
Integrating Animations Into Courses

Susan H. Rodger1

Duke University

Durham, North Carolina 27708-0129 USA

rodger@cs.duke.edu

ABSTRACT

This paper describes two ways we have inte-

grated algorithm animations into several com-

puter science courses. First, we use previ-

ously existing animations during lectures to aid

in explaining algorithms, and second, our stu-

dents write programs with animations. Dif-

ferent types of animations are written depend-

ing on the level of the student. Students who

have never programmed before construct sim-

ple animations using an interpreted language,

and more advanced students write sophisticated

animation programs that are compiled.

1 INTRODUCTION

For most people, an animation of an algorithm is
easier to understand than a textual or pictorial pre-
sentation of the algorithm. In an animation, key ob-
jects are drawn, visually showing their relationships,
but furthermore, as the algorithm proceeds, changes in
the objects and their relationships are shown through
their movement. Animations of algorithms also make it
easier to debug programs. If a program's output is an
animation, the program's correctness is visually clear.
For example, objects moving the wrong direction not
only indicate a problem, but show what the problem is.

In this paper we describe how we have integrated
algorithm animations into several computer science
courses. Sections 2 and 3 describe how we have used
animations in our courses, during lecture and outside of
lecture. In Section 4 we describe Xtango[6], a tool for
writing algorithm animations, and in Section 5 we dis-
cuss the types of animations students at di�erent levels
can write using Xtango. Section 6 gives an example
of how we use algorithm animation in our introductory

computer science course, and in Section 7 we give con-
cluding remarks.

2 PRESENTATION IN LECTURES

We show animations of algorithms during lecture us-
ing a computer connected to either a projector or a dis-
play panel. An animation aids in both explaining and
analyzing an algorithm.

Showing an animation while explaining an algorithm
provides a complete picture, making it easier for stu-
dents to fully understand the algorithm. Trying to ani-
mate an algorithm on a blackboard or overhead projec-
tor usually ends up in a partial picture, and a mess of
erasures and overwrites. A computer animation of an
algorithm allows one to neatly show the complete pic-
ture from start to �nish. We control the speed of the
animation, quickly moving over stages that are easy
to understand in order to reach the more complicated
stages, and showing these in slow motion. Pausing at
a stage allows the class to discuss what just happened,
and to allow students time to think about what will
happen in the next stage.

Showing several animations of an algorithms on dif-
ferent inputs illustrates how the algorithm will behave
in di�erent cases, and aids in analyzing the running
time of the algorithm. For example, we show an an-
imation of the average behavior of quicksort on a set
of data that usually partitions roughly in the middle,
and then show the worst case behavior on a set of data
in reverse sorted order, which shows that the partition
element reduces the size of the partition by one each
time.

3 EXPLORATION OUTSIDE OF CLASS

Our students use animations outside of class to ex-
plore algorithms at their own pace. Students recreate
animations from the same data �les used in class, view-
ing them repeatedly until they understand them. Fur-
thermore, students run animations on arbitrary inputs,

1Supported in part by the National Science Foundation's Di-

vision of Undergraduate Education through grant DUE-9596002.

The author's web address is http://www.cs.duke.edu/�rodger

allowing them to see how the algorithm processes dif-
ferent cases. For example, insertions in a red-black tree
(a balanced binary search tree) are complex and di�-
cult for many students to understand. Using an anima-
tion, students predict how the insertion will a�ect the
tree, enter the next value to insert, and then observe
the animation to check their prediction. If a predic-
tion is incorrect, they will know immediately and are
more likely to seek help. This contrasts with traditional
homework assignments in which students do not receive
feedback until days later. This particular animation is
used heavily right before exam time.

4 CREATING XTANGO ANIMATIONS

There are many ways to create animations. One
can start from scratch at a low level using X windows,
Motif, tcl/Tk or some other windowing tool. Alter-
natively, special tools have been created speci�cally to
generate algorithm animations, including Xtango [6],
Zeus[2], and more recently Java[3]. This paper fo-
cuses on Xtango, which we have used extensively in
our courses [4]. There are two ways to create an ani-
mation in Xtango, writing a program that is compiled,
or generating animator commands that are interpreted.

