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ABSTRACT Smartgrid is a paradigm that was introduced into the conventional electricity network to
enhance the way generation, transmission, and distribution networks interrelate. It involves the use of
Information and Communication Technology (ICT) and other solution in fault and intrusion detection,
mere monitoring of energy generation, transmission, and distribution. However, on one hand, the actual
and earlier smartgrid, do not integrate more advanced features such as automatic decision making, security,
scalability, self-healing and awareness, real-time monitoring, cross-layer compatibility, etc. On the other
hand, the emergence of the digitalization of the communication infrastructure to support the economic sector
which among them are energy generation and distribution grid with Artificial Intelligence (AI) and large-
scale Machine to Machine (M2M) communication. With the future Massive Internet of Things (MIoT) as
one of the pillars of 5G/6G network factory, it is the enabler to support the next generation smart grid by
providing the needed platform that integrates, in addition to the communication infrastructure, the AI and IoT
support, providing a multitenant system. This paper aim at presenting a comprehensive review of next smart
grid research trends and technological background, discuss a futuristic next-generation smart grid driven
by artificial intelligence (AI) and leverage by IoT and 5G. In addition, it discusses the challenges of next-
generation smart-grids as it relate to the integration of AI, IoT and 5G for better smart grid architecture.
Also, proffers possible solutions to some of the challenges and standards to support this novel trend.
A corresponding future work will dwell on the implementation of the discussed integration of AI, IoT and
5G for next-generation smart grid, using Matlab, NS2/NS3, Open-daylight and Mininet as soft tools and
compare with related literature.

INDEX TERMS 5G, artificial intelligence (AI), Internet of Things (IoT), next-generation smartgrid, network
slicing.

I. INTRODUCTION
Digitilization has transformed our current world through the
introduction of disruptive technologies such as IoT, artifi-
cial intelligence, and 5G just to mention a few [1]–[3]. The
application of these technologies into the ecosystem has given
birth to a more robust intelligent models with unequal capac-
ity and functionalities. To this end, it finds applications in
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smart cities, smart factories, smartgrid, etc. Although, these
applications require higher data rates and huge bandwidth
but delivers increased capacity, low latency, and high spectral
efficiency. On one hand, the IoT centric concepts like smart
wireless sensor network (SWSN), vehicle to vehicle (V2V),
nano-communications, machine to machine (M2M), smart
environment, e-health care, have an ubiquitous presence cur-
rently. Moreover, IoT has transformed the our ecosystem
by providing seamless connectivity between heterogeneous
sensor networks. For smartgrid, the ultimate aim of IoT is to
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introduce the plug and play strategy by providing the end-
user, ease of operation, remote access control configurability,
and scalability [3], [4].

Since digitization prompted the workforce to migrate from
the old-fashioned and manual way to automation and intel-
ligence, AI/ML on the other hand, attempt to demonstrate
the natural intelligence of humans for efficiency. This intel-
ligence is needed in the design of the next-generation smart
grid which involves a lot of accurate decision making based
parameters, and the ability to cognitively adjust to past and
present environmental changes within the grid [4], [5]. For
instance, the next-generation smart grid should be able to,
through its machine learning algorithm, learn the patterns
of activities within grid such as real-time monitoring and
detection of faults with the corresponding solution without
human interference. This will in turn make humans focus
more on what is called the ‘‘second skill’’. The second skill
implies those abilities that an AI machine may not be able to
carry out. For instance, autonomously identifying problems
within the grid infrastructure and developing algorithms to
solve them. In addition, for every system to go smart, it means
it is connectable to the internet. This implies that securing the
grid is paramount hence AI/ML are necessary for the securing
of the smart grid especially hidden (masking) patterns of a
cyber-attack [6].

It is generally misunderstood that cyber-threats merely
emanates from cyber-attacker or hacktivist with a mis-
chievous intention. Personnel within the grid infrastructure
can sabotage the security protocol/process hence present a
risk since they have legitimate access to several components
of the grid and are aware of sensitive information and their
location. For instance, passwords, cryptologic keys and others
defence tools stored in grid database could be compromised
to coordinate an attack [7]. Nevertheless, very few security
breaches are mischievous, several of which emanates from
unintended misalignment, to adhere to specific guideline and
procedures. Power grid vulnerability could be in the form of
system-level threats, theft attempts to electric service, and
compromise of data privacy. Furthermore, every proposed
model has building blocks that make up the system and are
connected by an enabler [8]. Thus, in this paper, the enabler
is the fifth generation (5G) network since it supports the
integration of AI and IoT (Artificial Intelligence of Things
or AIoT) for the enhancement of the current smartgrid which
is the focus of this review.

The main attribute of 5G technology stands with the con-
cept of hardware-agnostic aspect, virtualization at a different
level from access level, transport and core network to the
orchestration at a different level, making use of different
cutting edge technologies such as the SDN and NFV on the
cloud-based platform. Therefore next-generation smart grid
is not only a new paradigm, built to respond to the growing
demand on the network capacities but rather a network slice
within the 5G/6G networks thus, makes it different from all
other generations of the cellular network. In plain context,
the idea of a next-generation smart grid integrates several

technologies, customer-driven solutions and speaks to var-
ious strategies and business models with the digitalization
of infrastructures toward the delivery of electricity network
performance, control and optimize systematically with full
interoperability [7]. The highlights and the problem state-
ments of this work is predicated on the premises of enhancing
or upgrading the current smartgrid to a more robust next
generation smart grid (future grid) through the integration of
disruptive technologies such as artificial intelligence, Internet
of Things and 5G which are prime mover of the fourth
industrial revolution. To be specific, since grid components
(feeders, substations, sensors, control center etc.) can be
interconnected via IoT then, it possible to infuse AI into
those components to make them truly intelligent. Secondly,
since current mobile network are facing spectrum crunch and
scarcity, then, 5G network slicing (multi-tenanting of service)
will be handy to solve that issue.

Without ambiguity, several literatures [9]–[10] have made
good attempt to integrate other disruptive technologies like
block chain and AI to enable 5G IoT. Infact, the relationship
between our solution and past literature like [9] and [10] is
that both try to enhance the functionalities and performance
and the contemporary challenge (security, interoperability,
privacy, programmability scalability) of the current smart grid
however, this review work is specific in the application of
these technologies on smart grid. Blockchain could be very
important when issue of security and privacy is the cardinal
point of the work but in this regards the 5G SDN with multi-
controller is considered. Therefore, the major contributions
of this paper are as follows:
a) To provide a holistic review of the smartgrid concept and

the future trend.
b) Discuss the integration of AI, IoT and 5G for the next

generation smartgrid.
c) Discuss a road map on how the next generation smart grid

will look like in terms of architecture, design, compliance,
and compatibility.

d) Bring to the know the benefits of integrating disruptive
technologies like AI, IoT and 5G for the next generation
smartgrid.

e) Give a detailed examination and exposition of 5G network
slicing as it relates to the next-generation smart grid.

f) Discuss the possible challenges of this integration and
proffer possible solutions.
The rest of the paper is organized as follows: Evolu-

tion from the classical grid to the next generation smartgrid
is captured in Section II. Section III discussed AI/ML for
next-generation smart grid. Section IV dwells on the IoT
in the smart grid, Section V, looked at 5G as an enabler
for next-generation smartgrid while section VI presents the
architecture for the next generation smartgrid. Section VII
discussed the challenges and solutions of the next gener-
ation smartgrid. Section VIII present the prospect of AI
on next-generation smartgrid. The limitation of the survey
is found in Section IX and finally, the paper is concluded
in section X.
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II. EVOLUTION FROM CLASSICAL GRID TO
NEXT-GENERATION SMART GRID
Electricity grid design has evolved over the decades. The
section presents a chronological evolution of existing to the
present smartgrid.

A. CLASSICAL GRID
The power utility grid has come a long way from the classical
configuration which is hardwired to semi-automatic network
as shown in figure. 1 and 2. Currently, grid design has scaled
up to a full smart network with a future projection of a
software-driven grid that integrates AI, IoT and is powered by
5Gwhich this paper is discussing. The present power grid is a
response to rapid industrialization and infrastructural growth
in several parts of the globe in the last decades. However,
power grid exists in different topographies, the power-utility
corporations have largely implemented similar technologies.
The growth of the electric power system, though, has been
affected by fiscal, partisan, and terrestrial issues that are
exclusive to each utility company [8]. Despite such vari-
ances, the architectural component of the current grid has
remained unchanged. from inception, the energy industry
has functioned with clear distinctions between its generation,
transmission, and distribution subsystems and consequently
has formed diverse planes of automation, progression, and
transformation in all phases [11]. From Figure 1 and 2 the
existing power grid is an absolute hierarchical architecture
where power plants located at the uppermost part of the
value chain ensures power distribution to customers at the
bottommost of the value chain. The scheme is fundamentally
a simplex-pipeline kind of interaction where the source been
the central generation has no real-time information about
the facility constraints of the transmission and distribution
respectively.

The grid is hence completely hard-wired (mechanically
operated) to withstand maximum estimated peak demand
across its combined load. Subsequently, since the peak
demand is an occasional occurrence, the system is inherently
ineffective. Furthermore, an unprecedented increase in the
demand for electric power, in addition to the inadequate
financial support in the power grid infrastructure, has miti-
gated system stability. With the tolerant limit reached, any
unanticipated upsurge in demand or irregularities across the
distribution network is it industrialization or urbanization
will result in component collapse could initiation catastrophic
shutdowns. To enable auto-diagnosis and maintenance of
the expensive upstream assets, the power utility corporations
have proposed at several levels, a central controller. An exam-
ple of such is the commonly deployed supervisory control
and data acquisition system. This is a technique that intends
to supervise and self-control field devices (sensors or smart
agents) at your remote sites.

B. SMART GRID
Smart electricity/power grid, also known as; intelligent grid,
intelligent, advanced grid or inter grid, is an improvement of

FIGURE 1. The classical grid block diagram [7], [8], [12].

FIGURE 2. A classical grid [12].

the twentieth-century energy grid. The conventional energy
grids as shown in figures 1 and 2 are mostly used to convey
electricity from a central generator to a large number of users,
or customers/consumers.

To be precise, The idea of a smart grid implies the switch-
ing from the conventional power grid that is an electrome-
chanically controlled network to a more digitally system that
is automated with distributed control as illustrated in figure 3.
figure 3 also shows the metering part of the distribution
network which has been the focus of most latest infrastruc-
ture investment. The previous plans in this sector witnessed
the initiation of automated meter reading (AMR) schemes
in the distribution network. AMR allows the utility compa-
nies to read the utilization data, warnings/alarms, and sta-
tus from customers premises equipment remotely [13], [14].
The report in [15], indicate that the smart grid comprises
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FIGURE 3. The evolution from the traditional grid to nextgeneration
smart grid [12].

control technologies, sensor field devices that function to
coordinate multiple electrical activities, information/network
management, electronic-based sensing and communication
technologies. These smart grid technologies and capabilities
have altered the traditional grid architecture and operation
challenges in three key parts, mostly in the capacity to; firstly,
monitor and measure processes, transmit information back to
management and control centres through a feedback mech-
anism and frequently respond automatically to fine-tune the
response as shown in figure 4 and 5. Secondly, share infor-
mation between field devices and systems. Lastly, process,
evaluate, and support operators gain access to and utilize the
information which comes from the automated technologies
all through the power grid. Several of the associated problem
areas in smart grids are; load predicting and balancing grid
reliability evaluation, fault detection and monitoring, and
grid security from cyber attacks. These crucial elements are
permitting substantial volumes of high dimensional multi-
class data to be collated regarding the electric grid activities
and operations. Nevertheless, there are several drawbacks
associate with the conventional optimization, modeling, and
control techniques. Therefore, the incorporation of artificial
intelligence (AI) and machine learning techniques into the
smart grid turn out to be more obvious [16].

Considering the number of challenges that the current
smart grid has presented or faced over the few years of
its existence, couple with ICT at the edge, issues such as
absolute compatibility of equipment or devices, interfacing
with the cloud seamlessly, data security and privacy, inter-
net protocol compatible devices and applications, rise in
energy consumption due to population explosion and indus-
trialization, the introduction of programmable/intelligent sen-
sors, deployment AI/ML for apt control with precision like
real-time monitoring, decision and analysis just to mention

FIGURE 4. Functional diagram of the smart grid.

FIGURE 5. Smart grid architecture overview [15].

a few. There is a need to look into the future for the ‘‘Next
Generation Smart Grid (NGSG)’’ that will be software-driven
and powered by the next generation network like 5G.

