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ABSTRACT

In this paper, we propose a novel framework to integrate artic-

ulatory features (AFs) into HMM- based ASR system. This is

achieved by using posterior probabilities of different AFs (esti-

mated by multilayer perceptrons) directly as observation features

in Kullback-Leibler divergence based HMM (KL-HMM) system.

On the TIMIT phoneme recognition task, the proposed framework

yields a phoneme recognition accuracy of 72.4% which is compara-

ble to KL-HMM system using posterior probabilities of phonemes

as features (72.7%). Furthermore, a best performance of 73.5%

phoneme recognition accuracy is achieved by jointly modeling AF

probabilities and phoneme probabilities as features. This shows the

efficacy and flexibility of the proposed approach.

Index Terms— automatic speech recognition, articulatory fea-

tures, phonemes, multilayer perceptrons, Kullback-Leibler diver-

gence based hidden Markov model, posterior probabilities

1. INTRODUCTION

State-of-the-art speech recognition systems typically use phonemes

as sub-word units. Phonological studies suggest that, each phoneme

can be further decomposed into a set of features based on the articu-

lators used to produce the sound, like, manner of articulation, place

of articulation, height of vowel etc. In recent years, articulatory fea-

tures have been used for ASR with the aim of better pronunciation

modeling [1], better co-articulation modeling, robustness to noise

[2], multi-lingual and cross-lingual portability of systems [3]. Auto-

matic speech recognition using articulatory features poses two main

challenges: firstly, estimating articulatory features from the acoustic

signal and secondly, integrating them into the conventional hidden

Markov model (HMM) based framework.

In literature, pattern recognition techniques like multilayer per-

ceptrons (MLPs) [1, 2, 4], support vector machine classifiers (SVMs)

are typically used for the estimation of articulatory features. To in-

tegrate articulatory features into HMM framework they are either,

transformed suitably for use as features in Tandem based speech

recognition systems [1, 2, 5] or converted to phoneme posteriors (by

training another MLP) and used as emission probabilities in hybrid

HMM/MLP based systems [2].

In a more recent work [6], Kullback-Leibler divergence based

hidden Markov model (KL-HMM) is proposed where the posterior
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National Center of Competence in Research (NCCR) on “Interactive Mul-
timodal Information Management” (www.im2.ch). The authors would like
to thank Joel Praveen Pinto for the fruitful discussions on the work and
Guillermo Aradilla for his help with KL-HMM system.

probabilities of phonemes (phoneme posteriors) are directly used as

features and each HMM state is parameterized using a multinomial

posterior distribution. In this work, we use posterior probabilities

of articulatory features (articulatory posteriors) directly as feature

observations in KL-HMM (Section 2). This approach may enable

the efficient use of articulatory features in multi-lingual and cross-

lingual speech recognition systems, since no transformations or con-

versions are applied on them.

The phoneme recognition task on the TIMIT database is used

to evaluate the system (Section 3). We investigate, two different

MLP based approaches to estimate articulatory posteriors. In the

first approach, independent MLP classifiers are trained using only

spectral features (Section 4). In the second approach, we model the

dependencies between different articulatory features using a multi-

stage/hierarchical MLP classifier framework (Section 5). Our stud-

ies show that, the KL-HMM system using articulatory posteriors es-

timated from the first approach yields phoneme recognition accuracy

worse than the KL-HMM system using phoneme posteriors (67.4%

vs. 69.6%). However, the KL-HMM system using articulatory pos-

teriors estimated from the second approach yields phoneme recog-

nition accuracy comparable to the system using phoneme posteri-

ors estimated from hierarchical MLP classifier (72.4% vs. 72.7%).

Furthermore, jointly modeling articulatory posteriors and phoneme

posteriors by concatenating them yields a phoneme recognition ac-

curacy of 73.5%.

2. KL-HMM ACOUSTIC MODELING

In KL-HMM acoustic modeling [6], posterior probabilities of sub-

word units are directly used as features and the state distribution

is parameterized by a reference multinomial distribution (as shown

in Figure 1). In the original work [6], phonemes are used as sub-

word units and the posterior probabilities of phonemes (phoneme

posteriors) are estimated using MLP. In such a case the posterior

probability feature zt estimated at time frame t using MLP is given

by,

zt = [z1t , · · · , z
D
t ]T = [P (/aa/|xt), · · · , P (/zh/|xt)]

T
(1)

where, D is the number of phoneme classes and xt is input feature

given to the MLP. The KL divergence between the multinomial state

distribution yi and posterior probability feature zt is defined as the

local matching score for each state,

KL(yi, zt) =
D∑

d=1

yd
i log(

yd
i

zdt
) (2)
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Fig. 1. A three state KL-HMM acoustic model for a phoneme