Xtango programs are written in C using X windows
and the Xtango library. In the Xtango framework, a
user creates images, such as rectangles and circles, and
applies transitions to them, such as moving or coloring
an image. In more sophisticated animations, multiple
images are manipulated simultaneously. Although the
Xtango library simpli�es the creation of animations, it
is too complex for beginner programmers. The Xtango
package comes with over 50 animations of elegant al-
gorithms and data structures for computer science that
are created in this manner.

One can also use Xtango to create animations by
sending high-level commands to an interpretor called
the animator. A one line command is used for either
creation or movement. However, this approach is more
limited than the other method as only one image at a
time can be created or moved. The animator is typ-
ically used for creating animations quickly, by having
the algorithm (program) output animator commands.

5 LEVELS OF ANIMATION CREATION

This section describes the types of Xtango programs
written by students in computer science courses at var-
ious levels. Although using the Xtango animator is ap-
propriate for creating quick animations by students in
all computer science courses, it is best to hide the de-
tails of the animations in beginning courses. In con-
trast, students in upper level or project courses write
more sophisticated animations by writing Xtango pro-
grams.

The animator is easy to use, even for students who
have never programmed. In a half day activity we
ran for high school students who mostly had not pro-
grammed before [5], students entered animator com-
mands into a �le and then fed the input to the ani-
mator. By following instructions on a handout, stu-
dents created a tra�c light that changed colors (from
red to green to yellow, and then back to red), a road and
moving cars. The cars came up to the stop light and
stopped at the red light, the light turned green, and the
cars zipped through. At this point the students were
free to either extend this animation or create another
animation. Extensions students came up with included
crashing cars, ambulances, intersections, hills, moun-
tains, and story lines.

Although the animator is easy to use as shown
above, we have found that beginning programmers
struggling with the syntax of a language become eas-
ily confused when they have both language error mes-
sages mixed in with animator error messages. Thus,
in CPS 6, our �rst computer science course, students
use C++ classes that automatically generate animator
commands, rather than generating the animator com-
mands themselves, allowing them to use the animator
without also learning how to program it. An example
animation of a hot air balloon is described in detail in
the next section.

In CPS 100, our second computer science course,
students create animations by writing C++ programs
whose output is animator commands. In one project,
students created a binary tree of integers and then con-
verted the tree into a min-heap by swapping the appro-
priate values. The di�culty in this assignment was the
layout of the binary tree.

For project courses and independent study courses
students write Xtango programs. For example, one stu-
dent developed a two-view animation for dynamically
maintaining maximal points in the x-y plane (a compu-
tational geometry problem) showing the data structure
in the top view and points in the x-y plane in the bot-
tom view. Using a mouse one could insert a point in
the bottom view and the change in the data structure
would be animated in the top view. Every node and
edge that needs to be moved, moves at the same time,
for a smooth animation.

6 EXAMPLE ANIMATION IN CS 1

This section illustrates how we converted one pro-
gram with textual output into an animated program
in CPS 6, the �rst computer science course at Duke.
In this course, students learn to use C++ classes early
on. The �rst class we introduce is the Balloon class in
[1]. Students create a hot air balloon, and make the
balloon rise, cruise, and descend. Below is a sample
Balloon program that does this.

main()

{

Balloon exxon;

int rise; // how high to fly (meters)

int duration; // how long to cruise (seconds)

cout << "How high (in meters) to rise: ";

cin >> rise;

cout << "How long (in seconds) to cruise: ";

cin >> duration;

exxon.Ascend(rise); // ascend to specified height

exxon.Cruise(duration); // cruise for specified time-steps

exxon.Descend(0); // come to earth

}

When this program is run, students see textual in-
formation describing the current status of the balloon.
In ascending, messages are printed every 10 meters as
burning occurs to make the balloon rise to the speci-
�ed height. In cruising, messages are printed each time
step with additional random messages occuring as wind
shear forces the balloon to suddenly rise or drop. In de-
scending, messages are printed every 10 meters as air is
released. A sample run is shown below.