The next-generation smart grid also called the future grid
was not only born out of advancing science and engineering
or solving the challenges of the current smart grid but investor
and investment push which in turn solve problems [11]. The
beauty of NGSG network architecture is that it incorporates
some advancements made in the course of the current smart
grid. The trajectory in figure 6 suggests the advance meter
reading (AMR) scheme appears to be at first attractive in
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FIGURE 6. Trajectory from the old fashioned grid to the proposed next generation smart grid.

terms of functionality and investment. However, power utility
companies have realized that AMR does not address some
of the major challenges that are needed to solve the demand
side of management [15], [16]. As a result of its simplex
communication exchange architecture, the AMR ability is
limited to meter reading with any form of data logging. This
limitation does not allow the power utility corporations to
take corrective decisions based on the data collected from
the meters. This implies that the AMR systems hinder the
possible migration to the smart grid, where ubiquitous self-
control and management at all levels from generation to
distribution is a fundamental requirement thus, the AMR
technology did not stand the test of time. Instead of investing
more in AMR, power utilities around the globe shifted in the
direction of advanced metering infrastructure (AMI) which
of course is the first phase of the smart grid as shown in
figure 6. AMI being perceived as smartgrid phase I (semi-
smartgrid), is unique in the sense that it has a distributed
control, with mechanical sensors which help for sensing/
measuring physical quantities and sending them through its
full-duplex communication system to the meter, coupled with
the capability to adjust consumers’ service-level constraints.
Through AMI technology, power utility establishment can
meet their basic targets for capacity management, return on
investment as well as revenue protection [13]. In AMI, utility
companies not only can obtain instantaneous information
about specific and accumulated demand but however they

can also enforce specific limits on energy consumption or
utilization, as well as introduced a variety of revenue gener-
ation models to manage their costs since it is a profit-driven
venture [6], [7]. The advent of AMI signaled a collaborative
push by investors around the world to further enhance the
ever-changing ideas about the smart grid. Furthermore, one of
the key metrics which the power utility corporations employ
in deciding amongst AMI technologies to adopt is if they
will be onward compatible with the proposed next-generation
smart grid technologies and topologies which this paper will
de be dwelling on. The second phase of the smart grid which
will be referred to as full-scale smartgrid (smartgrid-2) will
be more automated than phase I which deploy the AMI tech-
nologies. In this phase, network management is automated,
sensors are not just hard-wired but smart (smart-sensor),
the application is intelligent (customer portal) and the field
devices are supported by the intelligent agent which helps
for precision, monitoring and reporting. In addition, trans-
mission (substation) and distribution are fully automated with
reliable outage and detection response. The current smartgrid
also support load balancing if it notice uneven load on the
generation line [17].

As earlier mentioned, the proposed NGSG will be
software-driven or software-defined. This implies that unlike
the current smart grid, whose sensors are simply smart,
the sensors deployed in the NGSG will be programmable.
In other words, AI is incorporated into the sensors since they
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FIGURE 7. Functional schematic of the next generation smart grid (future grid).

form the foundation on which the IoT will be built. It, there-
fore, means that: (a) sensors within the NGSG can perceive
and make mini-decision with its jurisdiction, (b) from the
AI-controlled management centre which will be unmanned,
a specific IoT sensor can interact or be upgraded with the
latest version of code or isolated if faulty. These unique
features will enable the programmable sensor to interface
with any platform, be it cloud, 5G etc. In addition, unlike
the traditional smart meter found in the customer buildings,
the next-generation smartgrid NGSG will have an AI-meter
installed in all homes, particularly smart homes since rollout
will not be at once. The essence of proposing an AI-meter is
predicated on some factors: firstly, the current smart meter
is not smart as it is commonly assumed since it can not
make micro-decisions like remotely monitoring users con-
sumption level and reporting to the authority or suggesting
which appliance needs to be disconnected to save energy for
the user independently. From the customer end, the current
smart meter used in today’s smartgrid can be hacked by cyber-
criminals by malicious code/bug injection hence security and
data privacy is sure using an AI-oriented meter [18]. From
figure 7, the NGSG do not only use a duplex communica-
tion system that is common to the current smart grid but
a more advanced communication system that is robust, like

network slicing, network function virtualization (NFV) etc.
This implies that only an intelligent network like 5G and
beyond that is software-defined or software-driven with net-
work slicing and NFV capabilities or functionalities can
support the NGSG. From the network or service provider
viewpoint, the choice of 5G as an enabler is not only based
on the fact that it is heterogeneous but also can be supported
by elastic compute clouds (EC2) instances like cloud com-
puting and storage [19]–[21]. These are part of the artifi-
cial intelligence-enabled services which integrates machine
learning, natural language processing and other advanced
technologies. This is the interesting aspect that the NGSG
which we are proposing to replace the current smart grid
will bring to bear. Last, the details of this proposed next-
generation smartgrid will be dissected in the next section of
the paper and the proposed principle of operation will also be
explained. In addition, the network architecture will also be
discussed.

C. NEXTGENERATION SMARTGRID
Figure 7 illustrate the functional schematic of the proposed
next generation smart grid. The proposed futuristic grid illus-
trated in the figure above is made up of eight functional and
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fundamental blocks.Whichwill be explain in this subsections
below.

1) SMART GENERATION
In power system engineering, generation is the key fac-
tor upon which all other components depends on, includ-
ing customer/user experience. There are several models of
power generation which includes the centralized generation
used in the traditional grid system, decentralized generation
employed in the current smart grid model and the micro-
grid/virtual power plant system otherwise known as the smart
generation model proposed for the next generation smartgrid
system as shown in figure 8, 9 and 10.

FIGURE 8. Centralized generation [22].

Centralized generation means a large-scale generation of
power at a centralized facility. This facility is typically sited
away from end-users and connected to a network of high-
voltage transmission lines. The power generated by cen-
tralized generation is distributed through the power grid
to multiple customers. Examples of centralized generation
include thermal power plants, nuclear power plants, hydro-
electric dams, wind farms, etc. Centralized generation is often
unclean, costs are increasing and transmission and distribu-
tion are susceptible to both natural and human disruption [22].
Distributed power generation implies a combination of power
models that generate energy by or close to where it wants
to be utilized, for instance, solar panels and combined thermal
and wind as shown in figure 9. Distributed generation could
serve up a specific building, such as an individual home or
industry. It could also be a part of a microgrid. This model is
handy such that once tied to the customers lower voltage dis-
tribution lines, it can help boost the supply of clean, reliable
energy to other users and lessen power losses along transmis-
sion and distribution lines. However, distributed renewable
are costly and the combined heat and power (CHP) is hardly
optimized [22].

In this paper, smart-generation is presented in two
forms, microgrids and virtual power plants. The microgrid
in figure 10 is a new concept of energy generation engi-
neering. It represents a drastic shift from traditional remote
centralized power plants to a more localized, independent and
intelligent distributed generation especially, in metropolises,
districts, etc.

FIGURE 9. Distributed power generation [17].

FIGURE 10. Smart generation (microgrids) [23].

The ability to smartly detach from the larger grid makes
microgrids robust, flexible and the capacity to conduct con-
current tasks allows delivery of services that make the grid
more sustainable. By islanding or isolating from the grid
in times of crises like a natural disaster or any unantici-
pated occurrence, a microgrid can both continue serving its
included customer when the power grid is down and serve its
neighbouring users by delivering a strategy to sustain critical
services from hosting first respondents and administrative
purposes to offering vital services and backup protection.
Another unique feature of microgrids is that they provide
efficient, affordable, clean energy, boost local resilience, and
enhance the operation and reliability of the regional power
grid. It also delivers dynamic awareness extraordinary for an
energy source [24]. Lastly, smart generation can present itself
as a virtual power plant (VPP) which is a bit different from
microgrids as shown in figure 11. A virtual power plant is
a newer concept proposed for the next generation grid since
it is a cloud-based distributed power plant that aggregates
the capacities of heterogeneous distributed energy resources
to boost power generation, as well as trading power on the
electricity market [24].

Basically, a virtual power plant (VPP) is an aggregation
of distributed generation treated as a unique unit. Usually,
the different entity is in small-scale, however, once
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FIGURE 11. Smart generation (virtual power plants) [25].

aggregated, it becomes significant to deliver and support peak
power demand. Regardless of their various sites, it is easier
to control and harmonize a cluster of low-scale, scattered
energy generating sources using ICT. According to [26], the
idea of VPP is support the bigger utility players with large,
centralized power plants by way of creating new suppliers
with small, distributed power sources connected to create
computer-controlled power network which can be managed
from a grid control centre. Such pool (computer-controlled
power network) can be capable of combine all sources of
energy generation, along with large energy users to operate
as a single supplier. For the convenience of the reader, it is
pertinent to differentiate VPP and microgrid. Firstly, VPPs
are incorporated into the power grid system while microgrids
are normally off grid, and in an on grid setting, it intend to
cut-off (islanded) for it to work autonomously irrespective of
circumstance or state of the grid-like grid experiencing down-
time. Secondly, a VPP is built utilizing resources linked to
any part of the grid, while microgrids are naturally restricted
to a specific location, such as a region. Thirdly, the two
models use different systems for control, operation, and pro-
cedure. VPP is cloud-based and are managed by aggregated
software system, presenting roles meant to emulate those
of a conventional power management center. Microgrids on
the other hand, depend on extra hardware-based inverters
and switches for islanding, on-site power flow and power
quality management. Lastly, an additional variance is the
markets strategy, policy and regulation. VPP are aimed at
wholesale markets and do not usually require specific reg-
ulation whereas, microgrids, in contrast, are more concern
with power supply at customer end [27]. However, to cover
the gap between the wholesale market and end-user, the next-
generation smart grid will be adopting both concepts for
robustness base on their respective advantages.

2) SMART TRANSMISSION LINE
The classical SG is faced with numerous challenges to
effectively convey energy from the generating source to

the customer end. Therefore, a robust real-time monitoring
and detection system is crucial for the pylons, transmission,
and distribution lines. Several advanced methods have been
proposed in the literature that timely and accurately detect
faults [28]. The proposed next-generation smart grid will
have a state of the art smart transmission line [29]. This
implies that the lines are designed/embedded with intelligent
sensors or better put, with programmable sensors as shown
in figure 12. The essence of this kind of concept is to help
for the capturing of first-hand information about the status
of transmission lines in real-time. Also, it will enable the
AI-controlled network management centre to have a grasp
of the entire grid considering the challenges of cable theft
and other vandalization associated with transmission lines
globally. Secondly, since sensors or sensor networks are the
premises upon which IoT is predicated, this approach will
launch the transmission lines to be internet-oriented making
detection and monitoring for the utility companies conve-
nient [30]. Another approach that helps to deepen the smart-
ness of the next-generation smart grid is the installation of
smart agents along the transmission lines. This application,
despite monitoring of transmission line can also serve for
overhead transmission line inspection and maintenance [29].
In a nutshell, the concept of technological approach allows
for two-way communication between the utility and its cus-
tomers, and the intelligent sensing along the transmission
lines is what makes the grid smarter [31].

3) DISTRIBUTED AUTOMATED SUBSTATIONS WITH
INTELLIGENT FEEDERS SYSTEM
This subsection deals with two inextricable characteristics
concepts of the proposed next-generation smartgrid, which
are the distributed automated substations and an intelligent
distributed feeder system that is automated. In other words,
the proposed next generation (future) smart grid can only
be tagged smart when all the components that make it up
are smart. In the same light, this paper is proposing a smart
substation with intelligent distributed feeders for the future
grid. Before this paper proceeds, let us not misunderstand a

FIGURE 12. Smart transmission line with intelligent/programmable
sensors [28].
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FIGURE 13. Advancement in distribution automation [32].

feeder and a transmission line. A feeder transmits power from
generating end or sub-station to the distribution stations.

To be precise, a feeder is a power distribution network
that conveys power from substations to consumers, while
transmission lines are current-carrying lines that transmit
power from generating end to the substations. Specifically,
a transmission line starts from generating point and ends
at the electric grid and this could be long, medium or
short transmission lines. Having made that clear, distribution
automation is an integrated data management scheme that uti-
lizes artificial intelligence and machine learning algorithms,
5G full-duplex data communication network, intelligent
agent, smart feeders and sensors. It is used in enhancing the
reliability of energy deliveries and the quality of utilization,
offer quality services to consumers, lower operating, and
labour expenses. Driven by investment, distributed automa-
tion are in three phases as shown in figure 13. Firstly, the intel-
ligent switching devices (reclosers, sectionalizers and load
break switches) work collectively, with robust IoT-sensor
networks and applications. Unlike the previous model [14],
where switching devices do not require a communication
link or any form of computerization. The essence of this
proposed model is that if a fault occurs in real-time, the smart
switching devices isolate the neighbourhood in which the
fault occurred and keep on delivering energy to other regions
while AI sensors monitor and learn the pattern of failure or
causes of the fault via its ML algorithms for future references.
Furthermore, throughout this process, smart reclosers and
emergency reserved auto-switch on devices are used couple
with other smart operations and supervision. Thus, eliminates
the labour-intensive operations that are currently in use by the
current smartgrid.