The multinomial state distributions are estimated using Viterbi

expectation maximization algorithm with a cost function based on

the KL divergence [6]. Decoding is performed in the usual man-

ner, i.e., Viterbi decoding. By directly using posterior probabilities

of sub-word units as features, the outputs of MLP are no more tied

to HMM states as in hybrid HMM/MLP, thus providing the flexi-

bility in terms of the choice of posterior feature space without any

change in the state representation. In this work, we exploit the flexi-

bility to choose posterior feature space by using posterior probabili-

ties of different articulatory features as feature observations (in place

of phoneme posteriors). More specifically, this is done by stacking

the posterior estimates of different articulatory features in a single

feature observation vector (articulatory posteriors) as shown below,

zt = [zmanner
t , · · · , zheightt ]T , where, (3)

z
manner
t = [P (fric|xt), · · · , P (vowel|xt)]

T

z
height
t = [P (low|xt), · · · , P (high|xt)]

T

In this case, the reference multinomial state distribution yi is also a

stack of multinomial distributions i.e.,

yi = [yDm

i , · · · ,y
Dh

i ]T , where, (4)

y
Dm

i = [y1

i , · · · , y
Dm

i ]T

y
Dh

i = [y1

i , · · · , y
Dh

i ]T

where, Dm is the cardinality of the manner class and Dh is the car-

dinality of the height class. The principle advantage of modeling

articulatory posteriors using KL-HMM is that, it provides a frame-

work to treat the articulatory posteriors jointly, with out the need to

transform them as done in [1, 2].

3. EXPERIMENTAL SETUP

TIMIT acoustic-phonetic corpus is used for all the experiments (ex-

cluding the SA sentences). The partitioning of the database as speci-

fied in the TIMIT corpus is used. The data consists of 3,000 training

utterances from 375 speakers, 696 cross-validation utterances from

87 speakers, and 1,344 test utterances from 168 speakers. The 61

hand labeled phonetic symbols are mapped to set of 39 phonemes

with an additional garbage class [7].

The experimental setup is exactly same as the one described in

[8]. All the MLPs (for phoneme posterior and articulatory posterior

estimation) use the PLP cepstral coefficients with a context window

of 9 frames as input. The first 13 PLP coefficients are extracted

with a frame size of 25ms and a frame shift of 10ms. These coef-

ficients are mean and variance normalized, and are appended with

delta, delta-delta derivatives to obtain a 39 dimensional feature vec-

tor.

The output classes of the MLP estimating phoneme posteriors,

represent the 40 phonemes. The targets of articulatory features for

MLP training are obtained from the phoneme to articulatory feature

map given in [9]. The articulatory features consist of manner, place,

height, front-back, rounding, glottal state, nasality and vowel, also

given in Table 2 along with their cardinality.

The size of the hidden layer of all the MLPs is determined by

fixing the total number of parameters to 35% of the training data

following the previous work [8]. The articulatory posteriors and

phoneme posteriors are estimated from MLP trained using ICSI

Quicknet software1.

In [6], it is shown that hybrid HMM/MLP is a special case of

KL-HMM when the state multinomial distributions are delta distri-

butions (i.e., each output unit of MLP is tied to a HMM state). In

this work, we build a similar hybrid HMM/MLP system where artic-

ulatory posteriors are used as features and the state distributions are

replaced with delta distributions obtained using phoneme to articula-

tory feature map. It is to be noted that this hybrid HMM/MLP system

is different from the one used in [2], where articulatory posteriors are

converted to phoneme posteriors and are used as emission probabili-

ties in HMM. All the experiments are based on context-independent

phoneme sub-word units, where each sub-word unit is represented

by a 3 state left-to-right HMM.

4. BASELINE STUDIES

Table 2 shows the articulatory feature classification accuracy of eight

articulatory features (first stage classification accuracies in the three-

stage MLP classifier) along with their cardinality and chance rates

calculated on the cross-validation data. Chance rate is calculated as

the accuracy obtained by choosing the most common label value in

the reference data [1].

In this section, we present baseline phoneme recognition studies

on KL-HMM and hybrid HMM/MLP systems using two different

features:

• base-ph: Phoneme posteriors estimated using MLP.

• base-af : Articulatory posteriors estimated using a set of

MLPs.

Table 1 presents the phoneme recognition accuracies of the

above systems on the test set of TIMIT database. The KL-HMM

system performs slightly better than the hybrid HMM/MLP system

using both phoneme posteriors and articulatory posteriors. Also,

recognition accuracy of the KL-HMM system using phoneme pos-

teriors is higher than the system using articulatory posteriors (2.2%

absolute). In the next section, we propose to estimate the articu-

latory posteriors by modeling the dependencies between articulatory

features and using longer temporal contextual information in a multi-

stage MLP framework.

