping between TOGAF and

ASD, which is however limited to the phases G and H

of the ADM and thus focuses on governance metrics.

4106

He does however hint at the different cycle times of

TOGAF and Scrum as a potential problem. Ismail

[36] proposes to use Scrum in Phases E to G, i.e.

preparing and executing the implementation work, but

also acknowledges a requirements gathering mismatch.

Apart from these rather general concepts or integra-

tion approaches which are limited to a subset of TOGAF

phases, we found two approaches that consider the

complete TOGAF ADM. The Benefits Led Enterprise

Architecture Method (BLEAM) [37] is an agile EA

framework based on TOGAF. At closer inspection

though, the authors do only describe a TOGAF tailoring.

Bombosch [38] stresses the importance of culture

for an integration of architecture and agile software

development, e.g. he considers communication and the

wisdom of crowds to be crucial. To him architecture

should create a framework within which agile imple-

mentation teams navigate rather than providing specific

programming instructions. Using TOGAF and Scrum

he sketches an integration that is only described in a

general way and lacks distinctions between the different

levels at which architectures are created.

The approaches we found so far put a strong focus on

EA(M) or ASD, which is then extended by aspects of

the other. However, the approaches lack specific details

on how the interaction between EA(M) and ASD teams

should work in practice.

5. Conclusions & Future Work

Despite the fact that the idea to integrate ASD and

(enterprise) architecture is not entirely new, existing

approaches usually focus on software development.

Only a few approaches starting on the EA level could

be found. None of them does, however, try to enable the

agile creation of the EA while at the same time focusing

on the collaboration with agile development teams.

As the developed integration answers two different

questions – whether and how agile methods, i.e. Scrum

can be used to create architecture deliverables and how

enterprise architects can collaborate with agile software

development teams – it is thus unique and overcomes

one of the main shortcomings of existing approaches.

Instead of gradually extending Scrum by more and more

aspects, two different procedure models, one to be used

on the Enterprise Strategic and Segment Architecture

Level and another for the Capability Architecture

Level, are proposed. The integration does hence benefit

from the broad range of topics covered by TOGAF,

e.g. the portfolio management or the consideration of

innovations requiring architecture change.

Besides its advantages, we are aware that our inte-

gration possesses certain limitations, which at the same

time offers pivots for future work. As the integration

is entirely based on expert interviews, it would be

interesting to see how far the solution adheres to or

can be backed up by ideas and concepts from existing

approaches. Often the interviewees proposed distinctive

possibilities to overcome a specific problem. Should any

shortcomings of the solution be revealed when applying

it in practice, these alternatives should be considered.

In the end, it is this application of the integration (i.e.

the Demonstration and Evaluation of the DS process)

that has to prove, whether it fulfils the objectives stated

in Subsection 3.2 and whether concepts from Scrum are

useful for EA(M). First steps towards this integration

have been taken at the participating automotive OEM,

the results of which the authors look forward to present

in the form of a case study. Future work should also

focus on providing additional cases in comparison.

Acknowledgements

This paper has been written in cooperation with

Detecon International GmbH, Germany. In particular

we would like to thank Mr Philip Peters and Mr Frank

Dräger for the continuous support and fruitful exchange.

References

[1] S. Buckl, F. Matthes, I. Monahov, S. Roth, C. Schulz,
and C. M. Schweda, “Towards an agile design of
the enterprise architecture management function,” in
EDOCW. IEEE Computer Society, 2011, pp. 322–329.

[2] H. P. Breivold, D. Sundmark, P. Wallin, and S. Larsson,
“What does research say about agile and architecture?”
in ICSEA. IEEE Computer Society, 2010, pp. 32–37.

[3] M. M. Lankhorst and H. A. Proper, “Agile architecture,”
in Agile Service Development: Combining Adaptive
Methods and Flexible Solutions, M. M. Lankhorst, Ed.
Springer, 2012, pp. 41–57.

[4] M. M. Lankhorst, W. P. M. Janssen, H. A. Proper, and
M. W. A. Steen, “Introducing agile service development,”
in Agile Service Development: Combining Adaptive
Methods and Flexible Solutions, M. M. Lankhorst, Ed.
Springer, 2012, pp. 1–15.

[5] J. Sutherland and K. Schwaber, “The scrum guide,” 2013
[cited 2014-06-11], https://www.scrum.org/Portals/0/
Documents/Scrum%20Guides/2013/Scrum-Guide.pdf.

[6] “The Open Group Architecture Framework
(TOGAF) Version 9.1,” 2011 [cited 2013-12-03],
https://www2.opengroup.org/ogsys/jsp/publications/
PublicationDetails.jsp?catalogno=I112.

[7] D. West, T. Grant, M. Gerush, and D. D’Silva, Agile De-
velopment: Mainstream Adoption Has Changed Agility.
Forrester Research, 2010.

4107

[8] B. W. Boehm, “Get ready for agile methods, with care,”
IEEE Computer, vol. 35, no. 1, pp. 64–69, 2002.

[9] K. Peffers, T. Tuunanen, M. A. Rothenberger, and
S. Chatterjee, “A design science research methodology
for information systems research,” JMIS, vol. 24, no. 3,
pp. 45–77, 2008.

[10] U. Flick, An Introduction to Qualitative Research, 4th ed.
SAGE Publications Ltd, 2009.