This system will be adopted for the next-generation
(future) smartgrid. Secondly, radiocommunication network,
intelligent feeder terminal units (IFTU), and backend embed-
ded system are employed. When the energy distribution net-
work is running perfectly, the distribution smart supervisory
agents monitor the operating status of the power distribu-
tion grid in real-time and modify the operational parameter
remotely, allowing swift fault detection in real time [32].
Also, the dispatcher can cut off the affected neighbourhood

remotely and restore the power supply in other areas as
earlier mentioned. Communication network which 5G plays
a part, mainly conveys information service traffic comprising
telemetry and tele-indication data which are uploaded from
IFTU to main locations, subroutine commands to remote
control commands for line-fault isolation and restoration in
line or segment locating that is conveyed from primary sites
to substations). The intelligent distributed feeder system is
developing to be one of the trends of energy distribution sys-
tem automation which the next-generation smart grid will be
adopting. In intelligent distributed feeder automation, the pro-
cessing logic of the main locations goes to intelligent power
distribution mode via the AI-enabled backend embedded sys-
tem. Through the mesh interactions (peer-to-peer commu-
nication) among IFTU, intelligent decision, analysis, exact
fault location, fault isolation, and power supply recovery in
non-faulty areas can be executed. This makes the diagno-
sis process completely automated, reduce the time interval,
possibility of power failures and the diagnostic time from
milliseconds to nanoseconds. Lastly, as backend embedded
systems are integrated and deployed, intelligent control func-
tions are enabled. These functionalities allow an integrated
automation system that uses the smart supervisory controller
and data collation system which is a bit superior to SCADA
since it uses AI/ML algorithms. It also integrates power
distribution geographic information management system
(PDGIMS), dispatcher scheduling simulation, fault call
service system, and work management. Other functions
comprising substation automation, feeder segment switch
controller, capacitor bank parameter controller, customer
load controller, and remote meter reading. The distribution
automation system for the next-generation smartgrid will
have the capacities and functionalities mentioned above.

4) DISTRIBUTION NETWORK WITH PROGRAMABLE
SENSORS
In this study, it has been well established that distributed
network architecture is the panacea for a reliable and robust
smartgrid. Also, the embedding of wireless sensors within the
grid from generation to distribution is another good stride for
a grid to be smart. There are a lot of sensors both wired and

4802 VOLUME 10, 2022



E. Esenogho et al.: Integrating AI IoT and 5G for NGSG: Survey of Trends Challenges and Prospect

FIGURE 14. AI/Programmable sensor architecture showing global and local intelligence [33].

wireless that have been developed over the years and a lot of
these reliable sensors have worked well independently [32].
However, decision-making always requires human input, and
this is what this study is proposing an AI sensor for the
next generation (future) smart grid as shown in figure 14.
AI-powered sensors are the future, and what this suggests in
this study is a sensor that is programmable and is decision-
making enabled. Just like sense organs are important in the
human body, so also will the AI sensors play a vital role
in ‘‘local intelligence’’ gathering within the space in which
they are embedded from generation, transmission up to the
distribution value chain of the next-generation grid. As earlier
mentioned, the network management centre is AI-controlled
and as such, for it to get accurate feedback of the grid status
in real-time, the sensors within the lines must be AI-powered.
These sensors which form the foundation of IoT will develop
local intelligence, which does not only means the acquisition
of raw data (status of the grid: faults, outage, etc.). The raw
data are extracted from the sensors and transmitted to another
with more computationally capable within the grid called the
sensor hub as shown in figure 14. The receiving-endAI sensor
collects the raw data and performs pre-processing to present
relevant results for analysis by the AI-controlled network
management centre which act as the ‘‘global intelligence’’
of the grid located in the cloud [25]. Normally, the raw data
of the sensor needs to be processed using a machine learn-
ing (ML) algorithm for classification. All these are possible
because the sensors are programmable and if updates (new
version of codes) are required from the network management
centre, this update can be sent via the 5G SDN cloud network
to the sensors. This is what the next generation smart grid this
paper is brought to the fold.

5) CUSTOMERS PREMISES WITH SOFTWARE DEFINED
METERS
The classical smartgrid have the smart meter installed at
the customer premises. This implies a meter that can digi-
tally read energy consumption, wirelessly transmit informa-
tion about the customer within a neighbourhood and can be

logged. It should be emphasized that there is no urgency on
the complete abandoning of the conventional smart meters,
because of the ongoing regulatory process, which has affected
interoperability. In this regard, this paper proposes the adop-
tion of ‘‘software-defined’’ meters for the next generation
smart grid [34]. This is for ensuring global visibility of all the
smart elements (sensor, meter, feeders) on the grid. To the best
of our knowledge, the key benefits of introducing this kind of
approach to the metering system for the next generation smart
grid are:

a) To function over a wide range of frequency bands like
TVWS, mm-Wave, with various data rates. The utilization
of spectrum agility and the ability to perform different
tasks, with the capacity to adapt to different circumstances
within the customer neighbourhood.

b) Robustness, reliability, sustainability and especially scal-
ability required by smart metering can be successfully
supported by a software-defined approach due to its flex-
ibility, re-programmability [34].

c) Introducing a software-defined meter or better still AI
meters for the next generation smart grid is predicated on
the fact that the current smart meter is not truly smart as
it is generally assumed since it can not make decisions
within its jurisdiction like remotely monitoring of user’s
energy consumption level and reporting to the utility
companies if any violation of protocols, or suggesting/
recommending via its mobile app or SMS, which gadgets
need to be disconnect from the grid to save energy for
the user. Then the user can execute the recommendation
irrespective of the location. This makes the customer a
stakeholder in the value chain.

d) Lastly, the current smart meter used in today’s smartgrid
can be hacked by cybercriminals hence security and data
privacy will guarantee using an AI meter [34].

6) DISTRIBUTED LOAD (SMART HOMES AND CITIES)
The next-generation smart grid is perceived as a futuristic
concept that adopts disruptive technologies. This implies
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FIGURE 15. NFV-based approach in next generation smart grid.

that the kind of load/customers that will be serviced by the
proposed future grid must be first, distributed and secondly,
smart. In this context, smart load implies smart cities, smart
colleges and campuses, smart homes etc. The smartness of the
environment (cities, homes, and colleges and universities) is
predicated on the kind of pervasive gadgets that is been used
by these customers. For example, homes or colleges that are
equipped with pervasive gadgets or equipment like smart TV,
smart board, software-defined meters, amazon-Alexa, energy
management apps etc., can easily form a cluster of wireless
sensor networks and this is the foundation of the internet of
things. Furthermore, with this kind of smart customer/loads,
the power utility companies deploying the next generation
smartgrid been proposed can effortlessly, interfaced load.

7) ARTIFICIAL INTELLIGENT CONTROLLED NETWORK
MANAGEMENT CENTRE
The envisaged transition from the classical smartgrid to the
propose next generation smartgrid (future grid) with all its
functionalities make the ecosystem more complex for human
to man alone, especially the network management center
which is the heart of the grid [36], [37]. Critical services
and applications such as energy resource allocation through
virtual power plant (VPP), load balancing, grid’s real-
time fault monitoring and detection, security enforcement
(vulnerability and pen-test), smart supervisory, smart
decision-marking, and energy economy (power consump-
tion patterns, best generation source or distribution route),
requires real-time Al/ML algorithms for online analysis as
well as efficient strategy for offline deep analysis of big
data from the grid. So, proposed in this paper, software-
defined networking (SDN) and network function virtualiza-
tion (NFV) as the key candidate for the network management
center to function optimally. As illustrated in figure 15, the
SDN [38] divides the entire grid into three planes which are;

• The infrastructure layer which comprise of different
generation sources (solar, wind, hydro etc.), meters,
feeders, sensors just tomention but a few. In fact, it could
be referred to as hardware layer or data plane since it

houses all the programmable power components that
are interfaceable with the application layer through the
southbound interface open-flow system of the control
layer or plane.

• The control plane or layer is the heart of the entire
system. It seats in between the infrastructure or hardware
layer and the application layer. It houses the AI/ML
algorithm, the communication and control functions.
To be precise, all the command line (codes), global
intelligence are seated in this layer hence is called the
controller. The control layer interface the infrastructure
layer and the application layer. It is described as the
hub of the artificial intelligence of the NGSG thus have
access to all field devices and components.

• The grid application layer is the abstraction of the entire
system. This means that, if human are to be involved,
this is the only place they can interact with. The grid
application layer is taken into higher abstraction through
the help of the network function virtualization (NFV).
In this paper NFV is a network architecture concept
that applies the technologies of ICT abstraction that
virtualize the entire sections of grid node functions
into building blocks that can link, or connect together,
to create seamless services. The beauty of adopting this
feature into the next generation smart grid architecture
is to reduce cost. For example, if the grid need more
security, instead of buying physical hardware firewall,
code can be used to that effect. Lastly, with the NFV
node functions load balancing, sensor status, firewalls,
intrusion detection, faults, generation, etc., can be seen
at a glance and with a click of a button as presented
in figure 16.

8) 5G SUPPORT SERVICES TO THE NEXTGENERATION
SMARTGRID
Based on the features and functionalities like intelligence and
autonomy proposed by the next generation smart grid, it is
only logical to support it with an intelligent network like 5G.
Of a truth, the 5G as an enabling network have the various
attribute that benefit the next generation smart grid hence it is
adopted to support the communication side of the grid. Fea-
tures like network slicing, ultra-high data rate, reliable con-
nectivity, security, network function virtualization, intelligent
radio system with cognitive ability, the artificial intelligence
of things (AIoT) just to mention but a few are all needed to
realize the complete architecture of the next-generation smart
grid [32]. This paper discussed in detail some of the support
that 5G will be rendering to the proposed next-generation
smart, however, emphasis will dwell more on network slicing
which is a pioneer and cardinal feature of 5G [39]. The
5G network slicing has shown remarkable characteristics.
Normally, a network slice is an occupant-skewed virtual net-
work (tenant-oriented). It is intended to handle precise ser-
vice requirements, meets different service level agreements,
and hence builds an isolated network instance on request.
5G network slicing provides end-to-end network assurance
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FIGURE 16. Internal schematics of the AI/ML controlled network management center [35].

for different service level agreements, service isolation, on-
request network function customization, and automation.
It allows service providers to flexibly allocate network
resources and deliver a network as a service (NaaS). Also,
it provides extra nimble services, stronger security isola-
tion, and a more dynamic business concept for industry
clients [32].

An end-to-end (E2E) assurance, the 5G network slice com-
prises of several subdomains, which includes the wireless
network transport network and the core network. The ser-
vice level agreements of the network slice are guaranteed
by the E2E network comprising of several sub-domains. The
network slice employs cooperation between various subdo-
mains, such as network requirement breakdown, service level
agreements breakdown, and deployment and networking col-
laboration. For service isolation, network slices are employed
to create different network units for different applications and
functions. Realistically, isolated dedicated networks guaran-
tee that services of dissimilar slices do not impinge on one
another. This simply implies that interference or overhear-
ing would be eliminated thus the beauty of 5G on NGSG.
On-request function customization and flexible orchestra-
tion ensure that service-based restructuring and service-based
architecture of the software system facilitate network orches-
tration abilities on 5G networks [39]. To meet up the diverse
network needs for different industries like energy, on-request
orchestration abilities on 5G networks deliver distinct net-
work resources peculiar to each application. In Addition,
5G networks slice permit services to be implemented in
various sizes to meet diverse latency constraints. Automa-
tion is one of the conceptual features of 5G network slic-
ing. It is the goal of network development and a such,
makes it different from a conventional traditional network. 5G
employs slicing to split up one network into several networks.
Hypothetically, 5G proliferation will improve operation and
maintenance complexity. Consequently, automation is an
unavoidable requirement for 5G networks, and it is tricky to

deploy full-scale automation simultaneously. Operations of
each phase in the life cycle of a network slice can be done
manually, semi-automatically, and then automatically, step by
step. Full-scale automation is attained slowly along with the
advancement of network design capabilities and the flattening
and generalization of networks. Network slicing permits a
particular renter, such as the power utility industry, to use
customized network services. Each renter has its capacity
for operating and maintaining its networks, but the level of
proficiency of the renter operation and maintenance person-
nel are distinct from those of traditional operators. Hence,
operation and maintenance graphic user interfaces (GUIs)
that are simple to monitor, manage, and operate are usually
necessary for renters to self-manage their networks.

a: 5G NETWORK SLICING ENABLING THE SMART GRID
No doubt, a characteristic case of the vertical industry
(an industry where vendors offer narrow applicable products
and services to customers) as energy grid will pose new
challenges to communications systems. The multiplicity of
the next generation smart grid services needs an adaptable and
orchestrated system, high reliability needs isolated networks,
and nano/millisecond-level ultra-low latency requires net-
works with optimum capabilities. For instance, when the 4G
network is lightly overloaded in capacity, its ideal latency can
only be between 35-45ms, which generally does not meet the
nano/millisecond-level latency conditions for the proposed
next-generation smart grid control services [32]. Moreover,
the entire services on the 4G network are running on the same
network, and such services could disturb each other, which
does not meet the service isolation requirements of the next
generation smart grid. In addition, the 4G network provides
similar network functionalities for all its services, which
again does not meet the differentiated service requirements of
the next generation smart grid. Hence, the 5G network slic-
ing is introduced to address these challenges and thus meet
the diversified network connection requirements of vertical
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FIGURE 17. Smart grid enabled by 5G network slicing [32].