How high (in meters) to rise: 60

How long (in seconds) to cruise: 14

***** (Height = 0) Ascending to 60 meters *****

0 meters Burn! ...

10 meters Burn! ...

20 meters Burn! ...

30 meters Burn! ...

40 meters Burn! ...

50 meters Burn! ...

***** Cruising at 60 meters with margin +/- 5 for 14 time-steps *****

60 meters (time step 0)

60 meters (time step 1) wind-shear drop 5 meters

55 meters (time step 2)

55 meters (time step 3)

55 meters (time step 4)

55 meters (time step 5)

55 meters (time step 6)

55 meters (time step 7) wind-shear drop 3 meters too low! Burn! ...

62 meters (time step 8) wind-shear bump up 4 meters too high! Woooosh!

56 meters (time step 9) wind-shear bump up 1 meters

57 meters (time step 10) wind-shear bump up 3 meters

60 meters (time step 11) wind-shear bump up 3 meters

63 meters (time step 12) wind-shear bump up 3 meters too high! Woooosh!

56 meters (time step 13)

***** (Height = 56) Descending to 0 meters *****

56 meters Woooosh!

46 meters Woooosh!

36 meters Woooosh!

26 meters Woooosh!

16 meters Woooosh!

6 meters Woooosh!

Manipulating one balloon and understanding the re-
sults is straightforward for most students; however, if
two or more balloons are created, the reading of the
output becomes tedious and students get frustrated.

As a result, we created an animated version of the
program above using the Xtango animator. The main
function is exactly the same as above, but now the
member functions in the class generate animator com-
mands, which animate the balloon.

The animation starts by showing the sun, grass and a
balloon (dark circle) resting in the grass on the bottom
right side. Calling the Ascend function makes the bal-
loon rise, calling the Cruise function makes the balloon
move to the right (random wind shear may make the
balloon bounce around), and Descend makes the bal-
loon descend. In Figure 1 the dark circle in the left top
region is the balloon, which has risen from the ground
and started cruising to the right.

Figure 1: Balloon Animation

With the animated balloon, it is easy to see when
a program is incorrect because the balloon moves in a
wrong direction or not at all. More complex programs
are also easier to debug when using the animator. One
extension our students did was to simulate a balloon
race. They created several balloons (each new balloon
is automatically a di�erent color) that rose to di�erent
heights, and then randomly moved 1-4 positions to the
right over and over again. The winner of the balloon
race was clearly seen.

7 CONCLUSION

Animations provide an alternative view of algo-
rithms that is often easier to understand. Thus, we
show animations in our lectures to explain algorithms
by showing complete examples, and to analyze the al-
gorithms. For the same reason, our students write ani-
mations, which provides them with visual feedback on
correctness.

8 REFERENCES

[1] O. Astrachan, A Computer Science Tapestry: Ex-

ploring Programming and Computer Science with C++,

McGraw-Hill, 1996.
[2] M. Brown, ZEUS: A System for algorithm anima-

tion and multi-view editing. Proceedings of the IEEE

1991 Workshop on Visual Languages, p. 4-9, Kobe,
Japan, Oct. 1991.

[3] T. Ritchey, Java!, New Riders Publishing, Indi-
anapolis, Indiana, 1995.

[4] S. Rodger, An Interactive Lecture Approach to
Teaching Computer Science, Proceedings of the Twenty-
sixth SIGCSE Technical Symposium on Computer Sci-

ence Education, p.278-282, 1995.
[5] S. Rodger, and E. Walker, Activities to Attract

High School Girls to Computer Science, Proceedings of
the Twenty-seventh SIGCSE Technical Symposium on

Computer Science Education, p.373-377, 1996.
[6] J. Stasko, Tango: A Framework and System for

Algorithm Animation, IEEE Computer, p.27-39, Sept.
1990.