[11] S. Buckl, F. Matthes, and C. M. Schweda, “A technique
for annotating ea information models with goals,” in
EOMAS, ser. LNBIP, vol. 63. Springer, 2010, pp. 113–
127.

[12] M. Lankhorst, Enterprise Architecture at Work: Mod-
elling, Communication and Analysis, 2nd ed. Springer,
2009.

[13] F. Ahlemann, E. Stettiner, M. Messerschmidt, and
C. Legner, Eds., Strategic Enterprise Architecture
Management: Challenges, Best Practices, and Future
Developments. Springer, 2012.

[14] M. Op’t Land, E. Proper, M. Waage, J. Cloo, and
C. Steghuis, Enterprise Architecture: Creating Value
by Informed Governance. Springer, 2009.

[15] S. Dyck and T. A. Majchrzak, “Identifying common
characteristics in fundamental, integrated, and agile
software development methodologies,” in HICSS. IEEE
Computer Society, 2012, pp. 5299–5308.

[16] K. Conboy, “Agility from first principles: Reconstructing
the concept of agility in information systems develop-
ment,” ISR, vol. 20, no. 3, pp. 329–354, 2009.

[17] M. Cohn, Succeeding with Agile: Software Development
Using Scrum. Addison Wesley, 2009.

[18] R. van Solingen, J. Sutherland, and D. de Waard, “Scrum
in sales: How to improve account management and sales
processes,” in AGILE. IEEE Computer Society, 2011,
pp. 284–288.

[19] K. Schwaber, “Waterfall, lean/kanban, and scrum,” 2010
[cited 2014-06-11], http://kenschwaber.wordpress.com/
2010/06/10/waterfall-leankanban-and-scrum-2/.

[20] D. J. Anderson, Kanban: Successful Evolutionary
Change for Your Technology Business. Blue Hole
Press, 2010.

[21] A. Fleischmann, “What is s-bpm?” in S-BPM ONE, ser.
CCIS, vol. 85. Springer, 2009, pp. 85–106.

[22] Z. Amiri, “Challenges and weaknesses of agile method
in enterprise architecture,” IJCSES, vol. 3, no. 6, pp.
37–45, 2012.

[23] E. Richardson, “What an agile architect can learn from a
hurricane meteorologist,” IEEE Software, vol. 28, no. 6,
pp. 9–12, 2011.

[24] J. Watson, M. Rosen, and K. Guenther, “Are agile
methods and enterprise architecture compatible? yes,
with effort,” Cutter Consortium, vol. 6, no. 11, pp. 1–
25, 2005.

[25] M. Yaghoubi and M. Babanezhad, “Software developing
with agile methods and combination of architecture,”
IJCA, vol. 65, no. 19, pp. 33–37, 2013.

[26] K. Beck and C. Andres, Extreme Programming Ex-
plained: Embrace Change, 2nd ed. Addison Wesley,
2004.

[27] J. Grundy, “Architecture vs agile: competition or co-
operation?” in Agile Software Architecture: Aligning
Agile Processes and Software Architectures, M. A.
Babar, A. W. Brown, K. Koskimies, and I. Mistrik,
Eds. Morgan Kaufmann, 2013, pp. XXI–XXVII.

[28] M. W. Lines and S. Ambler, Disciplined Agile Delivery:
A Practitioner’s Guide to Agile Software Delivery in
the Enterprise. IBM Press, 2012.

[29] Z. Durdik, “Architectural modelling in agile methods,”
in WCOP, 2010, pp. 23–30.

[30] I. Hadar and S. Sherman, “Software architecture process
in agile development methodologies,” in Information
Systems (ILAIS) Conference, 2012, pp. 78–85.

[31] S. Ambler, “Ibm agility@scale: Become as
agile as you can be,” 2009 [cited 2014-06-01],
https://www14.software.ibm.com/iwm/web/cc/imc/
rational/papers/Agility at scale.pdf.

[32] ——, “Agility@scale: Strategies for scaling ag-
ile software development,” 2010 [cited 2013-12-
12], https://www.ibm.com/developerworks/community/
blogs/ambler/entry/agile and enterprise architecture.

[33] C. Edwards, “Scrum based enterprise architecture
planning process,” 2007 [cited 2013-11-03], http:
//www.agileea.com/Whitepapers/2007-04-01-AEA
SCRUM based EA Planning Process.pdf.

[34] ——, “Agile enterprise architecture,” 2006 [cited
2013-11-03], http://www.agileea.com/Whitepapers/
2006-12-14-AgileEnterpriseArchitectureV1.00-Part1.
pdf.

[35] E. Alali, “Agile software development
under togaf,” 2013 [cited 2013-11-03],
http://goadingtheitgeek.blogspot.de/2013/02/
agile-software-development-under-togaf.html.

[36] N. Ismail, “Togaf and scrum... where next,” 2010
[cited 2013-11-03], http://naeemis.blogspot.de/2010/12/
togaf-and-scrumwhere-next-prelimanary.html.

[37] Enterprise Architects Ltd, “Benefits led enterprise ar-
chitecture method (bleam),” 2010 [cited 2013-11-03],
http://www.enterprisearchitects.eu/ea/bleam.

[38] U. Bombosch, “Agilitaet trotz komplexer architek-
turen,” 2012 [cited 2013-11-03], http://jaxenter.de/
artikel/Agilitaet-trotz-komplexer-Architekturen.

4108