industries like the energy grid. Conclusively, the 5G network
slicing can be viewed in four different perspectives which are
technical, service and deployment respectively as shown in
figure 17. From the technical perspective, the 5G network
slicing can meet the connection requirements of core indus-
trial control services of next-generation grids. 5G being the
new enabling wireless communications network, is designed
to take into account the scenarios of not only the human-to-
human communication in terms of mobile phones but also
the things-to-things and human-things communication as in
the case of artificial intelligence and IoT in this case. The
ultra-low latency of 0.5ms and massive access of 100 million
connections per square kilometre network capabilities can
well meet the link requirements of core industrial control
services on the next-generation smart grid [39]. The network
slicing technology, which was original introduced by 5G
networks, can realize security and isolation together at the
same level as dedicated systems with a significant reduction
in design and complexity costs when likened to a dedicated
fiberoptics network built by companies. On the other hand,
the 5G edge computing technology allows distributed gate-
way servers placement to execute local traffic processing and
logical computing, which is economical for both bandwidths
and latency [40]. This, in addition, adheres to the ultra-low
latency requirements of industrial control services on the
next-generation smart grid proposed. From the service char-
acteristics perspective, typical smart grid service scenarios
are generally considered in two categories which are the
industrial control services, this includes the intelligent dis-
tributed feeder automation and nano/millisecond-level spe-
cific load control. However, there is another slice particularly
meet for the ultra-reliable and low-latency communication
service. Secondly, the information collection services which

comprises information acquirement of low voltage distri-
bution networks, distributed power supplies, and massive
machine type communication are services that require precise
slice. Furthermore, for these two typical slice categories,
the next-generation grid will also require enhanced mobile
broadband which is a typical service scenario for remote
inspection using drones, robots and other intelligent agents
powered by AI. Lastly, voice slicing is a typical service
scenario for manual operation, maintenance, and inspection.
From the viewpoint of service deployment and utilization,
5G network not just supports new future power grid indus-
trial control services, nonetheless, inherits the information
gathering services supported by the current 1G/2G/3G/4G
public networks. This way, several slices of the power grid
can be utilized, managed, and maintained in a cohesive way,
which in turn helps consumers of the power grid industry to
be cost-effective. The generalized network slicing is seen in
figure 18 while table 1 summarises how 5G network slices
meeting various requirements of different next-generation
smart grid scenarios.

b: 5G MULTI-SLICE ARCHITECTURE FOR NEXT/FUTURE
GENERATION SMART GRID
Based on the application, various requirements of the next-
generation smart grid scenarios and the architecture of
5G network slicing, the general architecture of 5G next-
generation smart grid design and management is found
in figure 19. The slices of intelligent distributed substa-
tion/feeder automation, intelligent distributed sensor automa-
tion, nano/millisecond-level precise load control, information
acquirement of low voltage distribution systems, distributed
power supplies, distributed generation / smart VPP, are used
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FIGURE 18. General overview of 5G network slicing [40].

TABLE 1. Summary 5G network slices meeting various requirements of different next generation smart grid scenarios [32].

to meet the real-world specification requirements of diverse
provision scenarios. Furthermore, slice management which is
based on domain orientation and integrated E2E are also used
to meet service requirements in these scenarios [32]. Lastly,
since the next generation smart grid will power smart cities,
edge-DC is deployed in this architecture. This is to ensure dis-
tributed data centres since huge computing and storage power

is required. edge-DC offers low latency and evades other
factors that may interfere with proximity, operation, and
availability. Another use of the Edge DC is to dis-
tribute the load over several smart nodes and connections.
Altogether, these features make substantial enhanced secu-
rity and availability throughout the network. For example,
if a fault occurs in one Edge DC, services are transferred
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to another one nearby and this is the beauty of global intel-
ligence. In a conclusion, to the next generation smart grid,
the 5G network slicing will fully integrate the software-
defined networking (SDN) and network function virtualiza-
tion (NFV) technology [40]–[42]. This is to flexibly match
service requirements with network resources, adhering to the
precise function requirements of diverse vertical industries
in the 5G regime. For wireless network service providers,
5G network slices will better build a nimble and adaptable
network and broaden services to vertical markets. Network
service provider communication infrastructures are shared,
which significantly enhance network resource optimization.
Furthermore, wireless network service operators provide
diverse slicing capabilities to meet the real-world require-
ments of separated services in vertical industries. The adapt-
able and open network architecture can offer autonomous
process capabilities for vertical industries to ensure adaptable
and modified service provisioning. For vertical industry cus-
tomers, 5G network slices drive network service providers
to gain on-request service assurance exclusive of building
mobile private networks. This way, vertical industry cus-
tomers can expand their capabilities of swift design and
develop a more customized service and increase service
markets in the shortest possible time [32]. The applica-
tion scenario analysis of the next-generation smart grid in
figure 17 and table 1 shows that the service require-
ments based on real-world specifications differ significantly
affording to scenarios. Power utility companies and network
equipment providers (vendors) must also quantify network
technical specifications and architectural plans built on the
real-world specification requirements of these industries,
including:
1) Additional quantifying slice security, service isolation,

and E2E service latency requirements, respectively.
2) Negotiating network capability exposure requirements

and network management GUIs.
3) Discussing business partnership modes and future eco-

logical settings.
4) Delivering a complete solution that meets differ-

ent requirements of multiple scenarios in the energy
industry.

5) Conducting practical verification and demonstration of
the solution.

D. FUNDEMENTAL DIFFRENECE
Several challenges contribute to the inability of both the
old traditional grid and current grid to capably meet the
rising demand for power supply globally. Agreed the current
smart grid has contributed and improved some functionalities
immensely. However, the characteristic difference of the three
grids (existing grid, classical smart grid and next-generation
grid) is still wide due to the era of technological advance-
ment and user/customer experience which investors want to
see. This section highlights some of these characteristics
in table 2.

III. ARITIFICIAL INTELLIGENCE AND MACHINE
LEARNING FOR NEXT GENERATION SMART GRID
AI/ML are two pair that plays key roles in enhancing the
electric grid system. What makes the next-generation smart
grid unique from the classical smart grid system is the incor-
poration of disruptive techniques and technologies. Their
relevance and application cut across subdomains of the
next-generation grid architecture which includes the AI radio
system (though for 6G), network control centre powered by
AI, intelligent substation and feeders, intelligent sensor and
sensor hubs, smart distribution transmission, and smart power
generation just to mention but a few [14], [32]. As a cyber-
physical system, the next-generation smart grid is internet-
oriented, hence it is exposed to attacks. To take care of cyber
and other malicious attacks, a machine learning approach is
deployed which will be discussed in detail in the course of the
study [6], [14]. Apart from securing the grid, the other reasons
for deploying AI/ML for the proposed next-generation smart
grid are human inaccuracy, building an automated, robust,
and autonomous system that is a self-learning system that can
make a decision based on statistics and information available
from current and previous experience. Thirdly, enable per-
sonnel attached to the facilities to develop the second skill
(coding and updating the AI/ML system algorithms to be
smarter) and lastly, cost-effective and customer-friendly in
terms of GUI of the AI/software-defined meters installed in
neighbourhoods.

A. GENERAL ARTIFICIAL INTELLIGENCE AND MACHINE
LEARNING TECHNIQUES IN SMART GRID
Several AI/ML techniques can be applied to the proposed
next-generation smart grid. This subsection highlight and
generally classified each into the following categories. They
include:

1) EXPERT SYSTEM TECHNIQUE FOR SG
An expert system (ES) is a computer program or system, that
utilizes an AI/ML algorithm to simulate and emulate the deci-
sion and behaviour of a human expert or an establishment that
has expert knowledge and experience in a specific domain, for
example, autopilot in aviation/maritime sector, auto cruise in
shipping/maritime sector, Autotrader in stockbroking/forex
analysis, etc.). It is developed to solve complex problems
by reasoning through bodies of knowledge (database), rep-
resented mainly as if-else, then rules rather than through
traditional routine code [47]. As illustrated in figure 20.
Expert system is the pioneer smart system, built to sup-
plant the human expert in a particular subject using Boolean
algebra. In the conventional smart grid system, the response
to challenges relating to intelligent control, fault diagnosis,
real-time monitoring and detection, self-determined power
routing, etc., still hinges on the ES technique [48]. The
subject knowledge gained from the subject expert is denoted
in the knowledge base which is made up of the database and
expert knowledge of the ES. As earlier mentioned, expert
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TABLE 2. Comparison between the old grid, current smartgrid and the proposed nextgeneration smart-grid.
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TABLE 2. (Continued.) Comparison between the old grid, current smartgrid and the proposed nextgeneration smart-grid.

knowledge and databases produce the knowledge base, which
is the underlying element of ES. In the knowledge base, rules
and regulations are well-defined in a manner such that an
‘‘if’’ statements follow a ‘‘then’’ statement which is linked
with algebraic operations [16]. Furthermore, knowledge can
be obtained directly from subject experts or the results of
an in-depth investigation. The ES draws inferences from the

challenge at hand by analyzing the ‘‘if-then’’ rules through
the user-input knowledge that interact with the intermediary
rule engine as shown in figure 20. Fuzzy logic was recom-
mended to manage the hypothesis of incomplete accuracy
for instance when a device in the grid is faulty but is still
working within an acceptable limit, how does the AI in
the network management centre perceive its performance.
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FIGURE 19. 5G network slicing architecture of the next generation smart grid [32].

Contrasting the Boolean reasoning employed by ES, fuzzy
logic is a technique developed to compute based on values
that fluctuate between 0 and 1. For instance, an efficiency
of 0.1 to 0.9. Fuzzy logic developed in the hypothesis of
fuzzy sets offers a level of participation, usually a value
between 0 to 1. For example, the fuzzy logic can use 0 to indi-
cate false, while 1 to signify true, and the numbers between
0 and 1 to denote incomplete truth or incomplete false,
by allocating levels of truthfulness to the recommendation.
Finally, it is generally assumed in a very inclusive logic, that a
fuzzy inference system initially moves input crispy variables
into fuzzy variables [14]. Later, employing the input variables
to fuzzy operators in the ‘‘if’’ part of the rule, subsequent
results can be extrapolated from the ‘‘then’’ part of the rule.
The last step of the fuzzy inference system is defuzzification,
which transforms the output to crisp values. This is a valuable
technique that can be adopted for the next generation smart
grid in terms of decisionmaking byAI-controlled devices and
systems.

2) SUPERVISED LEARNING TECHNIQUE FOR SG
Supervised learning (SL) is an AI/ML concept in which the
mapping (label data) of inputs and outputs has been studied to
predict the outputs of new inputs. It mostly requires training

the AI system with data set for the machine to learn and
make a prediction. It is an ML responsibility of developing
universal premises for input and output trained by linking
classified exterior input and output sets [49]. After training,
the labelling and mapping functions can then be utilized
for forecasting future information subsequently. Studies have
shown that several SL algorithms have been built in the
previous decades and are extensively deployed to enhance the
energy grid systems. The diagram in figure 21 highlights
the generally used SL algorithms in power grid system
strategy.

The artificial neural networks (ANNs), which mimic the
human nervous system [50], have hugely been applied in
several areas of research domains in recent times. Program-
ming in ANN approaches, like several other ML approaches,
is simply not necessary, however, use a set of rules (algo-
rithm) like weight to predict based on the quality and quantity
of the data set.Most often, ANNs technique is best for solving
pattern recognition and image processing problems, which
are tricky to resolve by the outdated approaches.

For instance, intelligent drones with HD cameras use
image processing techniques for monitoring the transmission
and feeder lines in a grid facility. This helps it to compare
and make a decision if lines have been damaged as a result
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FIGURE 20. Expert system for smart grid.

FIGURE 21. Supervised learning techniques used in the next generation
smart grid.

of theft or warn out. The pattern recognition aspect could be
employed for security purposes because data generated and
transmitted by IoT devices on-grid have patterns and if these
patterns are out tolerable limit, it decides on abnormalities.