5. MULTI-STAGE MLP ARTICULATORY FEATURE

CLASSIFIER

In the previous section, articulatory features are independently mod-

eled by training an MLP for each articulatory feature. Typically,

many of the earlier articulatory feature recognition studies have

treated them independently [2], [5], i.e., a independent classifier

is trained for each articulatory feature. In [4], it has been shown

1http://www.icsi.berkeley.edu/Speech/qn.html



Features
System

KL-HMM Hybrid HMM/MLP

base-ph 69.6 69.3

base-af 67.4 66.8

Table 1. Phoneme recognition accuracy expressed in percentage on

the TIMIT test set, using phoneme posteriors and articulatory poste-

riors in KL-HMM and hybrid HMM/MLP systems
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Fig. 2. Multi-stage MLP classifiers for articulatory posterior estima-

tion

that the performance of place feature can be improved by training

manner specific place classifiers. In [10], an approach to model

inter-feature dependencies was studied using dynamic Bayesian net-

works (DBNs). This approach showed improvements in articulatory

feature classification compared to an equivalent system where they

were treated independently. Motivated from the previous studies [4],

[10], and the hierarchical MLP framework [8], we investigate a novel

multi-stage MLP classifier based approach to model the inter-feature

dependencies of articulatory features.

The proposed multi-stage MLP classifier based approach for ar-

ticulatory feature recognition consist of three stages as shown in the

Figure 2 (referred as three-stage MLP classifiers). In the first stage,

a set of parallel MLPs are used to estimate articulatory posteriors for

the eight articulatory features. Each MLP receives PLP features as

input and is trained to classify a specific articulatory feature (Stage 1

in Figure 2). This is the baseline system used to estimate articulatory

posteriors in the previous section.

In the second stage, to model the temporal contextual informa-

tion of articulatory features, a new set of MLPs are trained using

articulatory posteriors estimated by the first stage of MLPs as input,

with longer temporal context (Stage 2 in Figure 2). The width of

the temporal context is fixed at 17 frames, following the results in

[8], where it was found that phoneme recognition accuracy saturates

at around 170 ms. We can expect that, the second stage of MLPs

learn the articulatory feature confusions at the output of first stage

of MLPs and model the phonotactics of a language (phonological

constraints), both at a individual articulatory feature level [8].

In the third stage, to model the inter-feature dependencies of ar-

ticulatory features, articulatory posteriors estimated from Stage 2,

are used as input to next stage of MLPs, along with the information

of other articulatory features (Stage 3 in Figure 2). It is to be noted

that, though the number of MLPs used to extract articulatory poste-

riors have increased, no additional data (apart from TIMIT) is used,

also the MLPs at all stages are trained for the same targets.

We also consider a modified case of the multi-stage MLPs where

Stage 2 in Figure 2 is omitted, consequently, Stage 1 is followed by

Stage 2. This set of MLPs (referred to as two-stage MLP classifiers)

are built to ascertain the importance of temporal contextual modeling

and inter-feature dependencies of articulatory features.
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9 frames MLP1 MLP2

posteriors
Phoneme

posteriors
Phoneme

context

17 frame

Fig. 3. Hierarchical MLP classifier for phoneme posterior estimation

5.1. Articulatory feature classification

Table 2 compares the articulatory feature classification accuracy of

the three-stage MLP classifiers at different stages. From the ta-

ble, we see that both the contextual information and information of

other articulatory features contribute towards improvements. How-

ever, classification accuracy benefits more when both the contextual

information and inter-feature dependencies are modelled in Stage

3 compared to Stage 2, when only contextual information is mod-

elled. This is further verified in the two-stage MLP classifiers, which

achieve the classification accuracy very close to the three-stage MLP

classifiers for most of the articulatory features.

Three-stage MLPs Two-

Articulatory Cardi- Chance First Second Third stage

class nality rates stage stage stage MLPs

Manner 8 34.1 86.0 86.3 88.1 88.1

Glottal state 5 61.6 92.9 93.4 94.6 94.5

Nasality 4 77.9 96.0 96.2 96.8 96.8

Place 11 34.1 86.3 87.5 88.5 88.5

Height 9 47.7 82.5 83.1 85.5 85.1

Frontedness 8 47.7 84.2 84.6 87.1 86.6

Rounding 4 65.8 89.9 90.2 92.5 91.9

Vowel 22 47.7 81.3 83.0 84.1 84.5

Table 2. Articulatory feature classification accuracy expressed in

percentage on the TIMIT development set, using three-stage and

two-stage MLP classifiers

5.2. Phoneme recognition studies

In this section, we present the phoneme recognition studies using

the articulatory posteriors estimated from multi-stage MLP classi-

fiers. To compare similar systems, phoneme posteriors are also es-

timated using hierarchical MLP classifier as described in [8], also

shown in Figure 3. We compare two systems, KL-HMM and hybrid

HMM/MLP using three different features:

1. hier-ph: Phoneme posteriors estimated from hierarchical

MLP classifier of Figure 3.