Other ANN techniques used to solve smart grid prob-
lems, like fault detection [51]–[53] and power system sta-
bility assessment is the extreme learning machines (ELMs)
that utilized the hidden layer feedforward neural [54]–[56].
The back-propagation neural network (BPNN) was proposed
by [57]. This algorithm is designed such that the knowl-
edge process of neural networks is achieved by constantly
altering the network weights till the error between the out-
put and ground truth gets to a confident level. Also, the
multilayer perceptron neural network (MLP) is a feedfor-
ward algorithm used to solve problems stochastically [58].
The probabilistic neural network (PNN) is another sophis-
ticated approach that uses the feedforward neural network

method, where the parental probability distribution function
of the individual class is used to guesstimate the class to
input data [59]. The deep learning (DL) technique, being a
subset of ML, was initially applied for image processing,
beginning from multi-layered deep neural networks (DNNs).
DL techniques have experienced rapid development in recent
times. Several tested and proven models for solving smart
grid challenges have been proposed. Some of which are
convolution neural networks (CNNs) [60], autoencoder [61],
recurrent neural networks (RNNs) [62], generative adversar-
ial networks (GAN) [63], deep belief networks (DBN) [64].
Apart from the novel algorithms mentioned above, several
robust AI/ML approaches are also used for regression and
classification challenges. For example, the Support vector
machine (SVM) technique is one of the best classification
models proposed [65]. The decision tree (DT) learning tech-
nique and logistic regression approach, are another simple
to develop and understand algorithms and have also been
extensively modified to find application power grid sys-
tems [66], [67]. The k-nearest neighbours (KNN) system is
one of the fastest algorithms in terms of training data set.
It is mostly used for regression and classification purposes in
power grid systems [68]–[70]. Regression approaches which
include support vector regression (SVR) [71], multivariate
adaptive regression spline (MARS) [72], [73], Gaussian pro-
cess regression (GPR) [74], and linear regression (LR) [75],
all serve as a solution for problems associatedwith power grid
fault detection, demand response predicting, just to mention
but a few. The proposed next-generation smart grid will gen-
erate a lot of data. Motivated by Big data, and the necessity to
resolve complex problems in a cyber-physical system like the
next generation smart grid, there has been the advent of new
AI algorithms with the help of robust computer hardware,
enablingAI tomigrate to the artificial superintelligence (ASI)
mode, so-called AI 2.0 stage [76]. This simply implies ‘‘use
data to answer complex questions and build predictive smart
grid applications.

3) UNSUPERVISED LEARNING TECHNIQUE FOR SG
Unsupervised learning is an ML approach in which the
unlabeled data are used to capture the similarity and
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FIGURE 22. Unsupervised learning techniques diagram.

differences in the data. It is an algorithm that has shown
tremendous improvement over the years of development.
However, it is most useful when the users have some
benchmark or know what patterns to look out for (ground
truth) which is not always certain in a practical sense. This
characteristic renders the unsupervised learning technique
helpful since it can be applied to deduce and extract pos-
sible information or discover concealed patterns from data
without tags or mapping, unlike the supervised learning
algorithm. There are three categories of Unsupervised learn-
ing with about eleven sub-branches as shown in figure 22.
These categories are unsupervised neural networks, cluster-
ing, and dimensional reduction. TheUnsupervised neural net-
work for instance includes variational autoencoder, restricted
Boltzmann machine and the autoencoder. All of these have
found application instability assessment [77], anomaly detec-
tion [78], [79] and load forecasting [80]–[82] of the power
grid. Clustering, on the other hand, is the unsupervised task
of assembling the data points into a set of clusters, in which
data in the same clusters are alike with one another. hier-
archical clustering, DBSCAN (density-based spatial cluster-
ing of applications with noise), fuzzy c-means, K-means,
find application in load prediction [83]–[85] and fault detec-
tion [86]. The dimensional reduction converts the set of
data from a high to low dimensional space. It is often vital
when processing or preprocessing smart grid data to lower
unused/idle features. Some of the dimensional reduction
approaches generally used in the smart grid comprise linear
discriminant analysis, principal component analysis (PCA),
non-negative matrix factorization, and generalized discrimi-
nant analysis [81], [87]–[89].

4) REINFORCEMENT LEARNING TECHNIQUE IN SG
Reinforcement Learning is gradually becoming a popular
algorithm for solving smart grid problems. RL differs from
supervised and unsupervised learning, due to its intelligent
agents’ strategy, which aims at maximizing the concept of
cumulative reward, and action. The robustness of this tech-
nique is based on the fact that with partial knowledge of
the grid ecosystem and partial feedback on the fineness

FIGURE 23. Reinforcement learning method.

of the decisions, RL can respond to unpredicted situations.
Some commonly used RL algorithms are listed in figure 23.
The deep deterministic policy gradient and deep Q network
are current algorithms of RL in smart grid systems. SARSA
(state action reward state action) and Q-learning are com-
monly used in energy management [80], [90], attack detec-
tion and identification in cyber-physical systems like smart
grids [91]. Deep reinforcement learning (DRL) is another
robust technique that synergizes the insight of DL with the
decision making of RL [92]. For instance, [92]–[97] showed
the achievement of DRL by the application of the valuable
insight of high-dimension input and strategy control.

5) ENSEMBLE TECHNIQUE IN SG
As the name implies, ensemble techniques have a way of
aggregating outcomes (results) from various learning sets of
rules (algorithms) or diverse original data to get improved
general performance. In figure 24, bagging or bootstrap
aggregating handles every single model in the ensemble poll
with the same weight and trains them by utilizing a random
data subclass. Random forest is a popular bagging/bootstrap
model that merges a high-classification algorithm with a
random decision tree. In the smart grid, it is mostly deployed
for anomaly detection [98], [99], load forecasting [100], and
stability assessment [101]. For clear understanding, bootstrap
is a robust front-end framework used to build modern web-
sites and web apps. It is open-source and free to use how-
ever, includes numerous hypertext markup language (HTML)
and cascading style sheets (CSS) templates for user inter-
face (UI) elements such as typography, forms, buttons, navi-
gation. If finds application in interfacing components for the
software-defined next-generation smart grid in conjunction
with network management centre. The boosting technique,
on the other hand, is an ensemble method that develops
a different model that tries to rectify the misclassification
issues from the earlier model and demonstrated favourable
results in smart grid challenges [102]–[104]. Stacking as an
ensemble learning method that aggregate the forecasts of
various regression or labelling algorithms, is sophisticated for
cyber-attack detection [105], load prediction [106], anomaly
detection [107].

6) DEEP/TRANSFER LEARNING TECHNIQUE IN SG
The absence of label data set is still a major issue for power
grid analysis and evaluation. Transfer learning reduces the
requirements of pre-training of data set, which motivate
scientists and engineers to make use of them to solve the
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FIGURE 24. Ensemble technique.

FIGURE 25. Deep/Transfer learning method.

problem of insufficient data which is often faced. In this light,
transfer learning is a machine learning technique that focuses
on accumulating knowledge earned in the course of solving
one challenge and utilizing it in a unique way but connected
domains. It is an ML technique where a model built for a task
is used again as the basis for amodel on the next task as shown
in figure 25. For instance, knowledge gainedwhile learning to
predict or detect a fault in transmission lines is applied when
attempting to predict or detect a fault in a feeder line of the
smart grid facility.

B. AI/ML APPLICATION TECHNIQUES FOR NEXT
GENERATION SMART GRID
From this survey, it is logical to say that the proposed next-
generation smart grid will be different from the current smart
grid through the combined application of disruptive technolo-
gies such as IoT, AI, and 5G. Having mentioned the general
AI/ML techniques used in smart grid, this section discusses
in detail some specific areas in which AI/ML techniques
have and will help in improving the overall performance
of the smart grid system. To be specific, AI/ML technique
has been found to be effective in grid security, real-time
faults detection and monitoring, load prediction, grid stability
assessments to mention but a few.

1) LOAD FORECASTING
One characteristic of the next generation smart grid is the
integration and management of several kinds of energy gen-
eration as in the case of microgrid and virtual power plants.
However, the ambiguity of the planning and operation of the
grid given the exponential rise in the demand for electricity
due to urbanization is becoming gradually more difficult.
Load forecasting is one of the main factors that ensure the

power grid is stable and intelligent. Predicting the load on
the grid is important for scheduling and strategy because it
will help to reduce energy generation costs and save elec-
tric power especially in a situation when the load is unsta-
ble [108]. LF is categorized into three which are short-term
LF (STLF), which forecasts the load from second to minutes
to hours, mid-term LF (MTLF), which forecasts the load from
hours to aweek and the long-termLF (LTLF), which forecasts
the load from months to years [109]. Furthermore, LF could
also be influenced by a variety of factors which includes,
time, type of users, weather, season, event, and the algorithm
in place. Normally, MTLF and LTLF prediction are patterned
in line with past data of power consumed, alongside other
components, such as customers, population data, and weather
conditions [110]. STLF has largely been applied in areas for
example energy transfer planning, demand response and real-
time control [111]. The MTLF and LTLF are deployed for
next-generation smart grid planning, designing, and showing
the changing aspects of the power grid [110]. Based on the
data supplied by software-defined meters, several methods
are recommended and utilized for power grid LF.

a: SHORT-TERM LOAD FORECASTING
Several AI/ML techniques can be applied specifically to
smart grid short term load forecasting. For instance, [112]
proposed and implement an ensemble approach that com-
bines three base techniques for STLF. The study demonstrates
that the model’s efficacy for STLF. Though, the choice of
base techniques in the ensemble method requires more ver-
ification. Reference [81] applied a hybrid technique utiliz-
ing a restricted Boltzmann machine (FCRBM) as a training
component and genetic wind-driven (GWDO) as an optimiza-
tion processor. This paradigm is proven to outperform other
advanced algorithms. A DBN embedded with parametric
copulative models was proposed to predict the minutes and
hourly customer load of a particular grid in urban cities. The
findings indicate the efficacy of the technique by evaluating
it with other methods like SVR, ANN, and ELM [113].
Reference [114] developed a blended clustering technique
predicated on ANN and wavelet neural network (WNN) sys-
tems. The result demonstrates a higher performance of the
proposed model over other clustering methods. To addressing
the laborious technique of developing an optimum DNN, that
defines the number of hidden layers in the DNNmodel, [102]
applied an ensemble technique that integrates various DNN
algorithms with various numbers of hidden layers to attain
total improved performance by removing the badly achieved
models. Nevertheless, the processing overhead is a constraint,
since several CNNs are involved. Many DL-based techniques
are applied in solving LF challenges. In recent times, DNNs
have found application in obtaining the possible knowledge
for a predicting paradigm. However, the ANN technique is
habitually stuck in local minima [115] and this hence fails
to forecast future load consistently. Hence [116] proposed a
deep RNN for STLF to tackle the over-fitting problem by
enhancing volume and data multiplicity in the smart grid.
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In a nutshell, by using the ensemble technique, the effective-
ness and precision of STLF can be enhanced in a smart grid.

b: MEDUIM-TERM LOAD FORECASTING
In general, LF is a proactive and very vital strategy for
steady and efficient power delivery. The MTLF on the one
hand is employed to manage maintenance planning, load
balancing, load demand and dispatch, and generation [117].
Contrary to the STLF, which normally match data to a
model, MTLF and LTLF have unique challenges that are
mostly overlooked owing to their unpredictability and com-
plexity [118], [119]. Unlike STLF, the MTLF and LTLF are
affected by obvious factors, like weather data and previous
load, and other implicit factors like demographic data and
local economy which implies appliances in use and popula-
tion distribution [117]. The STLF on the other hand consid-
ers all weather variables equal in terms of weight, whereas,
in MTLF and LTLF, weather variables such as humidity,
precipitation, temperature, and wind are given decremen-
tal consideration [120]. Reference [121] developed dynamic
Bayes network (DBN)-based MTLF template to predict the
peak power load for the subsequent year. [122] implemented
a DNN paradigm with an enhanced training algorithm that
consists of two search algorithms for MTLF in the power grid
and shows the efficacy of the method. In [123] an integrated
neural network-based model with particle swarm optimiza-
tion (PSO) technique was proposed. The model demonstrated
viability and strength over othermodels. Reference [124] pro-
vide a solution based on CNN and LSTMmethods for MTLF.
Reference [125] developed a hybrid DL model for MTLF
which integrate advanced LSTM, exponential smoothing, and
the ensemble technique. This is a competitive method that
also uses the ensemble approach. In general,MTLF has a pool
of AI techniques that can be adapted or improved for the next
generation smart grid.

c: LONG-TERM LOAD FORECASTING
LTLF is specifically developed for predicting grid planning,
power consumption and upgrade of the generating unit of
the power grid. Usually, it covers over a decade depending
on the requirement. Though, it involves massive investment
to build a modern power generating facility, hence, pre-
diction accuracy and efficacy is paramount in this regard.
Several AI/ML methods have been developed over time to
tackle LTLF problems. Reference [72] demonstrated that the
multivariate adaptive regression spline (MARS) technique
as earlier mentioned, provide more precision and consistent
outcomes than the ANN and LR paradigms when forecasting
the link between load request and other ecological variables.
Reference [126] proposed an innovative concept called the
hybrid fuzzy-neuro model for LTLF. In addition, the Long
Short-Term Memory (LSTM) model also find application in
this area because of its ability to learn long-term dependen-
cies in forecasting difficulties. In furtherance, [109] applied
the LSTM-based RNN for the long-term dependencies in the
electrical load time sequence for LTLF, where the technique

had a positive index. Reference [127], [128] suggest too that
an LTLFmodel with minute-hourly fine-tuning can have high
accuracy when the LSTM network is applied. In other to
resolve the challenges of exploding and vanishing gradient
problems, [129] introduce a hybrid technique that combines
gated recurrent unit (GRU) and LSTM. This hybrid tech-
nique showed superior performance for LTLF. Also, [130]
proposed an LSTM-RNNmodel for this same task mentioned
earlier. To get a holistic view in terms of performance and
superiority, [131] compared several universally used AI/ML
techniques which include the generalized regression neural
network (GRNN), GPR, RNN, ANN, SVM, KNN, and ANN.
The ANN displayed superior performance over the other
techniques for LTLF as summarizes in Table 3 of the AI
methods for LF.

2) REAL TIME FAULTS MONITORING AND DETECTION
There are some AI/ML approach which have been found
useful in electric grid performance enhancement. These tech-
niques were specifically proposed and developed to solve
the problem of real-time faults monitoring and detection
(RTFMD) in smart grids. To be precise, [132] developed
an ELM-based technique for the real-time fault location
detection of the grid following the extraction of features
by deploying a wavelet transform (WT) then contrast it
with ANN and SVR algorithms. Reference [133] introduced
a GPR-based general probability ratio test to improve the
RTFMD performance in solar PV grid systems. In [134],
two ensemble approaches were employed to detect
surreptitious false data infusion with a supervised and unsu-
pervised classifier, respectively. In [135], an ensemble frame-
work that integrates several AI/ML models for power grid
disruptions rate analysis was proposed. The concept can
detect faults in real-time with three layers of the degree of
seriousness. Reference [136] is centred on high-impedance
RTFMD in the power grid and suggested an ANN-based tech-
nique for resolving the dilemma with an accuracy of 98.7%.
Reference [137] ELM is also employed for high-impedance
RTFMD and is usually predicated on wavelet packet trans-
form[138] recommends a technique for line trip fault projec-
tion in a power grid system that uses both the LSTMnetworks
and SVM. An AI/ML-based discrete wavelet transform, and
double channel extreme learning machine method was pro-
posed in [139], to locate, detect and classify the faults in both
feeder and transmission lines. To enhance the precision of line
trip fault forecasting, [140] developed a stacked sparse auto-
encoder-based system through PCA and SVM validating
the applicability in practical data. The introduction of VPP
and microgrids, which are cloud-based, proffer an effective
and robust solution for the ever-growing alternative energy
sources. However, in short/midtem, fault monitoring and
detection in VPP and microgrids continue to raise serious
concerns [141].

As such, [143] proposed a hybrid technique that inte-
grates feedforward neural networks and S-transform for fault
detection in the distribution side of the grid. In [145],
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TABLE 3. Summary of methods for load forecasting.

an ANN-based approach was proposed, and the outcome
showed the efficacy of detecting the time and spot of faults.
To deal with labelled and unlabeled data set, [146] recom-
mend a hybrid-supervised ML algorithm consisting of DT
and KNN model, for fault detection at both the distribution
and transmission side of VPP and the microgrid network.
To solve the challenge of isolation, islanding, and fault detec-
tion in smart grid, [142] developed an SVM-based system.
The outcomes demonstrated improved indices compared to
the conventional experiment-based techniques of a photo-
voltaic generating station [147] applied a PNN classifier for
fault monitoring, detection, and diagnosis in the direct current
side of a PV scheme. [148] developed a fault detection tech-
nique for PV built on ANNwith over 95% accuracy. Realtime
condition monitoring in wind turbines is crucial for enhanced
protection by early detection of faults. Reference [149] inves-
tigated the efficacy of deep ANNs CNN AND RNN in wind
turbine fault detection. In [150], the ensemble technique was
presented as an effective method in energy theft detection.
Table 4 gives a general summary of the various techniques for
real-time faults monitoring and detection in the power grid.

3) POWER GRID STABILITY ASSESSMENT
Another area where AI/ML techniques can be deployed in
smart grid is ‘‘grid stability’’. This is crucial because aside

TABLE 4. Summary of methods used in power grid FD.

from monitoring, and detecting a fault in the grid, stabilizing
the grid is even more vital for optimal performance. The sta-
bility of the grid is in four categories which include frequency
stability, small-signal stability, voltage stability, and transient
stability [151], [152]. This is important for guaranteeing the
safety and dependability of the power grid. Power grid stabil-
ity can be described as the capability of the network to expe-
rience steady operation or to quickly adjust to steady-state
operation after a disturbance. Disturbance in the system could
be due to frequency and voltage spike, over/under load, theft,
open circuit [153]. In addition, grid stability can be assessed
however, conventional models for stability assessments are
complicated and as such, involve substantial computational
power since they depend hugely on precise real-time dynamic
power grid models [127], [152], [154]–[156]. Due to the
introduction of a wide-area measurement system (WAMS),
and phasor measurement units (PMU), several AI/ML sta-
bility assessment approaches that are data-driven have been
employed on power grid stability analysis.

a: SMALL-SIGNAL STABILITY ASSESSMENT
As the name implies, small-signal stability, or better put,
oscillatory stability could be described as the robustness of
the smart grid to withstand and maintain operation during or
after an oscillatory perturbation, which is due to the magni-
tude of some factors earlier mentioned [157]. In the smart
grid, this stability can be assessed using AI/ML approaches.
In [158], a CNN-based technique was proposed for oscilla-
tory stability assessment (OSA). The result, however, showed
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that the approach is effective to PMU noise with no reduction
in performance even as the system expands in size. Refer-
ence [159] deployed a multivariate random forest regression
(MRFR) approach for the OSA system with 18-lines and the
outcomes presented how robust and precise the model was.

b: FREQUENCY STABILITY ASSESSMENT
Smart grid frequency stability is described as the capabil-
ity of a grid to sustain operation or be at equilibrium fre-
quency irrespective of the severity of the network upset or
disturbance. Most often, instability of the grid is a result
of a substantial discrepancy between load and generating
source [152]. This, most times, becomes more obvious when
there is a huge frequency deviation causing the facility to
respond and eventually affect the system stability. To prevent
this from occurring, some proactive and reactive measures
have been proposed using AI/ML techniques. Reference [52]
proposed and developed a hybrid paradigm that combined a
frequency response concept with an AI/ML extreme learning
model for frequency stability assessment (FSA). In addi-
tion, AI/ML algorithm could be deployed for frequency load
shedding [175].

c: VOLTAGE STABILITY ASSESSMENT
Fluctuation can considerably affect the voltage stability of
a power grid. Therefore, voltage stability assessment (VSA)
techniques that can measure and predict the stability of the
grid in real-time would be a proactive step for protecting the
grid. Over the years, several AI/ML-based techniques have
been proposed in VSA. Reference [121] develop a hybrid
approach by combining the SVR and dragonfly optimization
algorithm for real-time VSA. Reference [118] recommended
a technique for VSA by utilizing an SVM. The findings
revealed that the misclassification ratio of the SVMs is as low
as 2% for practical power grids. In [119], a DT approach was
employed for interactive VSA. Reference [117] developed an
ANN algorithm to guesstimate the loading margin of the grid
and showed the efficiency of the bus network. Table 5 sum-
marizes the AI/ML techniques for the power stability
assessment (PSA).

d: TRANSIENT STABILITY ASSESSMENT
Lastly on the power grid stability assessment is the transient
stability assessment (TSA). The TSA ascertain if a power grid
will remain harmonized following a substantial disruption
internally or externally. Direct techniques and time-domain
models are the two most generally deployed conventional
techniques for TSA.Nonetheless, the rise in complexity of the
current power grid poses a problem in making better choices
on the conventional TSA techniques to be adopted. Luckily,
the introduction of AI/ML techniques into TSA has provided
an innovative approach to this problem through the utilization
of big data gathered from the WAMS and PMUs. Refer-
ence [153] proposed ANN, decision trees and SVMs, as the
three main AI/ML techniques for online TSA. These algo-
rithms were compared using two sets of data. The findings

TABLE 5. Summary of methods for the power stability assessment.

demonstrate similarity in their performance indices for all
three techniques, however, performance indices may differ
concerning the granularity of the data set. In [165], two supe-
rior SVM techniques were built to resolve the conventional
SVM constraint that lowers the occurrence of missed and
false alarms respectively. Reference [176] deployed a trained
ANN algorithm for forecasting online TSA. The results
showed an encouraging performance. A hybrid technique that
integrates ELM and trajectory fitting (TF) techniques was
proposed for TSA. This approach demonstrated consistency
and efficiency for the online TSA [160]. In [163], a deep
neuro-classifier algorithm was proposed for TSA. The results
showed the generality of the proposed concept. Another
proposed method is the RNN-LSTM algorithm which has
improved learning capacity from temporary data depen-
dencies of the input dataset. A high precision supervised

VOLUME 10, 2022 4817



E. Esenogho et al.: Integrating AI IoT and 5G for NGSG: Survey of Trends Challenges and Prospect

ML classifier which comprises the stacked autoen-
coders (SAE) and CNN was proposed by [161] for TSA
related problems. Reference [162] proposed the use of an
intelligent technique that ensembled neural networks, predi-
cated on ELM with over 99% accuracy. The study of [166]
explores the application of a deep belief network (DBN)
algorithm for TSA with excellent precision, while the TSA
solution for power system control was proposed by [158]
using a trained CNN algorithm. These are possible techniques
and algorithms that will be improved and adapted or adopted
into the next generation smart grid.

4) AI/ML IN NEXT GENERATION SMART GRID SECURITY
Every cyber-physical system or network that is internet-
oriented is susceptible to cyber threats and the next generation
smart grid is not exempted. As such, to guarantee the stability
of the grid, extra measures must be taken or put in place
to secure such valuable assets. Several human orchestrated
efforts have been deployed over the years, however, still
shows some vulnerabilities hence advance approach such
as AI/ML is proposed. The reasons for adopting AI/ML is
obvious since personnel cannot work on the facility 24hours
all through a year even when there is a shift in work sched-
ules. Thus, need a system that can intelligently man, moni-
tor and predicts the entire activities of the grid both online
and offline, therefore rendering optimal security to the grid.
Another reason supporting the deployment of the AI/ML
approach is predicated on the fact that hackers or attackers
ventures into developing codes, programs or bugs that alter
the grid instructions codes and functional services hence, the
grid is in dear need of an algorithm that can counter and
predict hackers’ activities. Furthermore, AI/ML algorithms
can perform pen-test and alert the operators of the possible
vulnerabilities in the system as a proactive measure. Security
risk in smart grid is categorized into three broad classes
which are: (a) attempts to compromise the confidentiality
of data on the grid for instance false data injection into
the software-defined smart-meter and substation concentrator
(b) attempts to infuse threat services like operational fail-
ures, synchronization loss, power supply interruption, and
(c) system-level threats that attempt to take down the grid,
like hijacking the radio communication system, denial of
service/distributed denial of service, and network barge-in by
strangers (i.e. a hacker attempting to use the communication
link to piggyback unauthorized traffic over the network or
use a disguised radio to capture and transmit smart grid data).
Other consequences of cyber-attack are complete blackouts,
social welfare damages, and cascading failures just to men-
tion but a few [191]. AI/ML approach to the smart grid are
either statistical based or rule-based. But for the fact that this
investigation is considering a soft approach, it will be looking
more into rule-based or different algorithms for securing
the smart grid. Several techniques on smart grid security
have been proposed and develop over the years [188]–[192].
In [177], a combined game theory, fuzzy cluster, and RL agile
model were proposed to analyze the security location and

TABLE 6. AI methods for smart grid security.

condition for the smart grid. Reference [184] proposed an
intrusion detection paradigm for smart grid. This model is
predicated on the whale optimization-trained ANN algorithm
with only a single hidden layer. Reference [185] developed a
stacked denoising autoencoder (SDAE) neural network algo-
rithm to detect and label four types of cyberattacks in the
smart grid. The techniques were found to be efficient with
a precision of over 90%. To uncover malicious voltage con-
trol activities in the low-voltage distribution grid, the study
proposed the use of an ANN-based technique in [181]–[182]
while [185] employed an RL technique for detecting cyber-
attacks. The SVM method has also been found useful for
detecting cyberattacks in [180]. In the study, an SVM-based
technique for detecting covert cyber deception assault was
proposed. The outcome of [178] showed the dominance of a
quasi-supervised model built on domain-adversarial training
to transfer the data of known cyberattack occurrences to
identify recurring risks in dissimilar load patterns and hours.
The isolation forest technique was used in [181] to detect
the threat with superior performance while [182] contrasted
various AI/ML-based techniques for securing the smart grid.
Lastly, [190] integrated random forest and CNN algorithm
for energy theft detection. This technique has positively
affected power supply quality and operation cost consider-
ably. Table 6 summarizes the AI techniques for smart grid
security.
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FIGURE 26. IoT with its connections and associated things [193].

IV. INTERNET OF THINGS IN SMART GRID
Internet of Things (IoT) as the name implies, is a pervasive
technology that aid the interconnection of anyone or thing,
any time or place, and any network or service respectively,
as shown in figure 26. It is one of the disruptive technologies
of the 21st century and a component of the fourth indus-
trial revolution, which has found application in nearly every
sphere of human endeavours. This section discusses the roles
and benefits of IoT on the smart grid. The role of IoT in the
smart grid is that it connects the grid elements such that the
data from each element on the grid are extracted and used in
analyzing the grid. These big data can be trained by an AI/ML
algorithm as previously discussed and use for predicting any
activity such as load balancing, security attack, and most
importantly seamless communication between devices on the
grid. This in turn, help the power utility companies for proper
load shedding planning and other policy/regulations.