2. 3-stage-af : Articulatory posteriors estimated from three-

stage MLP classifiers of Figure 2.

3. 2-stage-af : Articulatory posteriors estimated from two-stage

MLP classifiers.

Table 3 shows that, multi-stage MLP classifiers for posterior es-

timation help in improving the phoneme recognition accuracy of

both the articulatory and phoneme posterior based systems. How-

ever, articulatory posteriors achieve an absolute improvement of

5.0%, where as phoneme posteriors achieve an absolute improve-

ment of 3.1% compared to their respective baselines. It is worth

noting that the performance gap between systems using hierarchical

phoneme posteriors and multi-stage articulatory posteriors is only

0.2% (as opposed to 2.2% on the baselines). The three-stage artic-

ulatory posterior based system is slightly better than the two-stage



articulatory posterior based system. Also, it is interesting to note

that the hybrid HMM/MLP system using articulatory posteriors per-

forms slightly better than the system using phoneme posteriors (71.9

vs. 71.6).

Features
System

KL-HMM Hybrid HMM/MLP

hier-ph 72.7 71.6

3-stage-af 72.4 71.9

2-stage-af 72.0 71.8

Table 3. Phoneme recognition accuracy expressed in percentage on

the TIMIT test set, using phoneme posteriors and articulatory poste-

riors estimated using multi-stage MLP classifiers in KL-HMM and

hybrid HMM/MLP systems

In [10], a DBN framework was proposed to model the inter-

feature dependencies of articulatory features. The dependencies be-

tween different articulatory features were hierarchically organized

and related uni-directionally, i.e., place feature is conditioned on

the manner feature but not vice versa. Moreover, the dependen-

cies were determined manually. We used the same set of depen-

dencies for articulatory features specified in [10], but modelled them

using MLP classifiers. The resulting articulatory posteriors when in-

tegrated into the KL-HMM system resulted in phoneme recognition

accuracy of 70.4%. The result shows improvement over the equiv-

alent KL-HMM system where the dependencies are not modelled

(67.4%), but, is significantly lower than the proposed multi-stage

MLP based approach (72.4%), where the relations between articu-

latory features are mutually modelled (place feature is conditioned

on manner feature and vice versa). This indicates that, it is better

to model the dependencies between articulatory features mutually

rather than uni-directionally.

The key strength of KL-HMM lies in its ability to incorpo-

rate posteriors estimated using different methods. The hierarchi-

cal phoneme posteriors (hier-ph) and three-stage articulatory pos-

teriors (3-stage-af ) are concatenated and used as features in KL-

HMM. Similarly, the baseline posteriors (base-ph and base-af ) are

concatenated and used as features in KL-HMM. Table 4 shows the

results of these experiments. The increase in recognition accuracy

of the system using combined baseline posteriors is not significant

compared to phoneme posterior based system. However, the com-

bined multi-stage posteriors show increase in recognition accuracy

over their corresponding single feature systems. This indicates that

the information learned through contextual modeling in posterior do-

main and articulatory domain is complementary. Similar trends were

observed in [5], where phoneme and articulatory posteriors are mod-

elled using conditional random fields for phoneme recognition.

Features Accuracy

base-ph + base-af 69.8

hier-ph + 3-stage-af 73.5

Table 4. Phoneme recognition accuracy expressed in percentage on

the TIMIT test set, using phoneme posteriors appended with articu-

latory posteriors as features in KL-HMM system

6. CONCLUSION

In this paper, we proposed a novel framework using KL-HMM to in-

tegrate directly articulatory feature probabilities for ASR. Our stud-

ies showed that by modeling the inter-feature dependencies between

articulatory features, phoneme recognition accuracy similar to the

use of phoneme probabilities in KL-HMM can be achieved. Fur-

thermore, we demonstrated the flexibility of the proposed approach

by jointly modeling articulatory feature probabilities and phoneme

probabilities which yielded the best phoneme recognition accuracy

of 73.5%. Future work includes investigating the proposed frame-

work on continuous speech recognition, and investigating alternate

ways to model dependencies between articulatory features such as

using multi-tasking learning [11].
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