A. IoT APPLICATION AND SERVICES IN SMART GRID
As earlier mentioned in previous sections, IoT plays an inte-
gral role in supporting the power grid. For instance, the
sensing and processing capabilities of IoT enhance smart grid
functionalities like stability, accuracy, self-healing, process-
ing, alerting, and disaster recovery. Integrating IoT into the
smart grid has significantly helped the advancement of smart
terminals like meters, sensors, data concentrators, and radio
link devices. IoT also supports the reliability of data exchange
in wireless link infrastructures within the smart grid facility
from generation up to customer utilization. Several scenarios
depict the usefulness of IoT within the smart grid value chain.
On the generating side, IoT devices (sensors/transducers) are
used in monitoring power generation from all kinds of energy
sources (renewable, and nonrenewable) and forecast required
power to deliver to the customers. Though, power forecasting
requires AIoT capabilities which will be discussed later. IoT
is used to obtain power consumed, monitor, dispatch, and
protect transmission and feeder lines, substations, and pylons,
manage and regulate equipment. On the customer end, IoT
measures parameters like interoperability between different
networks, power consumption, charging and discharging of
EVs, and power demand. Other scenarios are its application

in AMI [193], to collate data, measure anomaly, exchange
information between smart meters, monitor electricity qual-
ity and distributed energy and analyze user consumption
patterns using the AI/ML component. IoT enables smart
homes to interact with users and the smart grid, control
smart appliances, meet marketing demand, improve services,
improve QoS, monitor renewable energy, and extract power
consumption data collated by the smart meters. As mentioned
earlier, IoT can help in transmission and feeder line monitor-
ing through the support of 5G wireless broadband (slicing).
In addition, faults in the transmission and feeder lines cannot
be monitored but discovered and resolved.

1) IoT ARCHITECTURES IN SMART GRID
Various IoT network architectures have been developed for
smart grids. These architectures fall into four categories of
layers [87]–[90] as shown in Table 7. Reference [85] pro-
posed a three layers architecture. In the design, network
devices, smart meters, and communication protocols are
found in layer 1. The radio device in charge of receiving data
at the fusion centre is found in layer 2, while AI systems
that support decision making and billing are located in layer
3. In [51], [52], a three-layer architecture that comprises the
perception layer (device layer), network layer, and applica-
tion layer was proposed as illustrated in figure 13. In the
Perception layer (device layer), all types of sensors, readers,
tags, and sensor equipment that are known for extracting
grid data are found in this layer. The network layer, on the
other hand, includes all classes of wireless communication
networks standards but not limited to TVWS [5], ZigBee,
private networks, Wi-Fi, fibre optics, cable broadband, public
switched telephone networks (PSTN), GSM network up to
4G and the Internet, collate and transmit the data extracted
from these IoT sensors in the device layer to the management
and information centres which house the application layer
for processing, analysis, control, and access to the backbone
network. The main function of the application layer is to
processes the data received from the network layer to monitor
smart grid IoT devices in real-time as illustrated in figure 13.
A variety of IoT technologies like SDN is used to achieve
a wide range of IoT applications in the smart grid. Finally,
the application layer is solely in charge of data process-
ing, integration and interfacing other grid resources [193].
A four-layer was proposed in [89]. This includes the device
layer, network layer, cloud management layer, and appli-
cation layer. However, the device layer is subdivided into
two sub-layers which are the thing layer (IoT sensors, actua-
tors, smart meters, and smart tags) which intelligently sense
grid ecosystem, collate information, and regulator user appli-
ances. The gateway layer (which comprises a controller, radio
link units, a display unit, and a memory unit) is responsible
for interconnecting the grid component of the thing layer.
The network layer functions remain unchanged as discuses
previously. The cloud management layer is responsible for
storage, analysis, and user management. In addition, the
application layer delivers grid services to end-users such as
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TABLE 7. Layer models for IoT architecture in a smart grid.

FIGURE 27. Artificial Intelligence of Things (AIoT) in smart grid [195].

dynamic pricing/billing, demand response management, and
energy management. Reference [91] studied previous three-
layer and four-layer models in [85]–[89]. However, proposed
a four-layer concept that comprises the previous three layers
with an additional social layer on top of these three layers.
The responsibility of the social layer is policy, and regulation
of the IoT applications to avoid any form of exploitation,
abuse, or misuse to all parties in the value chain. Refer-
ence [90] proposed a four-layer which comprises the terminal
layer, field network layer, remote communication layer, and
master station system layer. As it is known, the terminal layer
includes remote terminal units, smart meters, and all smart
devices. The field network layer has the same functionalizes
as the network layer previously discussed. The remote com-
munication layer contains specifically, a wireless WAN such
as TVWS [194], [195], 3G or 4G wireless cellular networks.
These are services with enhanced spectrum efficiency. The
master station system layer comprises the command-and-
control structures for the different sections of a smart grid,
from generation up to distribution end. In all of this, the
next-generation smart grid will be deploying a 5G intelligent
network, that is more software-defined.

B. ARTIFICIAL INTELLIEGENT OF THINGS (AIoT)
IN SMART GRID
In this section, IoT is described as the connection and commu-
nication of smart grid elements with each other through the
internet. However, as a key technology for the enhancement

of both current and future smart grids, the incorporation of
AI on IoT makes its applicability on the smart grid compre-
hensive as shown in fig. 27. AI has proven to be the real
game-changer for the realization of smart systems with smart
grids not excluded. In fact, what makes the next generation
smart grid different from the current smart grid is the integra-
tion of AI in all components of the grid [195]. In this light,
the names of the components of the next-generation smart
grid thus become intelligent/AI sensor, meter, substation,
feeders, network controlled network management centre and
so on respectively. With AI, on IoT, the name changes to the
artificial intelligence of things (AIoT), which implies that net-
worked things need AI to become truly intelligent or, things
become truly smart when AI is applied. The potential of IoT
on the smart grid can be fully appreciated with analytics.
For example, power consumers and personnel working on
the grid facility can manage and monitor connected things
(smart meters, sensors, etc.) remotely. Also, smart devices
on the grid (smart meters, sensors, etc.) can learn from their
activities as well as from each other and continue to evolve
in this way. This means that smart devices are increasingly
able to make their own decisions with their jurisdiction. For
instance, with AIoT, the power component can heal itself
during and after disturbance and reroute power to the neigh-
bourhood based on its arrived decision. These, in turn, makes
the grid more independently and safe through continuous
self-optimization. Furthermore, AIoT creates added value
from the huge data (big data) extracted from these smart grid
devices. In practical terms, extracting and gathering data is
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only valuable if it is analyzed and put into context [196].
This is where AI comes to bear as a complement to IoT by
processing and analyzing the data from the grid components.
The outcome of the data analysis enables utility companies
to draw precise inferences and ultimately improve service
delivery, enhance processes, and secure their status as a major
competitor in the energy sector. AIoT devices are becom-
ing increasingly independent, providing huge data that can
be translated and applied, thus increasingly becoming more
useful for corporations. Other benefits of AIoT are the fact
that the smart grid is a complex facility and as such, AIoT
can aid personnel in a specialized department by multitasking
with accuracy thus, saving the utility companies personnel
expenses [196]. Lastly, communication with machines (sys-
tem and devices) will turn out to be natural, moving away
from the conventional display operation and to more human-
machine interaction.

V. 5G AS AN ENABLER FOR NEXT GENERATION
SMART GRID
The motivation for referring to the 5G network as an enabler
for the next generation smart grid is predicated on many
reasons as summarized in Table 2. Some of these reasons are
but are not limited to its software-defined nature, cognitive
or AI capabilities, network intelligence, self-healing, global-
awareness, autonomous, etc. However, the few key motiva-
tions for integrating 5G into the current grid system which
eventually gives birth to the proposed next/future generation
smart grid are:

• Network Management Become Simpler: By integrating
5G into the current smart grid, network management
become simpler [197]. The SDN/AI controller in the
next generation smart grid will have a global view
of the next-generation smart grid communication net-
work. Based on the application requirement and other
requirements like the hidden network traffic condition,
the SDN/AI controller will alter the policy and regu-
lation of processing packets swiftly and effortlessly in
the infrastructure/data plane where switches, sensors,
and other power components are found. Without an
intelligent network like 5G which is software-defined,
network orchestration and management will demand
physical or human intervention by the utility compa-
nies to re-program all the components in the infras-
tructure/data plane to change their packet forwarding
policy [38].

• Isolation of Diverse Traffic Types and Applications: In
the next generation smart grid, different kinds of traf-
fic classes are generated by different intelligent field
devices e.g., sensors, AI agents, meters etc. These traffic
classes are event-driven and are generated at regular
intervals. By integrating 5G in next the generation smart
grid, diverse traffic classes and applications are effort-
lessly isolated [198]. Furthermore, 5G oriented next gen-
eration can adjust powermeter unit measurement (PMU)

information traffic corresponding to the design specifi-
cation of receiving field devices.

• Traffic flow Ranking: In the next generation smart
grid ecosystem, crucial measurement information and
instructions set must be sent on a well-timed basis and
require high-level importance than the regular traffic.
5G can assist in this respect by ranking the traffic
and give top priority to sensitive time crucial com-
mands and measurement information in an adaptable
way [199]. Also, as earlier mentioned, the 5G based
programmable SDN controller in figure 13 will have
a universal network view. Thus, will aid to orchestrate
traffic flows (ranking) effortlessly.

• Virtual Network Slices: one attractiveness of the 5G
network is in the creation of virtual network slices
for the next generation smart grid based on domain or
geographic consideration (generation, transmission and
distribution or security zones) [200]. For example, there
can be a slice for the metering side of the network. This
implies that it can have its virtual network slice dedi-
cated to the metering network or even sensor network.
This will enable the metering system to have its secu-
rity, policies, management, and quality of service (QoS)
regulations.

• Resilience: Next-generation smart grid pliability can be
easily attained via the 5G functionalities by switching
the data traffic flow from breached wired link to wireless
link [36]. By so doing, enables the next generation smart
grid to be evenmore reliable. Similarly, the self-recovery
process which helps to achieve a robust PMU network
can simply be achieved using 5G. They are but are not
limited to;

• Ultra-Fast Failure/Fault Recovery: The next genera-
tion smart grid largely depend on communication links.
However, if there is a crunch (congestion, interrup-
tion, etc.) on the communication links, then the next
generation smart grid will cease to function optimally.
Hence, link failure/fault detection and recovery is vital.
By introducing an intelligent network like 5G into smart
grid architecture, it is possible to achieve ultra-fast link
failure/fault recovery [199].

• Avoidance of Voltage Failure and System Overload:
Sometimes in the electric grid system, It happens that
the power network could be overloaded, and as such,
voltage collapse is inevitable. It, therefore, implies that
apt and timely load balancing through a load shifting
or sharing mechanism will avert voltage failure in the
grid. This can be achieved through the 5G’s AI load
balancer which is one of the features of the AI-controlled
networkmanagement centre of the next generation smart
grid [38], [92].

• Standardization/Interoperability: Currently, the 5G net-
work technology is not network provider or manufac-
turer specific rather runs on an open standard, though
a consensus is ongoing. However, several categories of
communication network field devices can be simply
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FIGURE 28. 5G network services for next generation smart grid.

managed, programed or re-programed, and their com-
patibility and connectivity is not a challenge within a
next-generation smart grid [44].

• Electric vehicle Integration in Next-Generation Smart
Grid:We cannot investigate next-generation smart grids
as a proposed concept without discussing the electric
vehicle. An Electric vehicle (EV) is considered a poten-
tial power plant on the move when deployed on a mas-
sive scale. Picture an EV moving on highways car-
rying battery stored energy. The energy stored in this
EV can act as an emergency power source/plant for
cities in times of urgency. Although, proper design of
a robust energy management system for EVs is needed
which easily update the state of these EVs, as EVs are
generally movable. Nevertheless, the mobility of the
EV and their status update will generate a lot of big
data that could be used to analyze the EV behavioural
patterns. Furthermore, connecting and re-connecting
decisions of EVs will require software reconfiguration
(coding/programming) in the next generation smart grid
system. Through the assistance of SDN which is a com-
ponent of the 5G, the management difficulty will be
reduced substantially [197].

• 5G’s Run/Execution time Configurability: From incep-
tion, 5G is proposed to deliver speed both in code,
command or program execution depending on the task at
hand. With the assistance of 5G’s SDN, runtime or exe-
cution time configurability, the quality of service (QoS)
of the next-generation smart grid communication net-
work between power nodes and terminals will be sig-
nificantly enhanced, respectively.

In concluding this section, it is imperative to state that
5G roles as an enabler for the next generation smart grid
are predicated on the fact that all intelligent nodes, termi-
nals, feeders, substation, meters, etc., within the grid, need
to communicate with another for synergy with little or no
delay using enhance broadband strategies. As such, the 5G
network services have been grouped into three major types
by the International Telecommunication Union (ITU) which
are Enhanced Mobile Broadband (eMBB), Ultra-reliable and
Low-latency Communications (uRLLC) and the Massive

Machine Type Communications (mMTC) [37]–[40] as shown
in figure 28. The Enhanced Mobile Broadband (eMBB) is
a service specifically for bandwidth-hungry applications and
requirements such as real-time fault monitoring and detection
with high-definition (HD) resolution. For example, internet
equipped robotic drones with HD camera monitoring lines,
feeders, substations, etc., from generation up to distribution
thereby complementing the efforts of the AI sensors planted
on the grid as shown in figure 10. Secondly, the essence
of incorporating 5G is to deal with the challenges of delay
therefore, the Low-latency Communications (uRLLC) ser-
vice of the 5G is to address mission-critical services such
as remote management of terminals, the software update for
the controller and other intelligent applications, real-time
analysis/decision making, EVs (self-driving cars) [39]–[42]
etc. Machine Type Communications (mMTC) is a 5G service
for high-volume communication between dense IoT nodes
and applications such as intelligent metering, smart sensors,
building, smart cities, smart homes and assert tracking of
substations, feeders, and all field power devices to mention
but a few.

VI. ARCHITECTURE FOR THE NEXT GENERATION
SMARTGRID
The diagrammatic layout of the proposed next-generation
generation smart grid is shown in figure 29. It is the incorpo-
ration of the entire ideas and figures discussed in the course
of this survey. The three major components namely the AIoT
(artificial intelligence and IoT) and 5G are illustrated in the
diagram [195].

VII. CHALLENGES AND SOLUTIONS OF THE
NEXTG-GENERATION SMARTGRID
The next-generation smart grid (future grid) is proposed
to deliver a lot of benefits to the power consumers, util-
ity companies and the government in both the short and
long term. As earlier mentioned in this study, any complex
cyber-physical entity that is internet-oriented is prone to a
lot of challenges either by design or by eventualities. In this
section, several challenges with possible and corresponding
solutions will be x-rayed. The three most notable challenges
of the next-generation smart grid include security (preserving
data security and privacy), standards interoperability (equip-
ment and protocol compatibility) and cognitive access to
unlicensed radio spectra like TVWS [201]. Others are the
incorporation of renewable energy, big data fast storage and
analysis, explainability of AI algorithms, limitations of AI
algorithms, government support, personal/consumer educa-
tion.

A. SECURITY
Security is the most pressing issue begging to be addressed
in the smartgrid system. This is because once the grid is
digitalized (integration AIoT with duplex command and con-
trol ability), it is visible to the internet and as such, prone
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FIGURE 29. Network architecture for the next generation smart grid.

to all sorts of malicious attacks. These AIoT components
within the smart grid that measure, and extract data must be
put at alert. For instance, sensors, smart meters, substations,
and intelligent feeders, if compromise, then it is possible for
hackers to extract some vital information about consumers’
behavioural patterns and therefore it must be assured of confi-
dentiality. Reference [38], [202] have proposed how SDN can
be employed to secure the smart grid. But, the SDN has some
security problems as well. For example, notwithstanding the
SDN control plane being the hub of security to the smartgrid,

however, it could be affected by attacks and thus become
susceptible. Besides, employing a sole SDN controller in a
vast entity like a smart grid is a source of failure. Some
approaches can be deployed to solve these pressing security
issues in the smart grid. They include:

• Blockchain: Blockchain has shown potency for securing
the grid as it did in the cryptosystem using decentralized
authentication, authorization. The potential of decentral-
ized databases to eradicate cyber-attacks has proven to
be so efficient that even global institutions recommend
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its application. This is a good approach such that the
grid operation is not in the hands of a single vendor,
ISP, or supplier. The decentralized databases imply that
an attack on a database of the grid, e.g., one generation
plant, cannot affect the operation of the entire network.

• Decentralized SDN controller: One method to deal with
this single point vulnerability of the SDN controller is to
decentralize the SDN control plane. Such a distribution
of the SDN control plane will lessen the menace of DoS
attack to a large extent nevertheless another issue occurs
that is connected with the interaction between SDN con-
trollers [36], [200]. Picture a situation where a malicious
terminal disguise as an SDN controller in a distributed
SDN settings to gain access to the network. Then, such
type of problem in this context, need to be dealt with
using a decentralized SDN Blockchain controller. These
intelligent solutions for smart grid security also have
trade-offs between performance and security which is
another area of research.

B. INTEROPERABILITY AND STANDARDS
The smart grid is a complex system by design and as
such, to cover the entire grid structure, a lot of smart
devices and equipment are needed, which must be compat-
ible with one another. Therefore, standards provide a lin-
gua franca (common language) that allow interoperability
(exchange of information) between systems and devices from
different vendors/manufacturers. Interoperability encourages
an open architecture of technologies and their software
systems to permit interaction with other systems and
technologies. To achieve robust smart grid functionalities,
technology implementations must link smart devices and
systems involving hardware and software. In this regard,
AI and SDN can assist a lot in interoperability chal-
lenges. Imagine a packet sent from a smart meter using
ZigBee (IEEE 802.15.4g) to an intelligent substation using
Wi-Fi (IEEE 802.11), if not data and communication driven
interoperability proposed in [32], that would not have been
possible. Other standards are IEC 61968 and IEC 61970 stan-
dards which provide models of transmission, distribution sys-
tems, as well as restrictedmodels of power generation, known
as the CIM (Common Information Model). IEC 61850 is
a standard for substation automation system and renewable
energy resources (PV, hydro & wind and other), a basis for
field equipment communications. The EN 62056 standard for
electricity metering (data exchange for meter reading, tariff,
and load control). EN 13757-1 for communication systems
for meters and remote reading of meters. The IEC 61968-9
for system interfaces for distribution Management (interface
standard for meter reading and control) [202].

C. ACCESS TO UNLICENSED RADIO BANDS
A smart grid could be considered as a tenant network using
the network slicing technique of 5G. However, it must surely
use a radio spectrum for communication. Despite 5G network
slicing, using unlicensed radio spectra like the Television

White Space (TVWS) [204] is still one of the solutions
to the problem of spectrum scrunch/scarcity. The TVWS if
accessed by the 5G radio could solve congestion problems
or over-dependence on the licensed band since mmWave
beyoung 30GHz is a bit contentious in terms of health
implications.

D. INTEGRATION OF RENEWABLE ENERGY
Highly integrated renewable energy is a key characteristic
of smart grids. However, it presents several significant chal-
lenges due to the variability and unpredictability of renew-
able energy in which the power output can vary abruptly
and frequently [44], [205]. This problem can be solved by
embracing microgrid technology and VPP strategies. Island-
ing also could help in solving these challenges, but we cannot
succumb to the disadvantages alone when the advantages out
ways the disadvantages.

E. EXPLAINABILITY OF AI ALGORITHMS
Generally, AI algorithms have the black box problem, and
they are not interpretable or explainable. A black box refers
to a function where you know the signature of the inputs
and outputs, but figure out how it determines the outputs
from the inputs. This is an obstacle that AI algorithms
currently face. [206] provide a comprehensive discussion
on this domain. The development of the second skill will
help in this regard. Imagine when personnel manning the
smart grid facilities are trained on black-box analytics.
This will eventually get read of the myth of black box in
explainability.

F. LIMITATIONS OF AI ALGORITHMS
The development of AI/ML technologies has greatly influ-
enced the deployment of AI on smart grid systems. How-
ever, every technique limitation should be considered before
applying them to the smart grid. This is were standardization
will play a major role because different AI/ML expert has
its methodology. Thus, a consensus on the standard to use
will go a long way to solve these issues. Take for instance the
challenge of security in smart grid. While some AI algorithm
expert will propose and deploy SVM, other will prefer ELM,
KNN, CNN or DT as the case may be.

G. BIG DATA FAST STORAGE AND ANALYSIS
One more major problem is, by what means to continue
enhancing the performance of storage and retrieving huge
smart grid data for AI applications robustly. This problem
can be tackled with the integration of edge technology like
parallel cloud storage systems which includes EC2, Google
cloud, i-cloud just to mention but a few.

H. GOVERNMENT SUPPORT
For the current smartgrid to evolve to the future grid,
there must be an enabling environment provided by
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the government. Financial resources are not the only obstacle
to initiate a future grid. The political will of the country play
a significant role in this regard. It needs a government with
strong political will with clear and effective energy policy for
a successful implementation of next-generation smart grid.

I. PERSONNEL AND CONSUMER EDUCATION
Smart meters want to be software-oriented as such, consumer
education and participation is an important component of the
successful implementation of the smart grid. A significant
portion of the smart meter benefits relies upon consumer
engagement. So, the consumers have to be educated to get the
maximum benefit. Also, personnel working in the smart grid
facility need to be trained on coding (programming) since all
the devices incorporate AI, hence the need for the ‘‘second
skill’’ is inevitable.

VIII. PROSPECT OF AI IN SMART/FUTURE GRID
The objective of smart grids is to achieve a full self-learning
system that will be responsive, adaptive, self-healing, fully
autonomous, and cost-effective. Future directions and oppor-
tunities to achieve the advanced smart grid systems are pred-
icated on the following:

• Customer activities pattern forecast: Fog computing
has aided the evolution of next-generation networks
and the energy demand management aspect is vital
for handling the consumers’ interaction in the power
grid. The knowledge through the learning of consumer
behavioural patterns in power utilization, significantly
add value to the demand response tasks on the customer
end.

• Integration with cloud computing: To achieve a fully
self-learning smart grid system, the integration of AI
with cloud computing can enhance security and robust-
ness and minimize outages will play a more important
role in smart grid systems [33].

• Fog computing: Fog computing attempts to clean up
the raw data with its jurisdiction instead of forwarding
it to the cloud. By providing on-request resources for
computing, fog computing has numerous benefits like
security [177], elasticity, energy savings and scalability
of the grid [14]. Reference [207]–[209] investigated the
incorporation of fog computing into the smart grid. Fog
computing will play a greater role in the big data of the
future smart grid system.

• Transfer learning: The absence of tag data has been one
of the core problems for smart grid analytics. Transfer
learning reduces the time frame for training the data
set. This has encouraged investigators to adopt this
technique to solving the dilemma of data set insuf-
ficiency. Also, deep transfer learning tasks have gain
prominence as they could be applied in smart grid
systems [210].

IX. LIMITATIONS OF THE SURVEY
This study has taken an extensive investigation of how
to improve the current smart grid to the next generation
smart grid through the integration of AI/ML, IoT and the
5G network. However, there is no way this study can
exhaust all areas of these three major areas whose research
domains are expanding daily considering, the rise in chal-
lenges facing the smart grid and the urgent need to proac-
tively address it by proposing novel approaches that could be
built on.

X. CONCLUSION
The fact remains that the electric grid has evolved from the
old-fashioned electromechanical system to a more modern
smart grid. There have been tremendous effort to enhance
this transition with employment of several integrated solu-
tions from blockchain to IoT, and 5G. This implies that
both past solution and our proposed solution aim at address-
ing common challenges in a different way using different
integrated techniques. However, it is a fact that no system
is truly smart or intelligent without the infusion of AI/ML
strategies. Hence, this survey discussed the next-generation
smart grid (future grid) that leverage disruptive technologies
like AI, IoT and 5G for robust reliability, security, resilience,
and overall system performance. The next-generation smart
grid comprises unique features like smart generation (which
includes microgrid and VPP), smart transmission lines
(lines with embedded AI-sensors), intelligent feeder and
substation, programmable sensors (AI-sensor/intelligent-
sensors), software-defined meters (instead of smart meters),
AI-controlled network management centre (Unmanned), etc.
Furthermore, instead of the usual not too flexible 3G, 4G
network as the communication backbone, the next-generation
smart grid will deploy 5G. The reason(s) for this is because
the 5G network is an intelligent network with network slicing
abilities that the grid can leverage by renting the slices. Sec-
ondly, the 5G is a software define network and that makes
it robust to attack with the help of the controller security
features, and the interoperability capabilities help to inter-
face several AIoT-devices and components made by different
vendors. Also, its NFV features make its operation, naviga-
tion and troubleshooting easier. The grid AI/ML algorithms
empower it for load prediction, power and frequency stability,
fault monitoring and detection, etc. All these make the next
generation smart grid different from the classical smart grid.
Of course, there will be challenges like the redundancy of
personnel when AI devices/strategies are deployed on the
entire power grid system. However, training and retraining
of manpower on the ‘‘second skill’’ is inevitable. Our future
work will dwell on the implementation feasibility through
simulation, the discussed integration of AI, IoT and 5G for
next-generation smart grid, using Matlab, NS2/NS3, Open-
daylight and Mininet [211]–[216] with the corresponding
comparison with existing literature.
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